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Magnetic Neutron DifFraction from Exchange-Coupled Lattices at High Temperatures
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The magnetic scattering of slow neutrons from a crystal lattice with exchange coupling at temperatures
much higher than the (ferromagnetic or antiferromagnetic) Curie point is investigated. The residual short-
range order is shown to manifest itself in coherent and inelastic eGects, which are calculated by means
of an expansion in 1/T. These sects can yield information on the strength of the exchange interactions,
the ratio of nearest neighbor to next nearest neighbor interactions, etc. Conditions for the observability
of these effects are more favorable in the antiferromagnetic case.

I. INTRODUCTION

1
COHERENT effects in the magnetic scattering of~ neutrons from the antiferromagnetic substance

MnO at room temperature were 6rst observed by Shull
and Smart. ' Recently, more detailed experiments have
been performed on MnO by Bendt and Rainwater. '
Since MnO has a Curie temperature of 122'K, the
scattering effects constitute one of the very few de-
tectable effects of exchange coupling at temperatures
far above the Curie point. It was therefore thought of
interest to make a detailed theoretical calculation of
the magnetic neutron diftraction pattern in this temper-
ature region, particularly since here the rigorous high
temperature expansion methods are available and make
possible relatively unequivocal statements. These
enable one, at least in principle, to obtain from the
experimentally observed pattern a considerable amount
of information on the exchange interaction strengths,
etc.

In Sec. II, the specifically coherent scattering sects
are investigated for a lattice with nearest neighbor and
next nearest neighbor exchange coupling, for both the
ferromagnetic and antiferromagnetic cases. In Sec. III,
several inelastic eff'ects neglected in Sec. III are taken
into account.

II. THE COHERENT MAGNETIC SCATTERING

The magnetic scattering of slow neutrons (i.e., that
part of the scattering due to the interaction of the
neutron magnetic moment with the electronic magnetic
moments) has been studied by Halpern and Johnson'
and many others. They found that for neutrons of
momentum h and spin s incident on a lattice in a state
I, the ratio of measured intensity of neutrons of
momentum k' and spin s' in a solid angle range dQ to
incident neutron intensity is

the neutron spin operator, S„and R„are the spin
operator and position respectively of the nth ion, and
the sum is over all S' ions in the lattice. Further, k
and c have been taken as unity and

q=k' —k; q*=q/lql,
and

is the magnetic form factor of the individual ion, 8
being the state of the individual ion, s~ and r~ the spin
and location of its lth electron, and S its total spin.

It has been assumed that the orbital magnetic inter-
actions are absent or quenched, and that the neutrons
are being detected with an efEciency inversely propor-
tional to the velocity, so that a

l k'l/l k
l

term is absent
in (I). We assume also that the region of observation
is far from a nuclear Bragg peak, so that there is no
interference with nuclear scattering. The nuclear scat-
tering may then simply be subtracted from the total
measured scattering to give the magnetic scattering.

Of experimental interest is the total intensity of
scattered neutrons in a given direction k*'=k'/lk'l.
If we therefore sum (I) over all possible final states for
which k' lies in the speci6ed direction, and average
over the initial neutron spin states (assuming an
unpolarized beam) we obtain for the ratio of intensity
in the direction k*' (per unit solid angle) to incident
neutron intensity '.

I(k, k*')=PZ ' exp( Er/T) P (e'p—~/m)'F(q)
ad I.'

. l(I.'lg(S.—q*q* S.) exp( —iq R„)lI.) l' (4)

Here Z ' exp( —Er/T) is the probability of occupation
of the lattice state L,, where

Z(T) =Pl, exp( —El/T).di = (2e'p~/m)'l (s'I.'l P„(s S„—q* sq~ S„)
Xexp( —q. R„) l sL) l'F(q)dQ. (I) (T measured in energy units) and Er, is the exchange

energy of the state I., which we take to be the eigen-
function of a hami&tonianHere I' is the final lattice state, nz is the electronic

mass, y„ is the magnetic moment of the neutron, s is
H=J P SpSp+E g Si.S(. (6)' C. J. Shull and J. S. Smart, Phys. Rev. 76, 1256 {1949). nbr l,l' ~ nbr &P' P. J. Bendt and L. J. Rainwater, Phys. Rev. S3, 235 (1951).'0. Halpern and M. H. Johnson, phys. Qev, 55, 898 (1939). The speci6cations "nbr I, /"' and "e nbr l, /"' refer to
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the fact that the 6rst sum is taken over all ions l and l'

that are nearest neighbors, the second over all / and 1'

that are next nearest neighbors. J and E are propor-
tional to certain exchange integrals and are positive in
the antiferromagnetic, negative in the ferromagnetic
case. The instruction "ad L"' in the sum over final
states in (4) means that only those 6nal lattice states
with admissible energies are to be included. That is,
the kinetic energy of the scattered neutron

k"-/(2M) =k'/(2M)+Er, Eg. —

must be ~&0, or Er, ~&Eq+k'/(2M). (M is the neutron
mass. )

To proceed with the evaluation of (4), two approxi-
mations are made, which will be examined more closely
in Sec. III. First, we assume that in the admissible
transitions, q is seldom very far from its value q& for a
purely elastic transition:

qo
——2k sin-', 8; lk'l = lk!,

where 8 is the angle between k and k'. %e thus substi-
tute qo for q in the matrix element of (4) and in the
argument of the form factor. Second, we assume that
the final lattice states J' to which a nonzero matrix
element exists in (4) are almost all energetically
accessible, so that in the summation over final states,
we may sum over all states to which a nonzero matrix
element exists. The first approximation depends on q
being fairly large compared to the rms energy change,
the second on k being fairly large.

I(k, k*') then becomes (with R„„written for
R„—R„)
I(k, k*') = (e'«~/m)'F(qo)Z 'gr, exp( —Er/T)

(L I E...(s.-q*.q*. s„) (s„.-q*.q . s„,)
Xexp(iq, R„„.) lI.)

= (e'p~/m)'F(qo)Z

xsplZ '(s 's ' qo*'s qo*'s )
Xexp(iqo R ) exp( —H/T) }. (9)

Next, the exp( H/T) is expand—ed:

exp( H/T) = Q—(—1)"/m!(H/T)"
m=0

in both the argument of the spur in (9) and in

z(T) =Z~(L I exp( —H/T)
l
I-)=sp exp( —H/T), (1o)

and a series is obtained for I(k, k*'):

I(k k*')=Io+T 'I(+ T "Ig+ . (11)-
To terms in 1/T ', -

Z(T)=(2S+1)~{1+T'(&VS'/3)(J'z„+K'z )} (12)

where s and s are the numbers of nearest and next
nearest neighbors respectively of a given lattice point.
It is characteristic that because of the factor ~V, the

number of iona in (12)—the expansion for Z, an ex-
tensive property of the lattice, is in powers of (Iq&/T),
and is thus extraordinarily poor at laboratory tempera-
tures. The series for I(k, k*'), however, is in powers of
1/T, and is usable at ordinary temperatures. (In all
of these calculations, frequent use is made of the
following formulas for taking spurs:

Sp'S„=0

Sp'S„S„=g/3b„„

Sp'S„S,S,= i/6$e„„,

Sp'S„SgS„S„=g/30L(2 g+ 1)(h.yb„„+8.,5„),)

+ (2S—4)8„„5g,],
where e„,„is the permutation symbol, 5„is the p,-compo-
nent of a spin vector whose square is S(S+1)=—g, and
Sp' indicates the spur divided by the number of states. )
Further, it is found that

I,(q,) = (e'pp /m)'F(q, ) 'VS-
which is the ordinary incoherent paramagnetic scat-
tering (see reference 3) and

I,(k, k~') = (e'p~/m)'F(qo) -', iVS (—-', g)

XlJ+~cos(qo R«)+Kgb cos(qo R~~)}, (14)

where Pq is taken over all nearest neighbors l' of a
single given lattice point f, and +2 is over next nearest
neighbors t' of /.

Actually, most experiments are performed with a
microcrystalline powder, so that a typical lattice vector
R~~ will on the average be randomly located with
respect to qo. We must, therefore, replace cos(qp' R(( )
by its average over-all directions of R«, which is

(qoR«) ' sin(qoR(&).

(14) then becomes (I~ depends now only on k and the
angle 0)

I&(k, 0)= Io(qo). (—-,'g)

sinqoh„ sinqo~nn
X Jz. +E~„„ (1S)

qoa qo

where h„and A„„are the spacings between nearest and
next nearest neighbors on the lattice respectively.

Note that to this approximation, the effects of nearest
and next nearest neighbor interactions are completely
additive —as are indeed the effects of any other inter-
actions that may be present. This contrasts strongly
with the situation below the Curie point, where the
ordered lattice state may be determined by just one of
the interactions. In fact, it is possible by comparing
the experimental location of the maxima or minima of
the magnetic scattering pattern with those of (1S) to
infer the ratio of J to E, which can be used to check
the theory of Anderson. 4

4 P. Anderson, Phys. Rev. 79, 705 (1950).
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FIG. 1. Magnetic neutron scattering intensity per unit solid angle
per unit incident beam (I) as function Of go=2k sin/8.

The relation between the ferro- and antiferromagnetic
pattern is shown schematically in Fig. 1, where for
simplicity we have assumed only one interaction, and
plotted the intensity as functions of qp. Io(qa) LEq.
(13)], is just the form-factor pattern for an uncoupled
paramagnetic lattice. The next term in the intensity,
I~ [Eq. (15)] is seen to be negative for the antiferro-
magnetic, positive for the ferromagnetic pattern, and
is a coherent eGect of the exchange coupling. In the
ferromagnetic case, its principal efkct is to increase
the scattering for small qp. This is difBcult to observe
6rst because of experimental diKculties at small qo

(i.e., small angle or small neutron momentum k), and
second because the inelastic sects to be discussed in
Sec. III are very large in this region. The antiferro-
magnetic pattern, however, shows a coherent peak in
the neighborhood of q~ ——s/6, and is readily observed.
The inelastic efkcts, in fact, decrease the cross section
at small qo and make the peak even more pronounced.
The antiferromagnetic case is, therefore, much more
accessible to experimental observation.

The antiferromagnetic coherent peak is the high
temperature residue of the large coherent peak visible
below the Curie temperature. ' By examining the calcu-
lation of I~, it is seen that the coherent eGect arises
from the correlation of ions directly coupled by an
interaction [see Eq. (14)], and is thus an effect of the
residual short-range order at high temperatures. It is
in fact easy to compute the lowest order term in the
temperature expansion for the average correlation of
two ions at positions u and b in the lattice. The result is:

((L I5'-"~s'"
I
L))"=s»-s( —2»/32')""r. ~, (16)

where a and P refer to components of the spina of ions
c and b, E has been assumed zero, e,q is the minimum
number of steps between u and b, counting distance
between two neighbors as one step, and s ~ is the
number of "shortest paths" between e and b, i.e., the
number of ways of reaching b from a going from lattice
point to lattice point, in precisely e & steps.

From (16), it is seen that the high temperature
expansion is certainly poor at T~2}I

~
S/3, where the

lowest order terms (16) indicate long-range order. The
parameter 2»/(3T) is thus at high temperatures an
indication of the degree of order, and is probably of the
order of magnitude of unity at the Curie point.

The result for I~ is, after some computation,

I&——Io{J'[—st& cosq, R«.+(4/9)S'P& cosqp'R«]

+E [ QS+2 cosqp'R[p+(4/9)S Pg~ cosqo'R«~]

+JE (8/9)S'Qmcosqp'R~[ } (17)

where P~ and P~ have been dehned above LEq. (14)].
is taken over all l' de6ned as follows: Pick any

nearest neighbor of a given lattice site l. Then every
nearest neighbor of this nearest neighbor, except / itself
is taken as an I,' in the sum. +2 is de6ned similarly-
for "nearest neighbor" merely read "next nearest
neighbor. " In PI, l' can be either a next nearest
neighbor of a nearest neighbor of /, or the nearest
neighbor of a next nearest neighbor.

After averaging over orientations of the micro-
crystals, (17) becomes

sinqp6„4 sinqpD
Ip=IO I' ——Ss +—S's +co "'

qoa 9 qoD."'

j. sinqph„„4 sinqoD '2&

+E' ——Ss +—S'z +co
qo~~~ 9 qoaa

8 sinqaD ~"
+JE. S's.s..Q(o &@— . (18)

Table I gives the co &", D &'), etc., for several lattice
types. It is not di6icult to extend the results to other
lattice types and to include other interactions. For
each interaction, a term of the structure of the J' term
in (17) must be included, and a cross-term like the JE
term in (17) for every pair of interactions. To this
order, there are no cross-terms involving more than
two interactions.

IIL INELASTIC EFFECTS

The approxunations made in going from Eq. (4) for
I(k, k*') to Eq. (9) have led us to the expressions (11),
(13), (15), and (18). These expressions are functions
only of qo=2k sin~~8, instead of both k and 8, so that
if (as in the experiments of reference 2) I(k, 8) is
measured as a function of k for several 6xed angles

~ and the curves are plotted with qo as abscissa
(as in Fig. 1), the curves taken at angles A, 82, etc.,
should all coincide. %e shall show now that if we take
into account the neglected sects, the intensities are
reduced somewhat (particularly for small qo). Moreover,
the curves for large 8 are further depressed than those
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Tmm I. Coefficients for Eq. (18}.

Lattice type

Simple cubic

Body-centered cubic

Face-centered cubic

6 12

3 1

6 1 4

2 4

2~a
2~a
USa„
V2A„„
2~am

gii
ss rs

g6
2

~me

Dg(s)

$10
Sos

g8s„

for smaller 8, so that the curves for 8~, 82 are
actually separated. Otherwise, the results of Sec. II are
not seriously modi6ed.

%'e examine 6rst the eGect of having included in

Eq. (9) transitions to a few states that would require
the neutron to transfer more than its total kinetic
energy to the lattice. To this end, we must compute
the distribution of energy losses in the transitions
admitted in Eq. (9), and decrease our computed in-

tensity by the fraction of energetically inaccessible
transitions. It will prove practicable to calculate only
the lowest few moments of the energy loss distribution,
and the shape of the entire curve will be inferred from

these. In fact, since the entire eGect is generally not
very large, it will be sufBcient to assume that the
distribution is gaussian, with suitably 6tted mean
energy loss and rrns energy loss.

The mean energy loss of the neutron, e(k, k*') is
obtained by inserting a factor (El;—E&) into the
summand of Eq. (4), and dividing by the total intensity
I(k, k*'). (Note that for this purpose it is essential to
sum over all states I.', including the inaccessible, in
both numerator and denominator. ) We assume then
that in the matrix element and the form factor, q may
still be replaced with suflicient accuracy by qo. This
yields:

Sp{g exp( —iqo'R ')(S ' —q*oq*o S ) [&, (S —q*oq*o'S )]exp(—&/T){
o(k, k*') =

Sp{g„„exp( iqo R—„„)(S„—q*oq*o S„) (S„—q*oq*o S„)exp( —H/T)I
(19)

where [A, B]=AB BA. Expandin—g the exp( —H/T)
and using the result

[H, S.]=—2Ji P S.XS.—2' P S. XS. (20)
nbrs rg nbrs

e' of e n' of e

we 6nd that ~ approaches zero at high temperatures.
The lowest nonvanishing term in the high temperature
expansion is (after performing the microcrystaHine
averaging)

stngok~ )
e(k, 0)=+48/(3T) J's

l
1—

q,a„)
( sinqoh„„q

l+1(ss..{ 1- { (21)
qod ) I

indicating that the neutron tends to lose rather than
gain energy at the lower temperatures. To this order,
the interactions contribute additively to (21).*

To obtain the mean square neutron energy loss
(e'(k, k*'))A~, one proceeds identically, inserting, how-

~ Including inaccessible states in the sum limits the use of (21)
to neutrons of kinetic energy large compared to T. In general,
(21) gives an upper limit to the magnitude of the neutron mean
energy loss.

ever, a factor (Es Es)s rathe—r than (Es Er,) in-
Eq. (4). One finds for (e')A, an equation identical to
(19), except that [II, (S —q*oqeo S„)]is replaced by

[H, [P, (S.—q*oq*o S.)]].
The lowest term in the high temperature expansion is
then found to be

SS{ ( sings' q
(o'(k 0)), =—j's„{ 1—

3 E qoa„)

f slngokaa l+ass ~l 1—
{ . (22)

q,a„„& l

This is temperature-independent, the interactions again
contributing additively, and reduces for large qod „and
E=O to an analogous result obtained by Van Vleck. '

~ J. H. Van Vleck, Phys. Rev. 55, 924 (1939), Eq. (7). Note in
this connection that if it is desired to express the results in terms
of magnetic susceptibility data Las in Eqs. {9) (10) of the refer-
ence), the expression O=)S(fz +Ez ) should be used for the
constant 0 in the susceptibility law g=C(T+8) '. Comparing
(18) and (15) shows that rapid convergence of (11)depends on the
smallness of 0/T. This must be remembered in applications to
substances such as MnO for which 0 is much larger than the
Curie temperature.
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The probability that a neutron loses energy between ~

and e+d~ in the scattering process is then taken to be

P(e)de= (2x(~')A~) & exp{—(e—e)'/2(e')A„I (23)

so that since transitions for which e) k'/2M are pro-
hibited, the previously determined intensity must be
multiplied by the factor

y(k, 6)=1— F(e)de
4 Q'Ij2M

=-', L1+4 ((k' —2Mc)/(8M'(e')g„) &)] (24)

where C is the error function. ' Note that y(k, 0)
depends on k and 8, not merely on q0, so that the
intensity cubbies for 2 diRerent values of 8 and varying
k, will be separated. Since k'/2M=(8M sin'-', 8) 'qo'

it is seen from (24) that p is larger for larger 0 (h and
(c')A, depend only on qo) p(k, 0) is slightly greater than
-', at q0=0, rises fairly rapidly, and is rather close to
unity in the region of antiferromagnetic coherent peak.

The second e6ect we consider is that of having
replaced q by q, in the form-factor in Eq. (4). Since
the values of 8' of interest are not too large (below the
angle of the first Debye-Scherrer ring), q will be larger
than qo for most transitions, whether the neutron gains
or loses energy. Since the form-factor decreases mono-
tonically with q, we exaggerate the intensity by re-
placing q by qo, the exaggeration being worse, for
given qo, for larger 8.

To correct for this eGect, we note that in the region
of interest the form factor can be expressed sufFiciently
accurately as

F(q) = 1—nq'.

Furthermore, if the energy change is not too large
compared. to the initial neutron energy, we have using
Eq. (7)

q"-=k'+k" —2kk' cos8=qa'+4M(Er, —EI~) sin-', 8
+ (1/k')M'(Er, EI. )' cos8. —(26)

Inserting (26) and (25) into (4), replacing q by qo

elsewhere in (4), and neglecting the effect of the
energetically inaccessible states, I(k, 8) takes the form

I(k, &)=Io(qo)+& 'h(qo)+& 'I2(qo)+

+hI pp(k, 0) (27)

where Ia, I~, and I2 are given in (13), (15), and (18).

'Notation of Magnus and Oberhettingex, Speciul FNnctions
I,'Chelsea Publishing Company, New York, 1949), p. 96.

For hI p p we obtain, because of the factors (Er, E—L,.)
and (El, E—r,.)' in (26), expressions much like the
numerator of (19), etc T. hese may be evaluated by
expansion of exp( —H/T) and give to lowest order the
temperature-independent term

hIpp(k, l)= —(e'px/m)'(-', cVg)((32/3)nSM2 si n' ', 8c-os')

(J'zA„'R(qoh )+K'z 5„'R(qoh„)) (28)

where R(x)=x '(1—x 'sinx) is a monotonically de-
creasing function of x, which is 6 at x=0 and is again
not very large in the region of interest.

Lastly we examine the efI'ect of having replaced q by
qo in exp( —iq R„) in Eq. (4). To this end we put

exp( —iq R ) =exp( —iqa R„)(1—Qq R„—-', (hq R„)')

where using (7)

hq—=q—q0 ——(k' —k)k*'= (Mk '(EI. EI.)—
—M2k '(Eg —EL, )'). (29)

This results, after a somewhat tedious microcrystalline
averaging, using methods similar to these used in the
previous two calculations, in the addition to Eq. (27)
of a term

hI~xp(k, 0)= —(e g~/m) '8F(qo) '(1/9)S iV'k M
' {J2z~b G(qadi )+K2z 5 2G(qohn~) I (30)

where G(x) =x—'d/dx (x ' sinx).
Equation (3) is the first term in a high temperature

expansion, and in its evaluation, q was replaced by qo
except in the exponential, and again the loss of energeti-
cally inaccessible transitions was neglected. Equation
(30) is not reliable for very small qo, since (29) is
inaccurate there, but the eGect is quite negligible in
this region, and is in fact nowhere very large.

To recapitulate, the intensity pattern computed in
Sec. II must be corrected by the term hI pp LEq. (28)]
as in Eq. (27), and to this must be added the term
hI, p { Eq. (30)].Finally, the resulting expression must
be multiplied by the factor y [Eq. (24)] to correct for
the inclusion of energetically inaccessible transitions.
These corrections may be observed directly experi-
mentally as a separation in the I(k, 8) zs qo curves for
2 diferent 8 and varying k, and may be employed as a
further check on the values of J and E deduced from
the strength and location of the antiferromagnetic
coherent peak.
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