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C are appropriate constants, then one could demon-
strate the equivalence of Eqs. (56) and (57).

Another difhculty is demonstrating rigorously the
equivalence between the S-matrix as it is de6ned by
Eqs. (47) and (48) of the stationary method, and its
definition as a unitary matrix describing the state of the
system at t= in terms of the state at t= —~; i.e.,
f(~)=Sf( ~—). Actually, the important conclusions
of this paper do not depend on a demonstration of the
equivalence of these two definitions of the S-matrices.

However, many recent works in fieM theory have, in
effect, depended on the assumption of the equivalence
of these two definitions and it would be worthwhile to
find a mathematically satisfactory demonstration of the
equivalence.

The author wishes to express his hearty appreciation
to David A. Kleinman, George A. Snow, Edward J.
Kelly, and Maurice Neuman for many helpful discus-
sions and criticisms which occurred during the course of
this work.
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This paper is a continuation of an earlier paper which treated the decay of resonance radiation in optically
excited gases for the case of doppler-broadened radiation in plane-parallel enclosures. The treatment is
here extended to a second type of enclosure geometry —in6nite cylinders —and to a variety of spectral
line shapes.

1. mTRODUCnom

HE phenomenon of imprisonment of resonance
radiation in gases owes its existence to the

selective absorbability of resonance lines by normal
atoms of the emitting gas. Over a wide range of gas
density this absorbability is so high that a resonance
quantum emitted in the interior of a gas-filled enclosure
has but a small chance of reaching the walls; hence, the
eventual escape of a unit of atomic excitation energy
from the enclosure generally takes place only after a
large number of repeated emissions and absorptions.
Under these conditions the radiation is said to be
"imprisoned. "

Perhaps the most direct way in which imprisonment
manifests itself is in decay experiments with optically
excited gases. In this type of experiment an enclosure
of gas is irradiated with a beam of resonance radiation,
which serves to excite some of the gas atoms to a given
resonance state. The incident beam is then abruptly
cut ofF„and the intensity of disuse radiation, which is
proportional to the concentration of atoms in the
resonance state, is measured as a function of time. One
observes essentially an exponential decay of the form
s &", where 1/y is the radiative lifetime of an isolated
atom and g, the "escape factor, " is a dimensionless
quantity characteristic of the imprisonment process.
The quantity g may be regarded as the reciprocal of
the number of emission and absorptions of an individual
unit of atomic excitation prior to its escape from the
enclosure.

In an experiment on the decay of the O'P1 mercury
resonance state, which combines optically with the

ground state to emit the 2537A resonance line, Zeman-
sky' observed values of g as low as i0 '. The quantity
g was also found to depend both on vapor density and
enclosure geometry.

A theoretical study' of the decay problem was
recently carried out by the author of the present paper.
It was shown that g depends not only upon vapor
density and enclosure geometry but also upon the shape
of the resonance line. In particular, for an enclosure of
the form of an infinite slab of thickness I. and for a
doppler-broadened resonance line, the following expres-
sion for g was obtained:

g= 1.875/t koL(s' log~skoI)«), (1.1)

where ko is the absorption coeScient at the center of
the resonance line. ko, itself, is specified in terms of the
parameters of the system: gas density, gas temperature,
wavelength of the line, and lifetime of the resonance
state.

More recently, 4 measurements of the imprisonment
of resonance radiation in mercury vapor over a wide
range of vapor density were carried out at the %'esting-
house Research Laboratories. In the region of density
for which g had been evaluated —the doppler-broaden-
ing region —the agreement between theory and experi-
ment was quite satisfactory.

' M. W. Zemansky, Phys. Rev. 29, 513 (1927).
sT. Holstein, Phys. Rev. 72, 1212 {2947'), to be referred to

hereafter as "I."
s A. C. G. Mitchell and M. W. Zemansky, Resonance Rad~atioe

amE Exceed Atoms {The Macmillan Company, New York, 1934)
(to be referred to hereafter as "MZ") Chapter III, pp. 99-100
and Eq. (35}.

4 Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949).
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In the course of preparation for these and other
experiments to follow, calculations of g were performed
for a second type of enclosure geometry —the inhnite
cylinder —and for a variety of spectral line shapes.
These extensions of the theory constitute the subject
matter of the present paper.

2. GENERAL METHOD

We present here a brief outline of the approach
developed in I for the treatment of imprisonment
phenomena with special emphasis on the decay problem.

The radiative transport of resonance excitation is
formulated in terms of a Boltzmann-type integro-
di8erential equation for the density of excited atoms,
n(r):

r7n(r)/r71 = —yn(r)+ y~t n(r')G(r', r)dr' (2..1)

In (2.1) the integration goes over all volume elements,
dr', of the enclosure. G(r', r), which represents the
probability of radiation emitted at a point r' being
absorbed in a unit volume element around the point r,
is given by the expression,

G( ' r) = (1/4 p') (—~T/~ p) (2 2)

where p= ~r' —r~, and T(p) is the probability of a
resonance quantum traversing a distance p without
being absorbed.

In evaluation of T(p) it is necessary to take account
of the rapid frequency variation of the absorption
coeKcient, k(v), in the neighborhood of resonance.
Denoting by P(v) the frequency spectrum of the radia-
tion emitted from a given volume element, we have for
T(p) the general expression,

the normalization requirement on P(v): J'P(v)dv=1.
Thus,

k(v) = rE(v) = (XpoX/8or)(go/gr)yE(v), (2.7)

(1—g;)n;(r) = tG(r, r')n;(r')dr'. (2.8)

As is discussed in I, the g s form a discrete positive-
de6nite set of numbers; hence, after a suKciently long
time, only the "fundamental mode, " with the lowest
eigenvalue, is observed experimentally.

The evaluation of g and n(r) for the fundamental
mode may be achieved approximately by the Ritz
variational method; the general procedure and its use
in the derivation of Eq. (1.1) are presented in I.

3. LINE SHAPES FOR DOPPLER- AND
PRESSURE-BROADENING

In this section we present a brief survey of the
frequency variation of k(v) for the cases of doppler-
and pressure-broadening.

A. Doppler-Broadening

where ) p is the wavelength at the center of the resonance
line, E is the vapor density, and g2, g& are the statistical
weights of excited and ground states. Inserting Eq.
(2.7) into Eq. (2.3), we readily evaluate T(p) and,
hence, G(r', r) for various line shapes.

The general solution of Eq. (2.1) may be written as
a sum of product solutions of the form,

n;(r)e ""'
each of which satisfies an equation of the type,

T(p) = )t P(v)e-'& "»dv. (2.3)

k(v) is given by the relation,

k(v) = kp exp[ —((v—vo)/vo) (c/vo) ] (3 1)

In the Appendix of Part I it is shown that the propor-
tionality relation,

P(v) ~ k(v), (2 4)

may be used when the shape of the resonance line is
determined by either doppler- or pressure-broadening;
in the latter case, it was assumed that k(v) is given by
the dispersion formula,

k(v)" 1/(1+54'(v —vo)/vv]'), (2 5)

where p„ is proportional to the vapor density. In the
present paper Eq. (2.4) will be assumed to hold for
other types of pressure broadening; this extension is
discussed in Appendix A.

The constant of proportionality in (2.4) is readily
determined from the "integral absorption" relation,

In Eq. (3.1), vp is the resonance frequency of an atom
at rest, op= (2kT/3f, &, )& and kp is given by the relation
LI, Eq. (2.iO)],

(3.2)

B. Pressure-Broadening

We include in our discussion two kinds of broadening:
self-broadening (due to the interaction of an absorbing
atom with others of the same kind) and foreign gas
broadening. In the latter case, we assume that the
foreign gas does not quench the resonance excitation of
the absorbing atoms by collisions of the second kind.

As was stated in I, pressure broadening can often be
represented by the dispersion distribution, which in its
most general form reads

t k(v)dv= (Xp'1V/8or)(go/gr)y, (2.6) k(v)=kv/I1+L4~(v v. Pv)/Vv]'I — —(33)
~ H. M. Foley, Phys. Rev. 69, 6f6 (f946); E. Lindholm, Arkiv.

t see 3' pp. 95-96, Eq. (28); I, Eq (2,5)] and. from Mat. Astron. Fypik. 32k, No. 17 (1945).
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Here Pv and yv are directly proportional to the density,
X', of the broadening agent. (For self-broadening
E' = i&&T.) kv is obtained from Eq. (2.6); thus,

Xo'Egg y
k =y

21l gy p~
(3.4)

hvv= C„/R". (3.6)

(The C„of Eq. (3.6) is essentially equal to Spitzer's
interaction constant, q, divided. by 5; it is not to be
confused with the C„of his equation, which is a dimen-
sionless quantity of the order of magnitude unity. )

Another condition for the validity of the dispersion
formula is that the mean free time between coBisions
be large compared to the time of a collision. This means
that for the major fraction of time the absorption
frequency of a given absorbing atom is negbgibly
perturbed. At high pressures such that the mean free
time between collisions is so short that the absorption
frequency is continually perturbed, the dispersion
formula breaks down.

At high pressures or for hv larger than (3.5), pressure
broadening is customarily treated from the standpoint
of the statistics theory. The basic premise of this theory
may be stated as follows. The system of absorbing
atom plus perturbers possesses at any time t an instan-
taneous absorption frequency v(t) equal to vo plus
frequency perturbations of the type (3.6). For a speci-
fied sequence of collisions of a given type, v(t) is a
known function of time. The statistical theory assumes
that the absorption coeKcient k{v) is proportional to

' Lyman Spi,tzer„Jr., Phys. Rev. 58, 348 (1940).

In discussing Eq. (3.3) we first point out that this
line shape is generally unobservable in the immediate
core of the line because of doppler-broadening. How-
ever, as shown in MZ, Appendix I, for frequencies
whose distance Av from the center of the line is large
compared to vova/c, effects of doppler-broadening may
be ignored; for such frequencies, since yv (as well as Pv)
is generally small compared to vevo/co, Eq. (3.3) takes
the simple form,

k(v) =kvLvv/{4~(v —»—Pv) I 7 (3 3')

In the case of self-broadening Pv is zero, ' i.e., there
is no frequency shift. Foreign gas broadening, on the
other hand, usually produces a negative shift.

Deviations from the dispersion distribution occur at
high pressures and for large h~. According to Spitzer'
these deviations 6rst become appreciable when

b,v& (1/2s)(v "/C.)'&&"-'&. (3.5)

Here„e is the average velocity of perturbing atoms
relative to absorbing atoms; C„and e are de6ned in
terms of an assumed interaction law according to which
the presence of a perturbing atom at a distance R from
an absorbing atom, produces a change in the absorption
frequency,

that fraction of an arbitrarily large time interval, T,
for which v(i) is contained between v and v+&fv. Since
an arbitrarily large number of collisions take place in
time T, the general principles of statistical mechanics

permit us to equate the de6ned time fraction to the
probability of occurrence, H(v)&fv, of those configura-
tions of absorbing and perturbing atoms for which the
absorption frequency lies between v and s+ds. Further-
more, since H(v) is by definition a normalized proba-
bility function, i.e., J' H( v) dv, we must have

P(v) =H(v), (3.&)

since P(v) is similarly normalized. The constant of
proportionality between k(v) and H(v) is then the same
as that of (2.7).

In simple applications of the statistical theory, one
customarily assumes a frequency perturbation of the
form (3.6); the following expressions for P(v) and
k(v) are then readily obtained. '

P(v) = (4zÃ/n)C. ""/(hv)81 "+'

X '
g2 pe' C„""

k(v) = «P(v) =
2 gi n (6 )v~"1+'

(3.8)

(3 9)

In a more exact treatment it is necessary to take
account of the degeneracy of excited or ground states,
which is always present in an actual case. The approach
of a perturbing atom then entails not only a shift, but
also a splitting of the absorption frequency. Hence,
Eq. (3.6) must be replaced by a system of equations,

5vv&'& =C„&'&/R", (3.6')

where s takes on a number of values equal to the
multiplicity of the splitting. The statistical analysis
then yields for P(v) and k(v) expressions of the form
(3.8) and (3.9) wherein the interaction constant C is
replaced by a more complicated term involving the
C„&'. In the derivation of (3.8) and (3.9) it is further
assumed that binary collisions are alone of signi6cance.
As shown by Kuhn, ~ this condition is fulalled for
suKciently large b, v, i.e., in the wings of a spectral line.
The treatment of the present paper is restricted to this
case.

In practice, two types of interaction are of special
importance:

1. Dipole-dipole interoethon This in.—teraction exists
when the colliding atoms are of the same kind, i.e., in
the case of self-broadening. The resultant frequency
perturbation is of the form,

hvv =Cg/R'. (3.10)

Inserting Eq. (3.10) into Eqs. (3.8) and (3.9), we obtain

P(v) = (4s E/3) LCB/(hv)'j (3.11)

Xo g2 C3
k(v) = ~1P (3.12)

6 gi (hv)'
' H. Kuhn, Phil. Nag. 1S, 987 (l934};Proc. Roy. Soc. (I ondon)

A158, 2i2 |',1937).
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5vv =Cp/E ) (3.13)

represents the first term on the expansion, in powers of
1/Jf, of the interaction between unlike atoms. For this
case Eqs. (3.8) and (3.9) give

We note that Eq. (3.12) exhibits the same dependence
on hv and X as the dispersion formula (3.3') (with
P„=O). Furthermore, a treatment taking into account
the degeneracy of excited and ground states, as outlined,
shows (see a forthcoming paper by the present author')
that P(v) and k(v) are symmetrical with respect to the
sign of the frequency deviation, b, v. Finally, as has
already been demonstrated by Margenau and %atson, '
the magnitudes of Eqs. (33') and (3.12) are of the
same order. Thus, in the case of self-broadening, we

may expect the dispersion distribution to be valid for
3 v much larger than the limit set by Spitzer s criterion
(3.5), at least as long as the interaction is predominantly
dipole-dipole in character.

2. Van der mualsinteraction. —This interaction, which
gives a frequency perturbation of the form,

oscillator strength, f, of the resonance line. In the case
of Hg 2537A, f=0 02.9, whereas for the D, and Dp
lines of Cs, f=0.33 and 0.67, respectively.

T(t )«1. (4 1)

Now, as has been shown in I for doppler-broadening,
and as will be demonstrated more generally subse-
quently, the escape factor, g, is related to T(p) by the
order-of-magnitude equation,

(4.2)

4. TRANSMISSION OF DOPPLER AND PRESSURE
BROADENED RESONANCE RADIATION

The formulas which we obtain in this section for the
transmission probability, T(p), hold only for p large
enough so that the core of the resonance line is quite
thoroughly absorbed out; the main contribution to
(2.3) is then contained in the wings of the line. A
necessary and sufhcient condition for the prevalence of
this situation is

P(v) = -,'prÃ'Cp&/(hv) &,

Xo' gg yak'C6'
k(v) =

12 gg (hv)&

(3.14)

(3.15)

where d is the shortest linear dimension of the enclosure.
Hence, the calculations of this section will apply to
those cases in which the escape factor, is small compared
to unity.

A. Doppler-Broadening
In contrast to the dipole-dipole case, the more exact
analysis involving degeneracy considerations shows that
P(v) and k(v) are asymmetrical with respect to the
sign of hv. Usually this asymmetry takes the form of
enhanced intensity on the red side of the unperturbed
requency. '0

Finally, it should be mentioned that in some cases of
self-broadening in which the dipole-dipole interaction is
weak to begin with, terms in higher powers of 1/R, such
as the van der waals 1/EP term, may predominate for
close approaches, which in the statistical theory deter-
mine the line shape at large hv. Thus, Kuhn' finds
that at 0.6A from the center of the 2537A mercury
resonance line, on the red side,

k(v) ~ (hv) &,

whereas, on the violet side, k(v) drops off with increasing
b, v much faster than the dispersion distribution. On
the other hand, Gregory" finds that the self-broadening
of each of the lines of the principal caesium doublet
obeys the dispersion formula out to at least 20A from
the line center.

The difference between these two cases may be
understood" in terms of the magnitude of the dipole-
dipole interaction, which is directly proportional to the

' T. Holstein, Phys. Rev. 76, 457 (1949) (preliminary notice).
'H. Margenau and %. %atson, Revs. Modern Phys. 8, 22

(1936).' R. Minkowski, Z. Physik 93, 731 (1935), H. Kuhn, Proc.
Roy. Soc. (London) A158, 230 (1937)."Chris Gregory, Phys. Rev. 61, 465 (1942).

'~ V. Weisskopf, Physik Z. 34, 1 (1933),

The expression for T(p), obtained in I, is

T(p) = 1/kpp(pr logkpp)&

where kp is given by (3.2).

(4.3)

4
P(v) =-

yv 4pr(v —vp —p„)

-2

(4.4)

Introducing (3.3') and (4.4) into (2.3) and transforming
to a new variable u=4pr(v —vp —P )/y vwe vobtain

1 t+")1y
T(p) = II —

I exp( —k,p/u')du—
0 up)

00

exp( —k„py-')dy
1I 0

= 1/(prkvp) &. (4.5)

2. Statistical distribg60es. —Ke use here the general
expression (3.8) for P(v). We assume for the sake of
simplicity that E(v) differs from zero for only one sign
of hv. (It is immaterial whether we choose this sign
positive or negative. ) Then, changing the variable of

B. Pressure-Broadening

1. Dispersion distribution We use .—here the asym-
ptotic form (3.3') valid in the wings of the line. From
Eqs. (2.7), (3.3'), and (3.4) we have
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integration from d v to I'(v), we have

(f(gv)
I'e "&P -- dI'

variational expression for g reads Lsee I, Eq. (3.11)j:
ln'(r)E(r)dr+-'J J~Ln(r) —n(r') j'G(r, x')drdr'

f 4sS'~ "'('+"'
~ n

i & 3+ ni
where

~
n'(r)dr

E(r) = 1— G(r, r')dr'.

(5.1)

(5.2)P- rx /(3+rs) e
—xrfzPd P

0

n y (4riV'& "'"+"'

)3+ni ( n

( &s

)((z) ) ""+"' (46)
3+ni

Substituting the explicit expression for z given by (2.7)
into (4.6), we obtain

The problem is to find the minimum value of g and the
function n(x) for which this minimum is obtained.

A. In6nite Slab

We choose a cartesian system of coordinates whose s
axis is perpendicular to the slab; the origin is chosen so
that the plane s=0 bisects the region. Ke assume that
n(r) is a function of z alone; it is then possible to effect
a considerable simplilication in Eq. (5.1) by integrating
over the other two variables, x and Y.

The quantities which have to be evaluated are
J'G(r, x')dx'dy' and E(x). From (2.2) and (4.8) we have

or

n q /4iriV'y "'"+"' ( n

&3+ni & n i
(P, 2g g ~

3/(3+n)

k gs gi i

T(p) ~ ', l(~n((8+n)/+8/(3+n)pi((8+n) (4.7)

G(r, r') =ma„/4ir)t) +',

where p=
~
r r' ~. We—then obtain

G(r, r')dx'dy'

4s ~ & [(x—x')'+(y —y')'+(z —z')'j("+""

(5.3)

For the purposes of the next section, in which we
calculate escape factors for all these cases, we express
T(p) in the general asymptotic form,

ma

2(m+1) ~z— ~-+
(5.4)

T(p) =a„/p"; 0(m 1, (4.8)

5. ESCAPE FACTORS FOR DOPPLER- AND PRESSURE-
SROADENED RADIATION IN INFINITE

SLABS AND CYLINDERS

where a is a function of S, E', and atomic constants.
Equation (4.8) embraces all the pressure-broadening
cases discussed here. In the case of doppler-broadening,
the presence of the logarithmic term in (4.3) does not
permit an exact representation of T(p) by (4.8). How-
ever, as we have already observed in I, the logarithmic
term can, in most instances, be treated as constant;
for example, in that paper, we replace logkop by log~~ k01..
This approximation will also be used in the present
paper in the calculations for infinite slabs; in the case
of cylinders, we replace logkop by logk()R, where R is
the radius of the cylinder. Kith these approximations,
the transmission of doppler-broadened radiation is
represented by (4.8) with m=1.

E(r)= f G(r, r')dr',
~z.~

(5.5)

where the subscript "Ext" denotes integration over all
volume elements outside the gas enclosure. In the
plane case

ma„, p" ds' —v.E()=, + I'

2(m+1) ~,, (z—
~

"+' ~ . i
z —='("+'.

The calculation of Z(r) is not to be performed by a
direct evaluation of J'G(r, r')dr', since important con-
tributions to the latter integral occur for small values
of p, for which the asymptotic expression (5.3) is not
valid. One gets around this difhculty by observing that
the integral of G(r, r') over an in6nite region is unity;
this follows from the definition of G(r, x') given in the
text after Eq. (2.1) as well as from (2.2). We then
immediately obtain

In this section we employ the variational method
described in I to calculate the escape factor, g. The

+
2(m+1) .(-,'L —z)" (-',I.+z)"

(5.6)
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where I is the thickness of the slab. Substituting Eqs.
(5.5) and (5.6) into Eq. (S.i) and introducing the
variable,

we obtain
(=2s/L, (5 7)

g
P - +I

g= t I'(() +
21—m J (1 ])m (1+))m

SZ f % S
+—

I ««
—I

where

+I

J" ~'(~)« (5.8)
—1

g ~=2a /(1+m)Lm. (5.8a)

TABLE I. go, g, and gp1 ln units of a jL for tyPical values of m.

(The superscript "I'" denotes "plane case" as con-
tracted with the superscript "C" to be used later to
denote "cylindrical case.")

Ke now have to consider the type of function to be
used for n($) in the variational calculation of g. In I
we found, that results good to a few percent can be

(l~ Qp I+00)a0+ (If01 10II01)al

(+01 ~If01)a0+ (rill aIf11)al
(5.13)

the nontrivial solution of which requires the vanishing
of the determinant of the coeKcients, i.e.,

Ep0 —OfH00 Epl —O,H01

+01 ~01 +11 ~11
=0. (5.14)

From Eq. (5.14) we obtain two values for 10, and, hence,
for g; since we are seeking an absolute minimum, only
the smaller of these is significant. Once n is known, we
may obtain ap and ul to within an arbitrary constant
from (5.13).

The calculation of the E;;~ and H;, is straight-
forward. "The results are:

Epp" 1/(1 —m——) H00"= 2

Eon=4/(2 —m)(3 —m) PQP= 4/3

Ell ——16/(2 —m) (3—m) (5—m) Hl1 ——16/15.

(5.15)

Inserting these expressions into (5.14) and solving for
n=g/g„p we obtain the "two-parameter" approxima-
tion to g.

Equation (5.12) yields two homogeneous equations for
the a;

go

g01

1.125

1.085

1.077

1.333

1.198

1.150

1.875

1.875

f01=
3a /Lm[10 m —m' —m(10—1 40m—+2m'+ m4) &]

(1—m') (2 —m) (3—m) (5—m)

(5.16)

expected for the two parameter "parabolic" function

Npl($) = ao000(g) = allpl(p)

=ap+al(1 —P).
Introducing (5.9) into (5.8), we obtain

(5.9)

g/g ~—=a= g a;a;IC0~/ g a,a,B;;~ (5.10)

vrhere

i, j 0,1 i, j'-O, I

+I 1

,(&).,(&) +
21-m J 1 (l ()m (1 g)m

and

m r t.LN'(5) —00'(k')XN (k)—00 (5')j
21—m 4J gi

f

1+m
—I

(5.11a)

+1

'(~) ;(~)«.
-1

(5.11b)

Bg/Ba;=0; i=o, 1. (5.12)

The Ritz variational procedure consists in minimizing

g with respect to arbitrary variations in the u;, i.e.,

One may also calculate "one-parameter" approxima-
tions, gp and gl by taking 00($) =ao and N($) =al(1 —p),
respectively. The results are:

go g„'Eop~/zoo——~ a /(1 m')L"—— — (5.17)

gl gm ltll /II11

=30a /(1+m)(2 m)(3 —m)(5 —m)L —(5.18.)

In Table I we present the numerical values of gp, gI,
and gpl in units of a /L for m=xo ~0, and 1. From
Table I, it can be seen that g1 and gp1 do not differ by
more than a few percent. Furthermore, for m= 3 and
—,', the discrepancy between gp and g01 does not exceed
15 percent. %e thus see that, with the exception of the
gp for m=1, the one-parameter results are not very
di8erent from the more accurate two-parameter values;
hence, it is to be expected that the three-parameter
function, derived from npl($) by the addition of a term
of the type, e.g., ao(1—p) will, at best, improve the
value for g by only a few percent.

Ke should point out here that actually gp does not
become infinite for m= i. As shown in I, p. i220, the
asymptotic form of T(p) given by (4.8) or (4.3) is not

"The calculation of the double-integral term of XII~ is facili-
tated by the introduction of new integration variables, I=&+&',
v= $(g- g').
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accurate enough for the eve, luation of Zoo .The detailed
treatment presented in I gives for E00 the value
2 logkoI. (Kq. (4.7) of I must be multiplied by 4, since
the ooo($) of the present paper is twice the roo($) of I).
Hence,

go =&oop/Hoor = logkol. with

ao/a1 0.89 0.31

TABLE II. The ratio ao/a& for typical values of m.

The value of go& is also aGected by the modi6cation of
Zoo'. From I, (4.18), we have

q= $r-'+r" —2rr' cos(p —p') jl.
Carrying out the integration, we obtain"

(5.23)

m
gox=1.875( 1—

log koI. 5/4&—
(5.19)

G(r, r')dz'=C„/q"+' (5.24a)

which, for typical values of logkoL ( 4 to 5), differs
from the number 1.875, given in Table I, by only a
few percent.

Having obtained go~, or n, we may substitute into
Eq. (5.13) and solve for No~($) to within an arbitrary
constant. With use of (5.15) we obtain a set of values
for the ratio ao/a~ (Table II). The two-parameter
functions ooo~($) corresponding to these ratios are plotted
as full curves in Fig. 1;here the arbitrary multiplicative
constant has been chosen to make No~(0) equal to
unity for all, m.

As pointed out the correct value of EOD for m=1 is
2logkoI. instead of inhnity, %hen this correction is
taken into account, one obtains

Co
(5.20)

ai logkoL —15/8

which, for a typical value of logkol. , e.g., 5, gives

where
mu (oa+1)!

C„=
2'+" [(m+1)/2]!

(5.24b)

Introducing (5.24a) into (5.5), we obtain

g(r) —
JI (Q /qm+2)d~~

Ext
(5 5')

where the subscript "Ext"denotes integration over the
cross-sectional area exterior to a circle of radius R.
(When this subscript is absent, the integration is to be
taken over the area of the circle, itself. )

From the form of (5.5') and (5.24a) we see that the
integrands of all the terms in (5.1) are independent of z;
hence, integration with respect to this variable may be
ignored and we obtain

ao/a, =0.12. (5.20') g= I n'(r)(c /q~+')jo'do

The density function ooo~($) corresponding to (5.20') is
represented by the dashed curve of Fig. 1.

B. I~~ite CyHnder

+z I ~f(oo(r) N(r')jo(c /q™+o)dodo.

(5.1')

As in the case of the in6nite slab, the starting point
of the analysis is the variational expression (5.1) for g,
together with the auxiliary relation (5.5) for E(r).
Introducing cylindrical coordinates, s, q, and r, with
—oo~z~ao, O~oo~2or, and O~r~R (the radius of
the cylinder), we have

dr =ado' , dr =ds do

where da and dr' are elements of cross-sectional area

J
IN'(r)da.

For the variational treatment of (5.1'), we choose for
n(r) a two-parameter "parabolic" function,

oo(r) = aoooo(r)+a&oo~(r) =uo+u~(1 —r'/R') (5.25)

d(r = rdrd p, do'= r'dr'd p'. (5.22)

In view of the symmetry of the problem, we may take
N(r) to be a function of the radial coordinate, r, alone.
The integrations with respect to s and s' then proceed
readily. We have, from (5.3)

p+" ma p+" ds

J
G(r r)dz =

Jl pm+3

-IO -8 -6 -4 -0 0 2 4 6 .8 I 0
PERPKROCUI. AR 0&SraooCK FROos MQOIAN Pt. alit IR RQLATlvf UlloTS

FIG. 1. Spatial distributions of radiating atoms in an infinite slab
for different spectral line shapes.

'4 E. Jahnke and F. Emde, Tables of Functions (Dover Publi-
-~ Lg +8 ~ ) 3 cations, New York, 1945), Fourth Edition, p. 21, Grst equation.
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TA&LE III go, g1, and g01 in units of a /R for typical values of m.

go
g&

goi

0.964
0.893
0.880

1.376
1.143
1.115

1

1.60
1.60

g1=E11a/H11o=g o24/(4 —m)(6 —m). (5.35)

In Table III we present the numerical values of g0, g1,
and g» in units of a„/R" for m=-'„1p, and 1.

6. SUMMARY OF RESULTS

and obtain

with
2, j=0,1 2 I

g
= Q a;a;I;Ia/P'a;a;H;, e (5.26)

In the foregoing sections, the escape factor I}; has been
computed for a variety of line shapes and for two
different enclosure geometries. These results will now
be summarized.

IC; =jl ~;() ()(C /q )d d
Ext Here

A. Doppler-Broadening

and

k(v) = kp exp[ —
}(v —vp)/vp} (c/vo)'] (6.1)

+,' j jt $-n;(r) n;(v')]—[N,,(r) n, ( v')]—

g= 1 875/koL(pr logkoL)! (6.2)

where ko is given by (3.2). We have, for plane-parallel
geometry

X (C /q™+2)dada' (5.27)

H;,e= j I;(r)e, (r)do. (5.28)
whereas, for the cylindrical case

g = 1.60/koR(pr logkoR) &. (6 3)

The H;, ~ are readily obtained; the more tedious evalu-
ation of the E;;~ is relegated to Appendix B. The
results may be expressed as follows. If

B. Impact-Broadening

k~
6.4(), ( )

vr-' a (1+m)! (1—m)! 1+[4or(v —v, PP) /yv]'—

2$+ R —1 [1(1+m)] tp [1 lm] [P
'

where k, is given by (3.4) . The exPressions for g then
read

we have

k«= (2—m)/(1 —m) hop
——1

ko1= 4/(4 —m)

(5.30)
and

(5.31)

g=1.150(prkvL) l

g= 1.115(prkvR)

C. Statistical-Broadening

(6.5)

(6.6)

k11= 16/(4 —m) (6—m) h11 =s.
These expressions for the k;, are fully equivalent to the
appendix relations (6B), (8B), and (13B) for the E;,e.
In the text version, the constant C has been eliminated
with use of (5.24b).

The two-parameter escape factor may now be deter-
mined by the same variational procedure as was used
in the plane case. Introducing the notation,

(1+m)! (1—m)! a„
g, = — (5.32)2'+™[.(1+m)]to L1 ' ]P R"'

Starting from the binary interaction law,

one obtains

Av =
p

gn

4~X' C„d/"
k(v) = K

'Il (gv) I + I»

(6.7)

(6.8)

where E and iV' are the densities of absorbing and
perturbing atoms and where 1 is given by (2.7). We
then have for the two geometries,

3a„,/L'"[10 m m' —m(—101 —40m+ 2—m'+ m') &]

24 8m m' —m(30—4 9—6m+ 16&—rP+ m') &

g01= gm
C

(1—m) (4—m) (6—m)
and

(1 mo)(2 —m)(3 m—)(5 m—)—.

(6 9)

(, pr (1+m)! (1 m)! a„, —
5 33)

g 2'+" [11(1+m)]!(1—pm)! R"'

24 8m m' —m(30—4 9—6m+ 16mo+—m') '
— . (6.10)

(1—m) (4—m) (6—m)gp= ICppa/Hope= g ~[1—gm]/(1 —m) (5.34)

For the purposes of comparison we give here the
one-parameter escape factors
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In these expressions, sss=3/(3+I) and, frotn Eq. (4.6)

II—( rs ) (
I3+e) & 3+a&

(4)r+ ) /(s+») ()( sg g ) s/(s+ )

( n & &swg, i
APPENDIX A

One of the fundamental assumptions of our theory is the
proportionality relationship (2.2),

P(v) k(v), {1A)

between the emission spectrum of a given excited atom, P(v),
and the absorption coeKcient k(v}. The latter quantity is deter-
mined by the nature of the absorbing atoms, their thermal motion
and their interaction with other atoms. The emission spectrum,
on the other hand, depends not only on atomic parameters, but
also on the mechanism of excitation. In the case of natural broad-
ening, for example, excitation of a given atom by a "monochro-
rnatic" beam (whose spectral width is small compared to the
natural width) produces an emission spectrum identical with that
of the incident beam. In order to obtain P(v) proportional to
k(v) it is necessary to excite the atom in a "nonresonant" manner.
This is accomplished either by collisions with material particles—
atoms, ions, or electrons —or by optical excitation with "white"
radiation, i.e., radiation whose spectrum is broad compared to the
absorption spectrum. '4

A similar although less drastic situation prevails in the case of
doppler-broadening. Here, monochromatic stimulation evokes an
emission spectrum which, while not itself monochromatic, still
deviates greatly from the typical doppler absorption line shape.
As in the natural broadening case, an exact proportionality
between P(v) and k(v) is obtained only with nonresonant excita-
tion. Thus, in both cases the emission spectrum depends appreci-
ably upon the spectrum of the exciting radiation.

Now, in an imprisonment experiment the excitation agent is the
i;mprisoned radiation itself. The latter, in turn, consists of radiation
emitted by excited atoms throughout the enclosure. The spectrum
of the exciting radiation is thus not known e priori; its determi-
nation forms an integral part of the whole imprisonment analysis.
An analysis of this type for the doppler case and a plane-parallel
enclosure (of width I.) was carried out in Part B of the Appendix
of I (pp. 1229-1233).It was found that over most of the enclosure—exclusive of a small peripheral region —the spectral intensity of
imprisoned radiation is essentially constant in a domain of fre-
quencies for which k(v)L&2. Outside this range the intensity
drops oB rapidly to negligibly small values. %ith a distribution
of this type for the spectrum of the exciting radiation, P(v) and

g were calculated. Comparison of the results with (3.2) and (1.1)
demonstrated the approximate applicability of (1A) to doppler-
broadened resonance radiation.

In the case of impact pressure broadening, as was shown in
Part A of the Appendix of I (pp. 1227-1229), P(v) is almost
independent of the mechanism of excitation. Namely, even with
monochromatic excitation, P(v) turns out to be essentially
proportional to k(v). In this appendix we present a semi-quanti-
tative argument for the applicability of (1A} to the case of
statistical broadening; a detajtled quantitative discussion may be
found in a %estinghouse Research Laboratories report. '~

As pointed out in Sec. III of this paper, the fundamental
quantity of the statistical theory is the instantaneous emission-
absorption frequency, v(t), of a given atom. «(t) divers from the
unperturbed frequency, «p, of an isolated atom because of collisions
with neighboring atoms. In the course of time, v(t} will range

"Westinghouse Research Laboratories, scienti6c paper 1501,
available upon written request.

over a continuum of frequencies. The occurrence probabdity
deaned (see Sec. III) as the fraction of time for which v(t} is
contained between v and v+dv, gives directly both the absorption,
coef5cient and the emission spectrum arising from white excitation.

Let us suppose, in accordance with the procedure used in the
Appendix of I, that the atoms are excited by a monochromatic
beam of frequency v&. The statistical theory states that a given
atom absorbs energy from the beam only at times t; such that
v{t;)= v~. Now, after each such absorption, the atom radiates
with an intensity proportionai to exp/ —v(t —&)j; the spectrum
of the emitted radiation is thus determined essentially by the
variation of v(t) over a time interval ~2/y. The question of the
dependence of P(v) upon the excitation frequency may then be
put in the following form. To what extent is the variation of v(t)
over the time interval, 2/y, dependent upon the circumstance
that the initial value of v(t) is v&, i.e., that the atom acquires its
excitation energy when v(t) =v~?

Now, as in Sec. III, we assume that the time dependence of
v(t) is determined mainly by binary collisions. During each of
these v(t) is equal to vp plus a perturbation of the form (3.6).
Excluding the very special case of vy= vp we observe that absorp-
tion takes place only during a collision, in fact, only during those
collisions in which v(t) attains the value v~. This stipulation
implies a nonrandom situation in the time interval immediately
subsequent to excitation. Namely, the "absorption" collision,
during which the newly excited atom begins radiating, is not a
random encounter but is selected in a special way. (For example,
if v& —vp is large, absorption takes place only in those encounters
in which the distance of closest approach is su%ciently small as
determined by (3.6).) Hence, the possibility of a correlation be-
tween v(t) and v~ during the absorption collision cannot be ruled
out. On the other hand, when the absorption collision is termi-
nated, the further density of v(t) becomes the responsibility of
new binary encounters, which are completely uncorrelated with
each other, or with the absorption collision. Thus, the excited
atom "remembers" the excitating frequency at most for an
interval of the order of a "time of collision, " v. %e thus arrive
at the qualitative conclusion that, if ~&2/&, the influence of the
exciting frequency on the emission spectrum is small. Now this
condition is almost always obeyed in practice (v~collision
radius/atomic velocity ~&10 ' sec, 2/y~20 ' sec); the emission
spectrum is thus determined predominantly by collisions whose
parameters are uncorrelated with the absorption frequency and,
hence, must obey (1A).

APPENDIX B

In the evaluation of the integrals in (5.27) use is made of the
relation,

i/q'=Lt/(2 —p)sl&{t/q'~) =0/(2 —p)3'&"(i/q' ), (&&)

where V and V'~ are the two-dimensional laplacian operators
involving differentiation with respect to r, cp and r', y', respec-
tively. Thus

rC c=ff, , (C./q-~)d"d =ff, ,(C./~*)r *, d. d. —

which, with the aid of Gauss' theorem, can be transformed into

Ksoc= —(C /r/ss) f'f (a/ar')q ~ds'da

(C /ess) fds—'(a/ar') fq dr, -

where the subscript "s" indicates a line integration over the
circumference of the cross-sectional circle. By further use of (1B)
and Gauss' theorem, we obtain

Zoo = — " JJ {a/ar)(a/ar')q~~dsds'. {38)
m&(2 —m) e

The double line integrals of the type exempli6ed by (3B)can
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readily be evaluated, "in fact, Finally, the second term of E»~,

(rs „a)
dado'

2R4 qm+8

C p~ p~ ~~ ps~ (r' —r&)rr'drdr'dydee
2R4~0 ~o ~0 ~0 Lr +r'~ —2rr' cos(q7 —y') j~+&

as we shall now verify.
Differentiating with respect to r and r' and setting both these

variables equal to R, we obtain for the left-hand side of (43). the
expression,

f, f, IP(1+P»n'9(» —«')3)/
(2R) ~ sin ~r $(&—&')jIR d~&'.

One now introduces the transformation y'= y+8 and integrates
with respect to q, obtaining

2&rP g~1+P sin'$&» 2wP f~&»1+P «in»
d9=

2~~R 0 sm~~)8 (2R)~ ~ sin~~X

The remaining integral is evaluated with the aid of the formula
quoted in reference 12; minor algebraic manipulation of the
resultant factorial terms then yields (43}.

Similarly one may readily show that

ff(8/Br)q rdsds'= ff(a/&)r')&2 dsds'= — —,. (511)
2+p (—p)!

Equation (58) will be used in the evaluation of the other E;',&.

Inserting (48) into (38), we obtain, after elementary algebraic
operations,

is evaluated as follows. We express r' and q' in terms of new
variables, x=r'/r and 8= q' —p, and integrate with respect to p
obtaining

2t-C z z/ r' (1—x')'drxdxdg
R' 0 0 0 (1+x'—2x cos8) &~+'

The form of the integrand of this expression indicates the desira-
bility of inverting the order of the integrations over x and r.
Performing this inversion' and integrating with respect to r, we
obtain

2t-C ps~ pi (1—x')'xdxd8

(6—m)R~~ JD ~& |1+x—2xcos8$~+'

(1—x')~dxd8

& x~~)1+x —2x cos8$~+~ (108)

2+C (1—m)! 1—$m
Zoo~= mR-~ (1-gm)!~ 1—m

To calculate Eo&~ we first apply (18) and Gauss' theorem to
the "primed" integration variables, obtainingC, 8 1—(r/R)'

da
5P ~ Bf q

%'e then perform two integrations-by-parts with respect to the
unprimed variables, wherei~ we integrate 1/q and differentiate
1—(r/R)' with the aid of (18) and Green, 's formula,

f(eVb «Pe)—d&r'ffe=(1}«/&»e) «(1}e—/i}e)gs (7. 8)

This procedure yields

—(2/R)C a 1 (2/R) a
+0& = —, — — dsds.

{2—m)'m' ~ ~Br' ~~ (4-m)'ar q~ 4

The integrals to be evaluated are of the forms of (48) and(58).
We obtain

221.C~ p~ ('2 (1—x ) xdxd8

(6— )R™~~.~. L + —2

K«&'&=(2«C /(6 —re)R~~)f P(l —ss)'/q~»»]d&r (11+)

where q= (1+x'—2x cos8) & and the subscript s& indicates integra-
tion with respect to a circle of radius unity. The technique for
evaluating (118) is the same as has already been employed;
three integrations-by-parts yield

16m C
m'(2 —m)~{6—m)R ~

8 1 8 1
X — +ax q™M (4—m)~q--4

4
d8.

q98 5 ~~j4HC (1—m)!~'"= R- (1-) )!4-
The first term of E~j~ is evaluated in much the same way

except that three partial integrations have to be performed with
respect to the unprimed variables. One finds

E,p&'& =—fR(r) $1—(r/R)s jd &r

One now utilizes Eqs. (48) and (58), obtaining

4&C (2—m)!
(2—m)(6 —m)R ~ (2—~) t' (128)

Adding (98) and (128), we then have

With the aid of the transformation x= 1/y, we can readily establish
(68) the equality of the two double integrals in {108);we then have

m2(2-m)~{4 —m)~R J& a'
8 1 8 1 4 1

X, — — — —— dsds'
' Br q~ 4 (6—m)'R q~ ' Rq~ '

QC (2—m)! 8~'""'= R- (2-) )!6- .

16&C,„(1—m)!
m(6 —m)(4 —m)R- (1—gm)!

' (138)

Substituting the text Eqs. (5.243} into Eqs. (63), (88), and
(133), we obtain the results listed in the text Eqs, (5.29) and
(5.31).


