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Remarks Concerning the Adiabatic Theorem and the S-Matrix*

HARTI AND S. SNYDER
Brookhavns %ahoy/ Laboratory, Upton, Long Island, Hem Fork

(Received May 1'I, 1951)

An improved mathematical formulation and solution of transition rate problems for scattering and
reaction problems is given. DifBculties in connecting the time dependent and stationary methods of defining
the 5-matrix are noted, but not resolved.

I. INTRODUCTION

"'EARLY all recent studies' in 6eld theory and
reaction processes' have been based, tacitly or

explicitly, on the adiabatic hypothesis. Although the
adiabatic hypothesis has been veriled by Born' for
hamiltonians which admit discrete eigenvalues only, a
corresponding veri6cation for hamiltonians which have
continuous degenerate spectra has not been given. The
purpose of the work being reported here is to examine
to some extent conditions on the validity of the adia-
batic hypothesis and to show that certain important
consequences of S-matrix theory do not depend on the
adiabatic hypothesis.

II. TIME DEPENDENT PERTURBATION THEORY

In this section we will be concerned with a system
described by a hamiltonian

H(t) =He+Vs "s, (1)

in which Ho is the hamiltonian of the non-interacting
parts of the system and V is the time independent inter-
action energy. The factor' e "& was included to simulate
the adiabatic turning off of the interaction as t—+—~.
For simplicity we suppose that the two operators H(t)
and Ho have exactly the same continuous spectrum of
eigenvalues, although not, of course, the same eigen-
functions. The eigenfunctions of Ho are denoted by @
and satisfy

H04 a= &ape,

For the time dependent Schroedinger equation

ig =H(t)P

we write a solution in the form

dN. C.(t)y. exp( —i Et/ l)s,

from which we obtain, using Eqs. (2), (3), and (4), and
taking p to be time independent,

ittC. (t)= t dN, (d., V4,)Cs(t)
J

Xexp([i(E.—Es)+a]t/5). (6)

Integrating Eq. (6), we obtain

t

C.(t) =C.' (i/fi) —dt', I dN, C,(t')(@., V@,)

Xexp([i(E,—Es)+ajt'/tt), (7)

in which C, is the initial value of C,(t) at t= —~.
Iteration of Eq. (7) gives the Liouville-Neumann series
solution to Eq. (7)

C,(t) =C,'+ Q dNsCs'

V,s{"'(a)exp([i(E —Es)+la]t/ft)
X (g)

Eg—E,+inn
(3) in which) dN, (4., {ts) = 1 or 0,

{oV {m—1)(a)
V 's({)a= dN.

Es E,+i(s{ 1)a— —

V.s{"= (P., Vbs).

where d.V, is a suitably chosen weighting function of the
states Po, so that the right side of Eq. (3) is 1 if the
state @~ is contained in the domain of integration over
states P„otherwise it is zero.

Now, the relative probability that the system wi11 be*Research carried out at Brookhaven National Laboratory,
under the auspices of the AEC. in the group of states about the state @ at the time t is

' C. M{tller, KGL. Danske Videnskab. Selskab, Mat. -fys. 22, W (t)dN
No. 1 (1946).R. P. Feynman, Phys. Rev. 76, 744 and 769 (1949).
F. J. Dyson, Phys. Rev. 75, 486 (1949).B.A. Lippman and J. S. W.(t) = IC.(t) I' (10)
Schwinger, Phys. Rev. 79, 469 (1950).

The work of%'lg er a'nd Eisenbud is the most not ble exceP- The quantity of major interest is the rate of transition
tion to this. E. P. signer and L. Eisenbud, Phys. Rev. 72, 22
(1947). to state p if the system were initially in state @~, that is

' M. Born, Z. Physi 40, 167 (1927).
4 In the work of Born much more general types of time varia- w.s(t) =dW. s(t)/dt, (11)

tions were considered thah the simple time variation given by
t.~'t'~ which we use. for C = 1,~, where i,~ is a generalized Dirac 8-function

ii54



THE A D IA BAT I C THEORE M A N 0 THE 5—MATRIX

such that J'1,gW, = 1 if the state ct)b is contained in the
region of integration over states (bo. Using Eqs. (8), (10),
and (11)we obtain

2 (O

w. p(a, t) =-1.« Im g V.p(")(a) exp(ptat/tt)

V (n)(a) V p(m)(a)
/gal, m c

EEL THE BEHAVIOR OF VfAVE FUNCTIONS ON THE
kDXAMTIC TURNING ON OP THE INTERACTION

In this section we vrill show that if one starts a system
in the state

flam ~ at t= —~ under the action of the hamil-
tonian given by Kq. (1) and in the limit as a—)0 it will
be in the state fp+ at any 6nite time. To prove' this we
write the solution to the Schroedinger equation of mo-
tion, Eq. (4), in the form

))t (t) = dS,b p(t))f,+(cd) exp( iE—.t/It), (18)
4

xi
(.Ep E—,+zppa Ep E, —ppna)—

in which
f,+(at) =lim f (nt, «),

e-+0
(19)

Xexp((N+p)p)nt/)rp). (12) and
&a&/g

T,p=lim Q V p(")(n). (14)

The important result given by Kq. (13) shows that in
the adiabatic limit the transition rate from a state pq at
t= —~ to a state p, at any 6nite time I, is independent
of the time f, and that transitions take place only
between states which conserve energy. The usefulness
of the results given above depends on the convergence
of the power series in Kq. (14) which de6nes T,p.

%e now note that we may write

T.p= (4., Vfb+) (15)

ln which
Pp+=lim fp(«); «&0,

tt p(«) = 4 p+ VA(«),
E«+i« —Hp

with «& 0. To see that Kqs. (15) and. (16) give the same
result for T,p as Eqs. (9) and (14) do, we solve Kq. (17)
for fp(«) by iteration and substitute into Kq. (15),
obtaining a power series of exactly the same form as
Eq. (14) except that the imaginary part of the energy
denominator, (n —1)n, in Eq. (9) is replaced by «. This
makes no di6erence in the limit as 0, and e approach zero
since, in an integral such as Eq. (9), the limit as n~
implies that the integral over the energy is to be calcu-
lated as a principal value, minus xi multiplied by the
residue at the point where energy is conserved. It is, of
course, necessary that the limit as c'—4 of the series
Eq. (14) converge to the same value as the limit as «—4
of the series obtained by iteration of Kq. (17) in Kq. (15)
in order that Kqs. (14) and (15) give the same result.

The important Kq. (17) is the basis of the stationary
method of solving scattering (Lippman and Schwinger')
and reaction problems.

In the limit as a—)0, Kq. (12) becomes

~.p = (2~/tl)b(E. —Eb) I
T.p I'+(2/tl) lop 1mT.p', (13)

in which

P,( tn, «)=«),+ Vtt, ( ta, «).
E,+i« Hp— (2o)

In writing Kq. (18) as a solution of Eq. (4) it is assumed
that the functions P,+(at) form a complete set. If we
differentiate Eq. (20) with respect to time and take «)),

to be time independent we obtain

~~est/h,

(21)P.(nt, «) = Vf.(at, «),
E,+i« —H(t)

a relation which will use later. Applying Eqs. (1) and
(4) to Eq. (18) gives

ikb, (t) = d¹bp(t) (f +(nt), 4p+(nt))
4

Xexp[i(E —Ep)t/ll]. (22)

In the derivation of Kq. (22) the assumption is made
that (go+(at), f«+(at)) = iop, an assertion which will be
proved later provided certain conditions are satis6ed.
Integrating Eq. (22) with respect to time gives

b.(t) =b' —(i/ft) dt' d&»(t')(f.+(&') 4«+(~'))

Xexp(i(E.—E,)t'/lt), (23)

in which b,' is the initial value of b, (t) at t = —pp . Using
Eq. (21) in Kq. (23) and integrating by parts with

respect to time

~ adXpbp(t)(go+(nt), Vgp+(at))
bo(t) =b, '+lim

[Ep E+in][Ep E+i«]- —
Xexp{[i(E,—Ep)+a]t/tl }

mug pt
—lun dh'

~~P 4 [Ep E~+pn][Ep E~+—c«J ~—
Xem{['(E.—E,)+ a]t'/a}

x {[(tb.+(at' ), Vy,+(a'))

+(f,+(nt'), Vpp+(at'))]b p(t')

+(tb.+(at') Vk p'(nt')) b p(t') } (24)
~ If the series solution Eq. (8) of Kq. {7)converges to a solution

of Eq. (7) one can then prove the adiabatic hypothesis as stated
above.
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~e now note that the integration over the state pb with w, b given by Eq. (13).According to Eq. (17)
in Eq. (24) of both the second and third terms involves
an integration over the energy Eb of the form HbA(e) = be(tabb(e) 4—b)

De6ne
(30)

lim adEf(E, a, e)/[(E+ia)(E+ie)]. (25)
e-+0 J

In the limit as a—b0 integrals of the form Eq. (25)
vanish provided the integral exists for 6nite n and ~

and provided f(E, 0, 0) is regular at E=0. For expres-
sions of the form Kq. (25) to vanish in the limit a bQ—and
&~0 it is necessary that both n and ~ have the same sign.
Vfe thus see that if the time integral in the third term
is bounded as a function of o. then in the limit as n—+0,
b, (t) +b,'. T—his shows that, subject to the boundedness
condition above, as an interaction is turned on adia-
batically an initial state @, at t= —~ changes in the
course of time into the state P,+ which is a linear com-
bination of the initial state plus outgoing waves.

IV. THE IRRELEVANCE OF THE ADIABATIC
HYPOTHESIS

The important and well-known result which is re-
stated in this paper is the transition rate from the state
pb at t = —~ to the state p at a 6nite time as given by
Eq. (13) in terms of the matrix element T, b as it is
determined by Eqs. (15), (16), and (17). The function
of the adiabatic hypothesis was to insure that the system
would be in the state fb+ at a 6nite time if it started in
the state pb at t= —~. The use of the adiabatic process
may, however, be completely circumvented by imposing
the appropriate boundary condition at a 6nite time.

%e will suppose that the system is in the state
pb(e) at t=0 with fb(e) given by Eq. (17) and calculate
the transition rate to the state p, at any 6nite time in
the limit as e—4. %e now drop the time dependent
factor exp(at/h) from the hamiltonian Kq. (1). If the
system is in the state pb(e) at t =0, then at other time t,
it will be in the state

fb(e, t) =exp(iEbt/h)pb(e, t) =exp( —iHbt/h)pb(e). (31)

Differentiating Eq. (31) with respect to time and using
Eq. (30) one obtains

fb(e, t) = (—i/h) exp( iH—bt/h)Hbpb(b)
= (e/h) fb(e, t) (e/—h) exp( bHb—t/h)pb (32.)

The solution of differential Eq. (32) subject to the
boundary condition fb(e, 0) = lt b(e) gives

fb(e, t) =e"'" pb(b)

[1—exp( —i(H b
—ie)t/h)]

+Z6 4 b (33)
Hb —Z6

Substituting the relation given in Eq. (33) into Eq.
(27) and using Eqs. (30) and (17) one obtains

I ( 1
u. (e, t)-e'"'"

I 4., 4 + V4 (e)
E,—E+;,

[1—exp( —i[H,—z.]t/h)]
+Z6- +b I

Hb —Z~

1

xl y., vyb(. )
Eb E,+be—

[1—exp( —i[H b
—ie]t/h)]+- Hbpb I+C.C.

IHb —Z'e )

=e"' i1.b[(y., Vpb(e))*(4., V4, (e))]

kb(e, t) =e-' '«A(e). (26)

The rate of transition from the state pb(e, t) to the
state P, is

Rob(e t) ='I (y„e '~"&fb(e))
I
'

dt

= —{i/h)(4. A( t))*

+ l(4 . VA(e))l'
(Eb—E )'+e'

( (y. Vpb(e))*
+ el 1,b+

Eb—E —Ze

( 1—exp( —i(Hb —ie)t/h)
~ I I

Hb —Ze ) )

x(~., L1--p(-'(H -')t/h)]L»/(»- )]~ )
in which

Hb ——H —Eb. (2g)
[1—exp( —i(H b

—ie) t/h) ]—z'I y., )Hb —Z'e

%'e wil] now show that

lim w, b(e, t) =re, b,
e-b0

(29)
1

x
I q4, vgb(e) I+c.c. (1/h). (34)

Eb E,+ib—
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In the limit as e-4, Kq. (34) gives

w.~= (2~/a) S(E.—E ) ~ (@., Vy~+) ~'

+(2/h)i, g Im(», Vfg+), (35)

provided the matrix elements (4 „V»+)=T,q are con-
tinuous functions of the states p, and p~, and provided
the matrix elements

In the limit as e~~, Kq. (42) yields

(P.t, fd) =l.~+ I' —sQ(E.—Ea)

X T~y —Ty,*+PJ dN, T„*T,g

(4 „(L1—exp( —iLH~ —fe]t/fs)]/[H~ —ie])»)

(e L1—exp( —&T»—&~]~/&)]»)
(36)

x
I

— I+~~
1 1

tE, Eg E—,—E,

xLs(E,—E,)+s(E.—E.)] . (43)
are bounded as .-=0. The matrix elements in Kq. (36)
will, in fact, be bounded unless the operator B is
pathological since the 6rst of these is the time integral
of unitary operator and second is the di8erence of two
unitary operators. Thus, the validity of Kq. (29) is
proven. The valuable relations

d
dN.w, s(e, t) =—(A(~, &), 4 a(~, &))=0

Ch

d+aKaa =0
J

Equations (41) and (43) give

1 1
Toy Ts —*+P tdN. T. ST.g(

&E,—E, E,—E.i

+~i~ dN, T,.*T„Ls(E.—E,)+s(E.—E.)]=0 (44)

for E,WE~. If, however, T,q is a continuous function of
the states g, and @q, then Kq. (44) must also hold for
E,=E&. Thus, Kq. (44) gives, for a=b,

(2s/h) dN. s(E. E,) ~T,.—~'+(2/5) ImT..=O, (45)

which is the explicit expression for the second of
Kq. (47).

Substitution of Kq. (44) in Kq. (43) gives the rela-
tionship

(4.+, A+) =1.b,
38

which was assumed in the derivation of Kq. (22).
&(~)»= VW-(~)

we may write Kq. (17) in the form,
V. CONNECTION WITH THE 8-MATRIX

are here the immediate consequence of the fact that
@~(a, t) satisfies the Schroedinger equation of motion
LKq. (4)].

We now give an independent derivation of the second
of the relations given in Kq. (37). Defining the operator
2'(e) by the equation

4"(~)=4.+ . &(~)4'
E,+~a Ho—

From Kq. (30) we see that f,+ is a solution of the her-
mitian eigenvalue problem

(47)

The results given in this paper are related to the more
conventional forms' of the Heisenberg S-matrix theory
in accordance with the following dehnitions:

T,y= —2szS(E —Eb)T, y

from which we may infer that

lim (P,(a), Pg(e)) =0; E,WEg

Calculating (Pg(e), fg(e)) by Kq. (39) we obtain

(0"(~) A(~)) = 1-~+- . LT.~(~)—».'(~)]
Et, E,+ia—

(40) S=1+T. (48)

The S-matrix de6ned by the relations given in Kqs.
(47) and (48) can be shown to be left unitary by using

(41) Kq. (44) as follows:

(»&).a= f.s+ &.~+&.a'+ (»&).b
= 1os—2rQ(E —Eg) (T,g

—Tg,*)

f+4s' dN, T„*T,gS(E. E,)S(Eg E,)— —

j.
+ dN.T.o*(e)T.y(s)

Eg—E,+2ie "

X (42).E.—Eg—ia E,—E,+is

=1,g+2s S(E,—Eg) $T,g Tg,*]/i—

+2s dA'. T, *T,ys(E,—E,)

(49)
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T()db l)E,.—ie—EIo ~,+ie—IIO

T~b(e) —Tb.*(e)+ dS,T,.*(e)T,b(e)

xl
I E, Eb i e—E,—E,+—ie

=0.

We erst note that in the limit as;J, Kq. (50) re-
duces to Kq. (44) and thus gives an independent proof
of Kq. (44). We further note that Kq. (50) is also valid
for negative e, from which we get, for e&0,

T„(—e) —Tb,*(—e)+ dN, T.,*(—e)T,b( —e)

1 1
=0

E, Eb+ie E,—E, iel— —(51)

(52)

Another needed relation follows from

(4(—e), &4 a(e))

1
=T"'(-e)+I T(-e)4-

Ea+ be —Pe

The proof that SS~= 1 required additional relations
which will be developed now. If we calculate

T.b(e) —Tb.*(e)

E,=Ea, hence Kq. (53) holds, and the principal parts in
the integral contained in Kq. (54) vanish.

VL REMARKS

Although these results appear generally valid, severe
restrictions must be placed on the interaction energy, V,
for some of the conclusions to hold. One of the most
limiting of these assumptions, that the functions f,
constitute a complete set, was utilized in proving the
adiabatic theorem. For example, the functions f,+ will

not form a complete set when the operator Ho has only a
continuous spectrum, and H(i) has the same continuous
spectrum as Bo plus additional discrete eigenvalues.

We will show that completeness here is a necessary
condition for the adiabatic hypothesis to hold. B the
system starts in the state P~ at t = —, then under the
action of the hamiltonian, Kq. (1), at time t, it will be
in the state

Pa(t, a) = U(t, u) ya, (55)

in which U(t, a) is a unitary operator (i.e., U&U
UUt= 1).Since U(t, a) is a unitary operator, the set of
states pb(i, n) is complete. Thus we see that in the limit
as a—4 the set of states d b(t, n) (if they approach a limit)
will approach a complete set and, therefore, cannot
approach the set of states pb+, if the set of states pb+ is
not complete. The same argument leads us to conclude
that in the limit as a—4 the states fb(i, a) will not
approach stationary states' unless the set of states Pa+
is complete.

The fact that the limit as ee—4 of fa(t, a) differs from
Pa+ does not prove that a transition rate calculated by

1
=T.b(e)+I T(—e)db, T(e)ga I,

E,+ie—Pb

from which one sees that

T.a(e) =Ta.*(—e), (53)

if E,=Eb. We now calculate (55t)ob using Kqs. (47),
(48), (51), and (53);

~.b=hm —l(d. 4b(~ ~))l',a-e dt

will dier from the transition rate as given by

d
a~a lim l(g, ~

e '~"blab(e)) I'
dt

(56)

(57)

(5'$t), a= 1~a—2ej8(E Ea)(T~'a Tb—*)—
+4e' td¹T.Ta.*8(E, E.)&(Ea E.—)—

=1.+2 ~(E.-E) l I:T.*(- )-T. (- )j/'
c—+0

(54)

—s d¹T„*(—e)T,b( —e)

1 1

E, Eb+ie E, E, —ie l——

In deriving the above relationship we use the fact that,
for all relevant matrix elements of T,a(e) and Ta,e(—e),

We have, however, not succeeded in obtaining a proof
of the equivalence of Kqs. (56) and (57) except when ex-
pression (12) approaches Kq. (13) in the limit n—4 and
the series of Kq. (14) has the limiting value (d „Vfb+),
nor have we proven that Kqs. (56) and (57) will not
give the same result if the functions Pa+ do not consti-
tute a complete set. We have merely noted that if one
could show that

lim Pa(t, a) =exp( iE&/A)&a+-
a-+0

+Q C„d „exp( iE t/h), (58)—

in which p are the discrete eigenfunctions of B and the
6 In the paper of Lippmann and Schwinger, an essential step

in the development of the transition rate formula )Eq. (1.72)j eras
an assumption equivalent to the requirement that the states
P&(t, a} approach stationary states in the limit as a-+0, and con-
sequently that the states P&+ form a complete set.
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C are appropriate constants, then one could demon-
strate the equivalence of Eqs. (56) and (57).

Another difhculty is demonstrating rigorously the
equivalence between the S-matrix as it is de6ned by
Eqs. (47) and (48) of the stationary method, and its
definition as a unitary matrix describing the state of the
system at t= in terms of the state at t= —~; i.e.,
f(~)=Sf( ~—). Actually, the important conclusions
of this paper do not depend on a demonstration of the
equivalence of these two definitions of the S-matrices.

However, many recent works in fieM theory have, in
effect, depended on the assumption of the equivalence
of these two definitions and it would be worthwhile to
find a mathematically satisfactory demonstration of the
equivalence.

The author wishes to express his hearty appreciation
to David A. Kleinman, George A. Snow, Edward J.
Kelly, and Maurice Neuman for many helpful discus-
sions and criticisms which occurred during the course of
this work.
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This paper is a continuation of an earlier paper which treated the decay of resonance radiation in optically
excited gases for the case of doppler-broadened radiation in plane-parallel enclosures. The treatment is
here extended to a second type of enclosure geometry —in6nite cylinders —and to a variety of spectral
line shapes.

1. mTRODUCnom

HE phenomenon of imprisonment of resonance
radiation in gases owes its existence to the

selective absorbability of resonance lines by normal
atoms of the emitting gas. Over a wide range of gas
density this absorbability is so high that a resonance
quantum emitted in the interior of a gas-filled enclosure
has but a small chance of reaching the walls; hence, the
eventual escape of a unit of atomic excitation energy
from the enclosure generally takes place only after a
large number of repeated emissions and absorptions.
Under these conditions the radiation is said to be
"imprisoned. "

Perhaps the most direct way in which imprisonment
manifests itself is in decay experiments with optically
excited gases. In this type of experiment an enclosure
of gas is irradiated with a beam of resonance radiation,
which serves to excite some of the gas atoms to a given
resonance state. The incident beam is then abruptly
cut ofF„and the intensity of disuse radiation, which is
proportional to the concentration of atoms in the
resonance state, is measured as a function of time. One
observes essentially an exponential decay of the form
s &", where 1/y is the radiative lifetime of an isolated
atom and g, the "escape factor, " is a dimensionless
quantity characteristic of the imprisonment process.
The quantity g may be regarded as the reciprocal of
the number of emission and absorptions of an individual
unit of atomic excitation prior to its escape from the
enclosure.

In an experiment on the decay of the O'P1 mercury
resonance state, which combines optically with the

ground state to emit the 2537A resonance line, Zeman-
sky' observed values of g as low as i0 '. The quantity
g was also found to depend both on vapor density and
enclosure geometry.

A theoretical study' of the decay problem was
recently carried out by the author of the present paper.
It was shown that g depends not only upon vapor
density and enclosure geometry but also upon the shape
of the resonance line. In particular, for an enclosure of
the form of an infinite slab of thickness I. and for a
doppler-broadened resonance line, the following expres-
sion for g was obtained:

g= 1.875/t koL(s' log~skoI)«), (1.1)

where ko is the absorption coeScient at the center of
the resonance line. ko, itself, is specified in terms of the
parameters of the system: gas density, gas temperature,
wavelength of the line, and lifetime of the resonance
state.

More recently, 4 measurements of the imprisonment
of resonance radiation in mercury vapor over a wide
range of vapor density were carried out at the %'esting-
house Research Laboratories. In the region of density
for which g had been evaluated —the doppler-broaden-
ing region —the agreement between theory and experi-
ment was quite satisfactory.

' M. W. Zemansky, Phys. Rev. 29, 513 (1927).
sT. Holstein, Phys. Rev. 72, 1212 {2947'), to be referred to

hereafter as "I."
s A. C. G. Mitchell and M. W. Zemansky, Resonance Rad~atioe

amE Exceed Atoms {The Macmillan Company, New York, 1934)
(to be referred to hereafter as "MZ") Chapter III, pp. 99-100
and Eq. (35}.

4 Alpert, McCoubrey, and Holstein, Phys. Rev. 76, 1257 (1949).


