PHYSICAL REVIEW

VOLUME 83,

NUMBER 1 JULY 1, 1951

A Self-Consistent Treatment of the Oxygen Dissociation Region in the Upper Atmosphere*

H. E. Moskst
Department of Physics, Columbia University, New York, New York

AND

Ta-You Wu
National Research Council of Canada, Ottawa, Canada

(Received July 5, 1950)

A self-consistent theory is suggested for the determination of
the distribution of atomic and molecular oxygen and the temper-
ature in the region 100-140 km of the atmosphere. It is assumed
that solar radiation is responsible for the photodissociation of the
oxygen molecules, and that the recombination of the atoms by
two-body radiative processes is more important than that by
three-body collisions (as justified from theoretical considerations).
From the postulated conditions for the steady state, namely, for
any given volume, (a) the average time rate of dissociations equals
that of recombinations, and (b) the average time rate at which
radiation energy is absorbed in dissociation processes equals that
at which radiation energy is emitted in recombination processes,
together with an appropriate form of the barometric equation,
it is possible to obtain the concentrations of the molecular and
the atomic oxygen and the temperature, all as functions of height,
provided the temperature and its gradient are given at one height.

Calculations have been carried out for three sets of these boundary
values at 100 km, namely, (i) T=300°K, d7/dx=10°/km, (ii)
T=300°K, dT/dx=5°/km, and (iii)) T=270°K, dT/dx=5°/km.
In all these cases, dissociation begins between the heights 90 and
100 km and is not complete until around 150 km. The total gas
pressure for various heights above 100 km calculated for case (iii)
above agrees quite well with the data obtained from V-2 rocket
flights.

In the appendices, three-body recombinations are discussed.
The cross section for a three-body recombination process is
defined, and its relation with the cross section of its inverse
two-body excitation process is obtained on statistical mechanical
arguments. Also, the relation between the absorption coefficient
for a photodissociation process and the cross section of its inverse
radiative recombination process is obtained.

I. INTRODUCTION

N the upper atmosphere, the atoms and molecules

are ionized or dissociated on the absorption of solar
radiation of the proper frequencies, and the resulting
ions or atoms recombine either in their respective
inverse processes, namely, a two-body radiative recom-
bination, or in three-body collisions. The degree of
ionization or dissociation of a given atomic or molecular
species at any given height depends on the following
factors: the intensity of the radiation involved, the
density of the gas, the temperature of the gas at that
height, and such atomic or molecular quantities as the
radiation absorption coefficient and the cross sections
for the recombination collisions. The problem of investi-
gating the region in which oxygen is dissociated into
atoms has been studied by Wulf and Deming,! Ma-
jumdar,? Rakshit® and Penndorf,* after the orginal
suggestion of Chapman® While these authors differ
in details in the assumptions in their theories, their
results depend essentially on an assumption made con-
cerning the total number of oxygen molecules in a
column of unit cross section above any given height,
which is just the quantity to be calculated from their
theories. Thus their results are arbitrary in the sense
that they have already been assumed in their calcula-
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tions. This question of self-consistency and other
assumptions in their theories are discussed in Appendix
7. The purpose of the present work is to show that
in principle a self-consistent theory can be formulated,
in which the temperature and the concentrations of the
atoms and molecules of oxygen can all be obtained as
functions of the height from a knowledge of the temper-
ature and its gradient at a certain height. The theory
is illustrated by an actual calculation in which the
most reasonable assumptions are made concerning the
processes involved in the region of the atmosphere
under consideration. The result obtained differs con-
siderably from those of the previous authors.

To avoid discontinuity in the discussion and the
presentation of the theory and the result, we have
relegated to the appendices the derivations of equations
and some of the arguments and calculations in the
theory.

II. GENERAL FORMULATION OF THE PROBLEM

In studying the variation of the temperature and the
degree of dissociation of the oxygen molecules as func-
tions of height in the upper atmosphere, it must be
assumed that the time 74:s required to reach dissociative
equilibrium is small compared with the time rg4i¢ re-
quired to establish diffusive equilibrium and also with
the average time interval between winds. That 74;sK7ait
is necessary for the existence of a transition region in
which oxygen passes from the molecular into the dis-
sociated state is obvious, for otherwise the atoms and
molecules will be separated by diffusion in the gravi-
tational field. Calculations (Appendix 3) show that for
oxygen, 7a4is is of the order of days, while, on the other
hand, 7a4it is of the order of years for the pressure
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existing at the height 100 km. The situation as to the
existence and the frequency of winds at these heights is
a more obscure one. As there is still a lack of direct
evidence either for or against the existence of winds at
such heights, we shall ignore them in the present work,
since the assumption of winds of sufficient frequency
and strength to churn up this region of the atmosphere
would render meaningless the very problem of finding
the degree of dissociation and temperature as a function
of the height.

We shall then consider the following idealized model
of the atmosphere. In certain regions, the most im-
portant physical processes taking place are assumed to
be the dissociation of the oxygen molecules by solar
radiation, and the recombination of the oxygen atoms
into molecules. Other constituents, such as nitrogen,
will not be considered except in so far as they contribute
to the total pressure of the atmosphere. For the dissoci-
ation process, it seems quite certain that the most
important absorption process leading to dissociation is
the absorption in the Schumann-Runge continuum
beyond 1750A. We write this process as

04(X 3247)+ hv—O(CP)+0('D). ¢))

We shall denote by o, the absorption cross section (in
cm?) for this process. The cross section o, is defined
below. Let p,() be the solar radiation energy density
per unit frequency range at the “top” of the atmos-
phere. On account of the absorption by the molecules
lying above #, the density at the height « is given by

py(x)=p,(») exp[ —a,N2(x)], )
where

No(x)= f m’ng(at:)dsv«c, 3)

n2(x) being the number density of oxygen molecules
and N,(x) the number of oxygen molecules in a column
of unit cross section above the height x. The number of
oxygen molecules dissociated per unit volume per
second at the height x is

na(z) f Loveps )/ 1dv

where o is the threshold frequency of the process (1).
This statement defines o,. It will be shown later that
most of the oxygen atoms are in the 3P state. Let us
denote the coefficient of recombination by B so that the
number of recombinations per unit volume per second
is np*B, where np is the number density of atoms in the
3P state. B is in general a function of temperature and
hence of height. The condition for a steady state is

e f Covcps(0) exp(—o,Ns)/hwldv=Bns*(z). (&)

Let P be the total pressure, and # the number
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density of nitrogen molecules. One has

dP=—[(2ns+np) M+nM y Jgdx, (5)
and
P= (nz+ np-l- n)kT, (6)

where M, M y are the atomic weight of oxygen and the
molecular weight of nitrogen, respectively. Thus there
are four unknown functions #s, #p, #, and T which are
related by Egs. (4) and (5) plus (6).

To get rid of the nitrogen in the theory, Rakshit?
and Penndorf* assume that the proportion of nitrogen
to oxygen (atomic plus molecular) remains the same at
4:1 at all heights concerned in the problem. This
assumption presupposes the constant mixing of the
atmosphere by winds. If this is so, the time intervals
between winds must be short compared with the time
7aif required to establish diffusive separation and long
compared with the time r74is required to establish
dissociative equilibrium. Furthermore, their assumption
that at any height

nMy: (ne+-3np)2M=4:1 @)

also implies that the atomic and molecular oxygen do
not redistribute themselves. This is equivalent to
assuming an atmosphere separated by transparent
partitions into parallel layers. Instead of assuming (7)
we shall assume that above ~100 km the nitrogen is
in diffusive equilibrium with the oxygen (but we shall
not assume that molecular and atomic oxygen are in
diffusive equilibrium with each other). Then one can
work with the partial pressure p of oxygen alone so

that (5) and (6) become
p=(natnp)kT, )

which give the differential equation

d Mg
dx k

As there are still three unknown functions #.(x), #p(x),
T(x) given by Egs. (4) and (10),% a certain temperature
distribution 7'(x) is assumed in all the above-mentioned
investigations. On doing this, and eliminating #p in
(10) by means of (4), one obtains a nonlinear differential
equation of the second order for N,

@N. dN, aT
F( ) )N2s Ty ’x)=0)
dx*  dx dx

11

where F is a known function of the various arguments,
and depends on N, through integrals of the form of
that on the left-hand side of (4). This equation is to
be solved subject to the boundary conditions that at a
sufficiently low altitude x, where the degree of dissoci-
ation is probably extremely small, —NJ'(x) may be

%8 Or a similar equation obtained by assuming (7) in (5) and (6).
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given a value estimated from another source of infor-
mation, and at a sufficiently great height, N, is small,
ie.,

— Ny (x0) =n2(wo) given, Ny()=0. (11a)

In principle, on the assumption of a certain 7'(x), a
definite recombination mechanism and the proportion
(7) or an alternative as mentioned above, the problem
is reduced to the solution of Eq. (11) subject to the
above boundary conditions. The important point is
that the »,, N, are thereby completely determined, and
any further assumption about any one of these quanti-
ties is not only unnecessary but is in fact inconsistent
with the problem.

An actual calculation, however, in this manner will
entail extremely laborious computations, on account of
the complicated form of Eq. (11) and of the nature of
the boundary conditions. On integrating the equation
numerically upward from x, one knows the initial slope
N¢' (%) but not the function Na(xy), so that it is neces-
sary to perform the integration for various values of
No(x) until the solution vanishes monotonically as
X0,

In the present paper the authors suggest an alter-
native self-consistent treatment of the problem in which
no assumption above T'(x) is made, but instead another
physical assumption is made for the steady state. The
advantages of this theory are the following: (1) the
temperature T'(x) determined by the steady state is
given by the theory itself without its being assumed
on empirical grounds; (2) the form of the differential
equation for T and of the boundary conditions on T
and dT/dx enables the problem to be solved with
much less numerical work than is the case in the
treatment discussed above.

III. PROPOSED SELF-CONSISTENT THEORY

We shall show that all the functions np(x), n:(x),
T(x) can be obtained as functions of the height #, if, in
addition to Egs. (4) and (10), we postulate that in the
region of the atmosphere under consideration, the
amount of energy absorbed from solar radiation in the
process (1) per unit volume per second be equal to the
energy radiated by the recombination processes. The
heat loss due to conduction has been neglected as a
simplifying assumption, which may be justified, since
the rate of loss of heat in any layer by conduction
depends on the pressure and on d?T/ds?, both of which
are small. In the following, we shall illustrate our theory
by carrying out some numerical calculations on the
basis of some assumed recombination processes. It is
to be emphasized that while the exact numerical result
depends on these assumptions, the principle of the
method is more general and may be applied to future
calculations when further empirical information be-
comes available.

Consider now the processes that lead to the recombi-
nation of the oxygen atoms. Wulf and Deming,! and
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recently Penndorf* work with the assumption that two
oxygen atoms recombine in a three-body collision,

040+ X—0,+ X*. (12)

In Appendix 5, arguments will be given to show that
for the pressures prevalent at and above the height of
100 km, three-body collisions of the type (12) are
much less important than two-body radiative recombi-
nations. As no direct experimental data on this point
are available and as quantitative theoretical calcula-
tions are difficult, we shall base our assumption of two-
body recombination on our discussions in Appendix 5.
The calculations of Majumdar? and Rakshit® are also
based on the assumption of two-body recombinations.

Of the two-body radiative recombinations, there is
first the inverse process of (1), namely,

O(D)4-0O(P)—0:(X 3Z,7)+ hv, (1a)

whose cross section 3, is defined in Eq. (16) below. The
1D state of O has a transition probability 4p=<10—2
sec™! for the magnetic dipole transition to the *P state,
emitting the red auroral lines

O(*D)—OCP)+ hvyea. (13)

In view of the short lifetime of O('D), we have to
consider collisions between two ®P atoms. In Appendix
6, we give some arguments that make it plausible to
assume that the most important recombination process
probably involves a dipole transition, such as

OCP)+O0(P)(1,)—0(b 12,H)+hve.  (14)

We shall denote by B,’ the cross section of such a
process. The Os(b1Z,%) will make a subsequent transi-
tion to the normal state of the molecule on emitting
the “atmospheric bands”

04(5 12,1)—02(X 32,7)+ hvs. (15)

Although this detailed assumption is by no means
certain, it seems to have some support in the identifica-
tion by Meinel® and Kaplan? of the atmospheric band
(0,1) of oxygen in the infrared region of the spectrum
of the night sky.”

Let the number density of oxygen atoms in the 1D
state be denoted by #p. The time rates of change of
the concentrations are given by™

8 A. B. Meinel, Trans. Am. Geophys. Union 31, 21 (1950).

7J. Kaplan, Phys. Rev. 78, 82 (1950).

7s The recent discovery of the OH vibration-rotational bands
in the night sky spectrum by A. B. Meinel, Astrophys. J. 111,
555; 112, 121 (1950) suggests the reactions O4+OH—O.+H,
0+40:;+X—0;+X*, H4+03;—»0H+4-0; as the effective processes
for the recombination of the atomic oxygen into molecules. In
the present work, we have not considered these processes, since
it is not certain that the OH bands come from the same regions
of the atmosphere (above 100 km) considered in our problem.
Our theory may be applied to these processes when more infor-
mation becomes available.

7 We have neglected the removal of the 1D state of the oxygen
atoms by collisions of the second kind on the following consider-
ation. The cross section of a collision in which the energy of
O(D) is transferred to the electronic energy of another atom or
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dny/dt=—n, f (oycps(x)/hv)dv+n s f B,'vF (v)dv
»0 0o

+npnp f cm,s,,vF (v)dv, (16)
0
dno/di=ns f " (ercon() /) dv—npd
»
—npmp f “paF@dn, (17)
]
dnp/dt=nzfm(awp,(x)/hv)dv+npAp
0
——npnpfwﬁ,vF (v)dv—2np? f anﬂ,,’vF (v)dv, (18)
0 0

where F(v) is the velocity distribution function of the
atoms with respect to the relative velocity », and 8,
the cross section of (1a). It is seen that unless one
ignores the frequent process (13), it is necessary to
include such a process as (14) in order to have any
steady state expressed by the vanishing of the time
rates of change of the concentrations in (16), (17),
and (18).

Consider Eq. (17). The transition probability 4p is
10~ per sec. From the calculations later on in this
work (Appendix 4), one finds, for #p=10"/cm?

np f B.vF (v)dv=210""/sec. (19)
0

Hence O('D) disappears mostly through the transition
(13), and for the steady state, Eq. (17) gives

7y f (os¢ps(2)/hv)dv=npAp.
0
Equation (18) then gives, for the steady state,

npA p=np* f B,'vF(v)dv. (20)
0

Finally consider Eq. (16). The relative importance of
the last two terms depends on #p, #p, B, and B,'. B,
can be calculated from the observed o, by means of
the principle of detailed balancmg (Appendix 1). ﬁ.,
for such a process as (14) is not known either experi-
mentally or theoretically, but as (14) is assumed to be

molecule is small except when there is very close resonance. The
cross sections of processes in which the electronic excitation is
transferred to the translational vibrational and rotational energy
of the colliding atom or molecule are very small. If these are
~10~* times the gas kinetic cross section then the probability of
1D being de-excited by particles of concentration 102/cm? is
only 10~3/sec.
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an allowed dipole transition, 8,” will be of the same
general order of magnitude as 8,. As np/np<l, we
may write Eq. (16) for the steady state in the form

N2 f (oycp,(x)/hv)dv=np? f B,/vF(v)dv. (21)

This is recognized as being Eq. (4).

We shall assume another condition for the steady
state, namely, that in any given volume of the atmos-
phere, the energy absorbed from the solar radiation be
equal to the radiations emitted by the radiative
processes. The energy absorbed in the process (1) is Av.
The energy emitted in the processes (13), (14), (15) is
h(vreat v1°+ v2?)+3me?, where »,%, v,® are the threshold
frequencies in (14) and (15), and im? is the kinetic
energy of the O(®P) atoms in the center-of-mass coordi-
nate system. Let x be the dissociation energy of
0:(X 32,7) into O(D)+O(CP) so that x=h(vieatr®
+ v =hv,. Furthermore, let x1=%h»°. The condition
for energy balance is then

Ny f d,cp,(x)dv=np2[ f Ga+3mv®) B, vF (v)dy
0

+(x—~x1) j; wﬁ.,’vF(v)dv]. (22)

To obtain the barometric equation, we shall assume
that the nitrogen exists in the molecular state in the
region of the atmosphere under consideration, and that
its distribution is independent of the oxygen except
that at any height « all the component gases have the
same gas kinetic temperature. We then have Eq. (10).
Equations (21), (22), and (10) are the three basic
equations in the theory.

IV. DETAILED CALCULATIONS

We shall now seek the explicit forms of the three
basic equations (21), (22), and (10). For this purpose,
it is necessary to know the absorption coefficient o,
and the recombination cross section 8, in (21) and (22).
The coefficient o, is known both experimentally and
theoretically from the work of Ladenburg ef al.,® and of
Stueckelberg.? The cross section B, is not known, but
its relation with the corresponding absorption coefficient
o, of the inverse process of (14) can be found by means
of the principle of detailed balancing. To avoid the
discontinuity of our presentation here, we have given
this calculation in Appendix 1. It is shown in Appendix

8 Ladenburg, Van Voorhis, and Boyce, Phys. Rev. 40, 1018
(1932); R. Ladenburg and C. C. Van Voorhis, Phys. Rev. 43,
315 (1933).

9E. C. G. Stueckelberg, Phys. Rev. 42, 518 (1932); 44, 234
(1933). There is a misprint in the second article. The expression
Ni=N exp[](_1+1)Bo}l:T] should read

Nif(T)=N exp[—j(j+1)Bo/kT],
where f5(T) is given by Eq. (38).
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2 that on writing ¢,/= K'vf1(v), ¢,=Kvf(v), Egs. (21)
and (22) become

o f F()po(x)dv=Anz? f 11(5) exp(— hw/kT)dv, (23)

- f vf(v)p,(x)dv=Anp2[ f Wia(%) exp(—hv/kT)dv

v n

o=t [ a0) exp(—hv/km»], (24)

where
167282 K'Gynt X1
Xp—,

A=— ¢ (25)
AKGY(MET)} &

the various quantities being defined in Appendix 2.

@

f v3f(v) exp[— g2V o— hv/ k6 ]dv

»0
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The radiation energy density p, is given by (2) in
which p,(®) at the top of the atmosphere will be
assumed to be that of a blackbody of temperature
6(=26000°K) diluted by the factor W representing the
solid angle subtended by the sun divided by 4, namely,
W=35.4X10-5. The calculations as carried out in this
manner will be valid for the case in which the sun is at
the zenith all the time. Since the dissociation and
recombination processes are slow processes, the average
radiation available over day and night may perhaps
be better represented by W /4.

For the ultraviolet region beyond 17504, the spectral
distribution may be replaced by Wien’s law so that

p,(x) =3 W8whvic=® exp(—hv/k8) exp[— o, N2(x)]. (26)
From Egs. (23) and (24), one obtains

f ") exp(—w/RT)dv

@n

f v (v) exp[[— oo y— hv/k6 Jdv f vif1(v) exp(—hv/kT)dv+(x— x;)h“‘fo vf1(v) exp(—kv/kT)dv

»0 )

It is seen that the solution of Eq. (27) is of the form
Ny=Ny(T). (28)

To obtain this solution, we evaluate the integrals on
the left-hand side of (27) by using the empirical absorp-
tion coefficient ¢,= Kvf(»). On account of the very rapid
decrease of both factors exp(—,N32) and exp(—hv/k6)
with increase in frequency beyond the threshold »o, the
most important contribution to the integrals comes
from the immediate neighborhood of »,. The measure-
ments of Ladenburg et al. do not cover this region (from
»=1.71X10" to 1.81X 10" per sec). For this region,
a theoretical curve for o, has been calculated on the
basis of the work of Stuekelberg with constants so
chosen that the theoretical curve fits the observed data
beyond »=1.8%X10" sec™!. In the absence of any
direct experimental data, this procedure seems to be
the most reasonable one. We find

avo=0.68X 10" cm?, (da,/dv)re=1.12XX 10~ cm? sec.

For very large values of No(>2X10/cm?), practically
all the contributions to the integrals come from a narrow
frequency range Av near »,, and in this case the expan-
sion '

av= v+ (do,/dv)w(v—wo) (29)

will be sufficient. For smaller Ny(~10¥/cm?), the
contributions will come from a larger frequency region
Av. In this case, instead of adding another.term to the
expansion (29), we approximate the o, by (29) with a
greater slope. For still smaller values of N(~10'%/cm?),
we represent the o, curve by a triangle so that the
integrations can be carried out analytically.

To evaluate the integrals on the right-hand side of

(27), one needs the absorption coefficient o,’=K'vf,(»)
which is not known. It is seen, however, that on account
of the very rapid decrease of the factor exp(—hv/kT)
with increase of frequency beyond the threshold »,°,
all the contribution to the integrals comes only from
a small range of frequency beyond »,°. Hence we may

2x10"
..'3
: l
. 1x10”°
’ \
\\
\\
\N_..
0 200 400 600 800 1000

TEMPERATURE °K

F1c. 1. Theoretical values from Eq. (27) of the total number
No[%(T)] of oxygen molecules in a column of unit cross section
above the height (), as a function of 7.
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expand
a/=a/([1)+Clr—r? (29a)

and it is necessary only to assume that C has a value
of the same order as the corresponding coefficient in
(29). On carrying out these calculations, we obtain the
solution (28) which is shown in Fig. 1. For large
N2(>2X10%/cm?), (28) approaches the form
1 [ kB 2 2 ]
+ —

N~ T
(da,)dn)l kT k0 90 v,

11
E3.98><1021(————)/cm2. (28a)
T 6

For smaller Ny(~10%/cm?), (28a) gives too high a
value for NV, and Fig. 1 must be employed.

It can be shown that Eq. (28a) represents a condition
of detailed balance in which the number of dissociations
in the vicinity »y equals the number of recombinations
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F1c. 3. Calculated temperatures as functions of height. (i)
T=300°K, dT/dx=10°/km: solid curve. (ii) F=300°K, dT/dx

=5°km: dashes. (iii) T'=270°K, d7/dx=5°/km: dots and
dashes.
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in the vicinity of »°. Thus for large values of N, (or
equivalently for low values of T) there almost prevails
detailed balance. However, for small values of N, (or
large values of T) the mechanism assumed does 7ot
require detailed balance.

From the numerical solution of (27) as shown in
Fig. 1, one obtains, in view of (3), an expression for
the concentration of oxygen molecules

ny=—(dNo/dT)(dT/dx)=P(T)dT/dx.  (30)

Thus 7. depends on the height x through 7'(x) and
a7 (x)/dx.

To obtain the concentration of oxygen atoms np, we
insert (28) and (30) in (23). Now, to evaluate the
integral on the right-hand side of (23), it is necessary
to make a stronger assumption concerning ¢,’ than
before, namely, that ¢, is about the same as ¢, in the
immediate neighborhood of their respective thresholds.
On this assumption, one obtains for zp

np=Q(T)(dT/dx)}, (1)

where Q(T) is a somewhat complicated but known
function of 7. np depends on the height x through T'(x)
and dT(x)/dx.

On putting (30) and (31) into Eq. (10), which can be
written in the form

&T 2 dT (Mg

dx? T dx\ k

1 aT
T —[ﬂ2+np
np+2n, dx

+T%(np+nz)“, (32)

one obtains a differential equation of the second order
for T. Equation (32) can be solved if two boundary
values, such as 7" and d7/dx, are known at a certain
height in the region for which the condition of the
atmosphere is mainly governed by the processes of
dissociation and recombination assumed in the theory.
Equations (30) and (31) then give the concentrations
ny and np as functions of the height. Thus it is seen
that on the assumptions of the two conditions for the
steady state, the temperature is automatically deter-
mined by the reaction processes themselves, together
with the distributions of the atomic and molecular
oxygen. It is in this sense that the present work is free
from the additional assumptions that have been found
necessary by the other investigators.!—

V. NUMERICAL. RESULTS AND DISCUSSION

To solve Eq. (32), we need the temperature and its
gradient at a certain height. The empirical results
available at present give quite different values for the
temperature and its gradient. Thus the data from the
V-2 rocket flights give an approximate value of 270°K
for the temperature at 100 km,!° whereas the data from

10 Best, Havens, and LaGow, Phys. Rev. 71, 915 (1947); R. E.
Newall, Jr., Trans. Am. Geophys. Union 31, 25 (1950).
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radio wave reflection measurements indicate a value
300°K.1 It does not seem possible to say which of these
values is more reliable, since the former temperature is
derived from a pressure curve whose individual readings
can be in error by as much as a factor 2, while the latter
temperature is derived with the use of cross sections for
the collisions between electrons and molecules which
may not be accurate. In any case one must also allow
for differences arising from difference in latitude and in
season in the different measurements. Hence we have
solved Eq. (32) by numerical integration for a few
values for the temperature and its gradient at 100 km.
In the figures the results are plotted for three cases,
namely, at 100 km, (i) the temperature 7" is 300°K and
its gradient d7/dx=10°/km, (ii)) T=300°K, d7T/dx
=5°km, (iii) T=270°K, dT/dx=5°/km. Figure 2
gives the number densities #; and #np, Fig. 3 gives the
temperature, and Fig. 4 gives the percentage of dissoci-
ation, all as functions of the height, for these three cases.

From Fig. 3 it is seen that the temperature increases
with the height, approaching asymptotically a constant
value depending on the values of T and d7/dx at 100
km. But in these very high regions, the result of the
present calculation is no longer valid, as processes other
than the photodissociation and recombination of
oxygen become effective. Thus one may understand
any deviation in the observed temperature variation
with height from the behavior shown in Fig. 3.

From Fig. 2 it is seen that in each case the distribution
of atomic oxygen with height shows a maximum as
expected. In case (i), the maximum #np is 2.7X10%/cc
and lies at 102 km. In case (ii), the maximum #p is
1.86X102/cc and lies at 99 km. In case (iii), the
maximum #zp is 1.22X102/cc and lies at 102 km.

Figure 4 shows that, in all three cases, the degree of
dissociation increases rather slowly with height and
dissociation is not complete until a height of about
150 km is reached. This result is to be compared with
those of Rakshit?® and Penndorf, who find that the
dissociation is practically completed within a layer
about 15 km thick.!!*

All the results represented in Figs. 1, 2, 3, and 4,
have been obtained from the two conditions for the
steady state, the barometric equation, and the values
of T and dT/dx at one given height. As no assumption
whatsoever has been made about any of the various
number densities, it must be regarded as a satisfactory
feature of the theory that the concentration of molecular
oxygen at 100 km at least comes out to be quite close
to the empirical values, as shown below. To test the
results of theory, we shall compare our calculated
results with the V-2 rocket data!® which give the total
gas pressure of the atmosphere for all heights up to
about 130 km. To make this comparison, the partial

1 D. F. Martyn and O. O. Pulley, Proc. Roy. Soc. (London)
A154, 455 (1936).

. 12 See the discussion of the results of these authors in Appendix
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Fi1c. 4. Calculated degree of dissociation of oxygen as function
of height. (i) T=300°K, d7/dx=10°/km: solid curve. (ii)
T=300°K, dT/dx=5°/km: dashes. (iii) 7=270°K, dT/dx
=5°/km: dots and dashes.

pressures of atomic and molecular oxygen are calculated
for each of the three sets of boundary conditions above
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and added to the partial pressure of nitrogen to obtain
the total pressure. For case (i), two curves (solid lines)
have been calculated and shown in Fig. 5 corresponding
to two different assumed values for the partial pressure
of nitrogen at 100 km. In one curve (4 in Fig. 5) the
number density of nitrogen molecules is taken to be
2.54X 108 per cc so that the total particle density is
that indicated by the radio wave reflection data.!? In
the other curve B, the number density of nitrogen
molecules at 100 km is taken to be 1.4X10® per cc so
that the total particle density at that height agrees
with the total pressure given by the V-2 rocket data.
In each of these two cases, the partial pressures of
nitrogen at other heights are calculated by means of
the differential barometric equation with the tempera-
ture at various heights taken from Fig. 3. It is readily
found that the concentration ratio of nitrogen to oxygen
at 100 km comes out to be 4.2 and 2.2 for curves 4 and
B, respectively.

In an entirely similar manner, two curves C, D
(dotted in Fig. 5) are calculated for the case (ii) T
=300°K and dT/dx=5°/km at 100 km. The ratio of
nitrogen to oxygen at 100 km then comes out to be 8.1
and 4.9 for the curves C and D, respectively. For the
case (iii) T'=270°K, dT/dx=5°/km at 100 km, two
curves E and F (dot and dash in Fig. 5) are obtained
for which the ratio of nitrogen to oxygen at 100 km is
6.5 and 3.9, respectively.

In Fig. 5 the total pressure as measured in V-2 flights
is given by the crosses and the curve V. From the way
in which the theoretical curves are calculated, it is
clear that we must compare curves B, D, F with the
empirical data. It is then seen that curve F agrees very
well with the V-2 data. It is also noteworthy that the
nitrogen-oxygen ratio comes out to be very close to
the value usually assumed. Considering the fact that
both the atomic and the molecular oxygen concentra-
tions and the temperature all come out from the two
conditions for the steady state and the barometric
equation without any further assumption other than
the values of T and dT/dx at one given height, one
may regard the theory as satisfactory in a qualitative
way, since it does give correctly the essential features
such as the total pressure, the rising temperature and
dissociation with height, and the nitrogen-oxygen ratio.
It must be emphasized, however, that in view of the
uncertainties in the detailed processes assumed for the
recombination of the oxygen atoms, no significance
should be claimed for the above-mentioned agreement.
The main purpose of the present work is rather to show
that a completely self-consistent treatment can be
formulated which is free from the other assumptions of
the previous investigators, and that this treatment can
give reasonable results compared with the empirical
data.l?»

2 See S. K. Mitra, The Upper Atmosphere (The Royal Asiatic
Soc. of Bengal, Calcutta, 1948).
12s Tt might be mentioned that if occasional winds occur at
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APPENDIX 1. RELATION BETWEEN ABSORPTION
COEFFICIENT AND RECOMBINATIONS
CROSS SECTION "

Let o(P, j, q, v; p, P') be the cross section for the process (1) in
which a molecule having the total linear momentum P, the
rotational quantum number j, and the vibrational quantum
number ¢, absorbs a photon of frequency » and dissociates into
two atoms having a momentum p with respect to each other and
a momentum P’ for their center of mass. Let p,d» be the radiation
energy density in the frequency range between » and »+d», and
ny(P, j, ¢) be the number of such molecules per unit volume.
Then the number of this type of dissociation per unit volume per
second is

no(P, 5, 9o (P, 4, ¢, v; p, P')(cov/hv)dv. (33)

Let np(Pp)dPp, np(Pp)dPp be the number of atoms per unit
volume in the 1D and ?P states having momenta between Pp and
Pp+dPp, and between Pp and Pp-+dPp, respectively. We define
the cross section 8(p, P’; P, §, ¢, ») by stating that the following
expression

no(Po)np(Pp)B(p, P'; P, j, ¢, v)[1+p/8xhv* ]y (34)

represents the number of radiative recombinations per unit
volume per second which are the inverse of process (1). In these
recombinations two atoms of relative momentum p and total
momentum P’ recombine by a radiative transition to form a
molecule whose state is described by P, j, ¢. For convenience,
we shall write o for ¢(P, 7, ¢, ; p, P’) and B for 8(p, P’; P, j, q, v).
We let v represent the relative velocity of the atoms.

B can be determined in terms of ¢ by means of the principle of
detailed balancing. For this purpose, let us assume the system to
be in thermodynamical equilibrium so that #p(Pp), np(Pp),
n2(P, j, ¢) obey the Boltzmann statistics and p,dv is the energy
density for black body radiation, all distributions being character-
ized by the same temperature T. The principle of detailed bal-
ancing states that

n(P, j, Qacpsdv/hv=np(Pp)np(Pp)B[14+c3p,/87hvTv.
Now one has

(3%)

4 (254 1) noeX/eT (__ P )
WA(T, 2M)f(D)fs(T) P\~ aMET.

_j(j+1)h=) ( gho
tetranet) P\~ g ) TR

”2(Pv j: q)==

X exp! (36)

and

#6(Pe)n (P p) = —— D1

wi(z, ), 200

(-5
P\~ rnT

Xexp(—M—I:T)P"dP’p’dp, @37

where x is the energy of dissociation (including the zero-point
energy), 7o the equilibrium distance between the atoms, w the
vibrational frequency of the molecule, and M the mass of the
oxygen atom. fi(T), foT), fs(T) are the partition functions
respectively of translational, rotational, and vibrational motion

intervals larger than the time to establish dissociative equilibrium
but short enough to disturb the diffusive equilibrium between the
molecular oxygen and nitrogen, the result of the present work
will still be largely valid. The effect will be to raise the level of
molecular oxygen, or, equivalently, to give molecular oxygen a
somewhat lighter mass. The })rincipa.l result would be that the
rate of change with height of the various calculated quantities
would decrease somewhat. The authors are indebted to Professor
C. H. Townes for pointing this out.
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and are given by
(T, M)=Q2=MET)Y/ ¥,

foT)=4x*MrakT /12, (38)
f,(T) = cxlu'(l — g~ Rl kT)
Also one has
py=8whyic3(eM/*T— 1)1, (39)

The conservation of momentum before and after collision gives

P=P'. (40)
The conservation of energy gives
P jGEDR _pr p
ST T R TS TAES 4

The relation between the concentrations of atoms and molecules
at equilibrium is given by the reaction isochore, namely,

nenp_2G T, 26T, M/2)

m G fi(T, 2M)f(Dfs(T)’

where G is the electronic and nuclear degeneracy of the molecule,
G, is the statistical weight of the atoms, and the “symmetry
factor” 2 represents an additional degeneracy arising from the
fact that the nuclei of the atoms are identical.

Substitution of (36) through (42) into (35) gives'®

B=4(2j+1)(G2/Gr) (**/ M*c*P) . (43)

The ratio of B to ¢ is thus independent of temperature, as it
should be, since 8 and ¢ are atomic properties. The ratio of g to o
could also have been obtained from quantum mechanics using
Dirac’s transition probabilities. The ratio of 8 to ¢ is then
simply proportional to the ratio of the density of atomic states
to that of molecular states.2

Actually we are more interested in finding g’, the recombination
coefficient for the process (14), rather than g, since most of the
atoms recombine by this process. Defining o’ as the detailed
cross section for the inverse process of (14), we have

B'=4(2j+1)(GY'/GY) v/ Mcv)*s’ (43a)

where G’ is the statistical weight of the two atoms in the 3P
state, which is different from Gy'.

(42)

APPENDIX 2. EQUATIONS FOR THE STEADY STATE
IN THE DETAILED MODEL

In Eq. (21) and (22), for simplicity, we have neglected to
indicate the dependence on the rotational and vibrational states
of the molecule. We can rewrite them to include the dependence
by using ¢ and g’ defined above. Equations (21) and (22) become

2 [Py 0 ocm/ )iy
= Z ne(Prine(PRS(1+0m/8xi), (40
D

and

2 [omP., goceds
= 2 np(Pr)np(Pr)wsv(1+cp,/8xhid). (45)
P,p

Here np(Pp)np(Pp) is to be replaced by a distribution given in
terms of the relative momentum p of the recombining atoms and
the momentum P’ of their center of mass. The frequency » and
the relative velocity v are related by the law of conservation of
energy.

The values of j in (44) should be restricted to even integers,
since the nuclei of the oxygen atoms are identical and have zero
spin. However, in our case where the rotational levels are highly

12 Compare this relation with the corresponding formula for
the cross sections of photo-ionization of an atom and the inverse
radiative recombination between the ion and the electron, given
by E. A. Milne, Phil. Mag. 47, 209 (1924).

12¢ The authors are indebted to Dr. A. Bohr for this observation.
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excited so that sums over j are replaced by integrals, the effect
of using only even values of j cancels out, excepting in the case
of the reaction isochore, where the effect has already been taken
into account by the symmetry factor 2. Hence we shall not
explicitly use the restriction.

At temperatures which are believed to exist in the 100 km
region, we may assume that the molecules are in their lowest
vibrational state of the lowest electronic state. Since x is of the
order of 7 volts, whereas the rotational energy is of the order
0.02 volt, we shall regard » as a constant given by Avo=x. This
is in agreement with the observation that the Schumann-Runge
continuum starts quite sharply at the wavelength 1751A.

We shall now make use of the result of Stueckelberg for o.
The expression I'ww in Stueckelberg’s paper? is, in our notation

Tiw=(2j4+1)ocp,dv/hv,
and

_s@tD [J'(j+1)h’]__64:r'”’ j%
=22 ° Plaatrr T ™ T30 Tiye

where v, ¢, and JU(r1) are constants which Stueckelberg deter-
mines from the empirical results of Ladenburg et al. The function
f(v) can be calculated from the data given by Stueckelberg.® It
should be noted that g, is independent of the temperature as it
should be, since it is a molecular property.

Since we wish to find 8, it is seen from (43a) that we must
know ¢’. The cross section ¢’ has not been measured or calculated.
We shall make the reasonable assumption that ¢’ has a form
similar to that for o,. Thus we write

s @D, [HGHDE] L
—§ D)7 em[h-ﬂM,oskT]gK vi(»).

On using the laws of conservation of energy and momentum,
Egs. (43a), (46), and (46a), and neglecting the induced emission
in (44) and (45) which is very small, one finally obtains the
equations for the steady state in the form (21) and (22) in the
paper. It is seen that even though one starts with a different
value for the rotational temperature from the translational
temperature, only the translational temperature appears in
Egs. (21) and (22). The rotational temperature has dropped out
on account of the averaging process in (46).

J(r)uf(v),  (46)

Oy

(46a)

APPENDIX 3. TIME REQUIRED TO REACH
DISSOCIATIVE STEADY STATE

To find the time required to reach the dissociative steady
state when an atmosphere initially consisting of molecular oxygen
at constant temperature throughout is illuminated by sunlight,
it is necessary to integrate Eq. (18) from the time sunlight is
turned on to the time at which dnp/di=0. However, this time is
infinite. Hence we shall find instead the time required to reach
10 percent of the final dissociation, say, and multiply this time
by 10. This time will represent a sort of relaxation time giving
the order of magnitude for the time required to reach the dis-
sociative steady state.

On neglecting the recombinations Eq. (18) becomes

dnp/dt=An,, 4n
where the coefficient A is given, in view of (18), (26), and (46), by

A=1W @/ [ vf() expl— o, Nae—ho/k0Jdy.  (48)

If the region which is considered is at 100 km, where N is large,
only that part of the integrand which is near wo contributes.
Hence near vy we write a,=ov+(do,/dv)v(v—»o) in the integrand
and find

A=Q2x/)WK exp(— Kvof Ny— hvo/k6)
X [, () expL— (K (nof +1) Na+-h/k0} (v—v0) M, (49)

where f=f(»o) and f'=f"(vo). Since the exponential factor in the
integrand decreases very rapidly with increasing v, we may write
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the integral as
vof (K (vof +f)Nao+k/k6T.

A is a function of the time and altitude through the variable
Ny(x). As only orders of magnitude are being estimated, we shall
simplify the calculation by giving N:(x) a constant value in time,
which will represent the average value. According to Fig. 1, the
value of Nz(x) at 100 km for the case T'=300°K at 100 km in the
dissociative steady state is 27X 10'8. With this value, one gets
for the time for dissociation steady state about 10 days. Even if
this estimate is too small by a factor 10, this time is still shorter
than the time required for the establishment of diffusive equi-
librium, which is of the order of years for this height.?

APPENDIX 4. THE RADIATIVE RECOMBINATION
COEFFICIENT

Having found B, one can calculate the recombination coefficient
for two oxygen atoms, one of which is in the 1D state and the
other in the 3P state. It is given by

B= j; ®8,0F (1)dv=2.19% 10~2T cm?/sec. (50)

For T=300°K, we have B=6.56X10"2 cm3/sec. This can be
compared with the result given by Nicolet!? for two oxygen atoms
approaching each other along the level giving the Herzberg
bands, namely, B="7.6X10"2 cm?/sec.

It can be shown that, under the assumption about ¢, made
earlier, the recombination coefficient for two oxygen atoms, both
in the 3P state, is

B'= j; ®8,'vF (8)dv=(G1/Gy') (v/vo? B23B.

With these recombination coefficients, since #p<np, it can be
seen that the number of recombinations per sec of type (1a) is
much less than that for the process (14), i.e.,

npnpB<<<np*B’.

Hence our assumption that (14) is a more important process
than (1a) for the formation of molecules is justified.

APPENDIX 5. CROSS SECTIONS FOR THREE-BODY
RECOMBINATION COLLISIONS

We wish to investigate the relative importance of three-body
recombination collisions of the type (12)

0+0+4X—0y(X 32,7) +X* (12)

and two-body radiative recombination collisions of the type (14).
The coefficient of a two-body radiative collision can be calculated
from the absorption coefficient of the inverse process, as shown
in Appendix 1. We shall obtain below a similar relation between
the coefficients of the 3-body process (12) and of its inverse
2-body process. Before doing that, we shall make an estimate of
a three-body collision coefficient on the basis of the classical
kinetic theory.

Consider the process (12), in which the particles are represented
by spheres of radius ¢ moving with an average velocity ». Simple
considerations show that the number of three-body collisions (a
particle X collides with a system of two O atoms when they are
within a distance 2a of each other) per unit volume per second
is 27vaS[OP[X ], where the brackets indicate number densities.
If one takes ¢=1.5X10"% cm, then, at temperatures of a few
hundred degrees absolute, the coefficient C=2#va® of three-body
collisions in this sense is 1.5)X10~% cm®/sec. This must now be
multiplied by the ratio of statistical weights of the molecular
state 3Z,~ of O; and the atomic state (3P+3P), namely, 3/81.
Thus if every 3-body collision, according to this classical model,
leads to the formation of O, the coefficient C is 5X 10735 cm®/sec.
This rather optimistic estimate is about 10? times smaller than

13 M. Nicolet, Mem. inst. roy. meteorologique de Belgique, No.
19 (1943). ’
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the values deduced from experiments on gases other than oxygen.
We shall now make a more detailed study of three-body
collisions. Consider the inverse process of (12), namely,

0;+X*-04-04+X (51)

which is a two-body collision. The cross section for the three-body
collision (12) can then be obtained in terms of the two-body
collision cross section of (51) by means of the principle of detailed
balancing. We shall examine all the possible two-body processes
(51). Since the three-body collision cross section will be propor-
tional to the two-body collision cross section, only that two-body
process which is the most probable need be considered.

The particles which exist in the region of the upper atmosphere
in which we are interested are electrons, oxygen atoms, oxygen
molecules, and nitrogen molecules. It is possible to disregard the
electrons as an important third body, since the maximum electron
density is of the order of 105/cm? and is very much smaller than
the densities of oxygen atoms, molecules, and nitrogen molecules,
namely, 101/cm?, 102/cm?, and 10/cm?, respectively. We shall
hence only consider two-body collisions (51) in which the third
body X is an atom or a molecule.

Consider now the dissociation of a diatomic molecule in (51).
There are two cases possible: (a) the molecule may jump from a
vibrational state of the normal electronic state to a vibrational
state in the continuum of the same electronic state, or (b) it may
jump from a vibrational state of the normal electronic state to an
excited repulsive electronic state. In the case (a), the third body
may supply this energy of vibrational excitation from its kinetic
energy of translational motion, or from its electronic energy, and
if the third body is a molecule, from its vibrational energy. Now
the probabilities of such processes are very small,'® and we may
consider only the case (b). This process of the transfer of the
electronic energy of one particle to the electronic energy of a
molecular is similar to the one in which two atoms exchange
excitation energy upon collision. The calculation of Stueckelberg
indicates that the probability of such a transfer can be quite
large in certain cases.!® Hence we shall assume that the most
important process (51) is a collision in which X transfers its energy
of electronic excitation to an oxygen molecule.

We shall now define a “cross section” for the three-body
collision (12). Let the electronic states of the two atoms arising
from (51) be denoted by @ and b, their number densities by 7,
and 7, respectively. Let the number density of oxygen molecules
having momentum P, rotational quantum number 7, and vibra-
tional quantum number ¢ be denoted by ui(P,7,g). Let
a2(P, j,q, P=*; P', p, P;) be the cross section for a collision in
which an oxygen molecule in the state P, 7, ¢ is dissociated by an
electronically excited third body of momentum P,* and the
number density #,*(P,*). The number of collisions (51) per unit
volume per second is then

ou'm(P, j, (P, 52
where «* is the relative velocity of the oxygen molecule and the
excited X*.

Let the number density of atoms in the state ¢ and having a
momentum between P, and P,+dP, be denoted by #,(Ps)dP,.
The number density of atoms in state b will be denoted similarly.
Let n,(Px) be the number density of unexcited X having a
momentum P,. The number of three-body recombinations (12)
per unit volume per second is given by the following expression,
which defines the “cross section” o3 for the three-body process
(12):

”G(Pa)”b(Pb)va'B(P') ?, P P, j; 9, Pz*)nl(PZ); (53)

where v is the relative velocity of the oxygen atoms with respect
to each other. Thus, the cross section o3 is of the dimension area
Xvolume, so that it can be interpreted as the cross section per
unit concentration of the third body X.

14 E. Rabinowitch, Trans. Faraday Soc. 33, 283 (1937).

18 N. F. Mott and H. S. W. Massey, The Theory of Atomic
Collisions (Oxford University Press, London, 1949), Chapter XII.

18 Reference 15, Chapter VIIIL.
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The statement of detailed balance is
a*na(P, j, n:*(P*) =na(Po)ns(Pr)osn(Ps),  (54)

where the number densities are given by the Boltzmann theorem,
all quantities being characterized by the same temperature. The
no(P, 7, ¢) and n4(Pa)ns(Ps) are given by expressions similar to
(36) and (37). Also, we have

_ 4nGanae ( e+P, /ZM,)
n(P) = r T, 317, P PP, (59
47"61*”1:! ( *+P /ZMZ)
* *) — *2,
n*(Pz*) 3T, M) exp P.*dP.* (55a)

where 7., is the total number of the third body X per unit volume,
M ;. the atomic or molecular weight of X, e and €* are the electronic
energies of the normal and the excited states, respectively, Gz
and G.* their statistical weights, and f. is the partition function
of the electronic states, of X. We shall replace the momenta P
and P,* and P’ and P, by the relative momentum of the third
body with respect to the molecule P,, P,* and the total momentum
P, P* of the whole system, the unstarred and starred referring
to values before and after collision, respectively. The conservation
of momentum and energy gives

P;=P;*

and
Py PP GHOR L
2o 2n T amitrg T
2
______ — X

M+2ﬂr+2(2M+Mz) (e— €M) +x,

where

u=2MM./2M+M.).

Substitution of all of these into (54) and the use of the reaction
isochore similar to (42) lead to the relation

G:*Go(2j+1)u*30odu* = 7G.Gr(M / k3o sutdur’dy, (56)

where #% is the relative velocity of the third body with respect to
the center of mass of the pair of atoms after collision, and G,
and G; are the statistical weights of the oxygen atoms and mole-
cules, respectively. It is seen that the ratio of o3 to o2 is independent
of the temperature, as it should be, since the cross sections are
atomic and molecular properties.

The relation (56) is quite general. We shall now assume that
only exchange of electronic energy plays a part, so that no trans-
lational energy is transferred, i.e., w=u* Furthermore, since o2
is greatest at resonance, we may set x=e*—e. We shall assume
that the molecule is in its normal vibrational state, and that the
kinetic energy of the dissociated atoms comes from the rotational
energy of the molecule. On replacing the discrete rotational states
by a continuum, and using the relation between the velocities
u, w*, v given above, the relation (56) simplifies to

o3=2mhrd(UGGs* | MVG\Gy) . 57

It is easy to see that o3 is of dimension length to the fifth power.

The total number Qs of three-body recombination collisions
per unit volume per second is obtained by integrating (53) over
all velocities » and #. As o2 has been assumed to depend only on
the exchange of electronic energy, it will be an insensitive function
of the velocities. Hence, we have

Qs=21hr(G:G.* /MG \G.) w)n1 /v)anznanioe. (58)

The average value of 1/v is obtained from the Boltzmann distri-
bution in velocity for the reduced mass of the oxygen molecule,
and (u)a is obtained for the reduced mass u defined previously.
The factor G.*/G. is of the order unity. Hence the total number
of three-body recombinations per unit volume per second is
given by

Qa=10Pomansn, = (59

where C is the three-body recombination coefficient. To estimate
the value of C, one needs the two-body collision cross section os.

Cnann.,
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Now o3 is in general smaller than, or of the order of, the gas
kinetic cross section, but for some cases may be considerably
larger at resonance. For lack of both theoretical and experimental
information for the system O.+X* in (51), we shall take for o2
the gas kinetic value 107 cm? and obtain

C=107% cm®/sec.

To estimate the relative importance of two-body and three-
body collisions at the height of about 100 km, we shall take for
n. the value 108/cm?® which is of the order of the total number
density of gas molecules at that height. For the two-body radiative
recombination, we have, from Appendix 4, the value B'=10"%.
Hence the ratio of two- to three-body recombinations at this
height is given by

Q2/QS= (B,nanb)/(cnanbnx) =103, (60)

For greater heights and hence smaller 7., three-body recombina-
tions will be still less important.

This and the simple estimate made at the beginning of this
appendix lead us to assume two-body recombinations in our
calculations.

It might be mentioned that Fowler uses a similar three-body
treatment in his discussion of electron capture by an ion.1?

APPENDIX 6. RADIATIVE RECOMBINATIONS
BETWEEN TWO OXYGEN ATOMS

To investigate the relative importance of the possible radiative
recombinations between two O(3P) atoms, we first note that the
following types of states can arise from two such atoms: !Z,%,
12“_1 lnlh lnﬂy lAU! JE“+1 320—; snﬂ: 3110) 3A1ly 62ﬂ+7 5214_1 snﬂr
5IL,, 8A,. Of these, X 32, is the normal state. Three other states
have been identified from the analysis of the spectrum, namely,
b12,% ala,, A 3241, The other states have not yet been located.

We shall investigate the nature of the process or processes that
contributes most to the recombination of the atoms on the basis
of the following arguments. It is generally believed that the source
of energy of radiation emitted in the night sky is the recombination
of oxygen atoms into molecules, although the exact mechanisms
whereby the various lines and bands in the spectrum are excited
are not known with definiteness. Since the intensity of the night
sky radiation is found to change only inappreciably during the
whole night, it follows that not more than a small fraction, say
perhaps 1/100, of the oxygen atoms present at sunset can have
disappeared during the night, i.e.,

® 1
10- 60202 _j; BV P @)=,
For the height where #p is ~1012/cm3, this gives for the recombi-
nation coefficient the order of magnitude =3X10™® cm3/sec.
This value can be compared with the value calculated in Appendix
4 for the recombination process (1a) which involves an allowed
dipole transition. Thus it seems most probable that the process
or processes contributing most to the recombination of the oxygen
atoms involve allowed dipole transition.

There are two possibilities for such recombinations: (1) two
O(®P) atoms approaching each other in a state which combines
by dipole transition to form the normal state X 3Z,~, and (2) two
O(3P) atoms approaching each other in a state which combines
to form a stable excited state by dipole transitions. Reference to
the list of possible states formed from two O(P) atoms given
above shows that the only state that combines with X 32, by
dipole transitions is the 3[I,-state. This state has not been found,
but either it must be strongly repulsive, or the potential energy
curve has a weak minimum at large nuclear separation, for other-
wise absorption bands from the ground state would have been
found. In either case, the transition probabilities to the lower
vibrational states of X 3%,~ will be small on account of the
Franck-Condon principle. Transition probabilities to highly

17 R. H. Fowler, Statistical Mechanics (Cambridge University
Press, London, 1936), Sec. 17.6.
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excited vibrational states of X 3%,~ will also be small, since at
large nuclear separations the matrix element of the dipole moment
of the system will be small.

Passing on to the case (2), it is seen that two O(3P) atoms
approaching each other in the state I, will be in a position to
make a dipole transition to the state b 1Z,%. The potential curve
of T, is not known, but it is not impossible that it has a weak
minimum or is weakly repulsive in such a way that the turning
point (where the horizontal line representing the kinetic energy
of the approaching atoms intersects the potential curve) lies
vertically above the neighborhood of the minimum of the 512,
curve. In these cases, the transition probabilities will be of the
order estimated above.

The resulting molecule in the state b !Z,* can go down to the
normal state X 3%, either on emitting the so-called atmospheric
bands with transition probabilities of the order 0.1 per second,
or in a collision of the second kind with another atom or molecule.
The cross section for the transfer of energy of electronic excitation
of one particle to the kinetic energy of a heavy particle (atom or
molecule) is very small. As the collision frequency in a gas of
number density 102/cm? is of the order 20 per second, the radiative
transition mentioned above may be more important than the
de-excitation by collisions of the second kind with atoms or
molecules. The identification of the atmospheric bands in the
infrared spectrum of the night sky%? seems to lend some weight
to this suggested mechanism.

APPENDIX 7. DISCUSSIONS OF THE WORK OF
PENNDORF AND OF RAKSHIT

A. We shall first examine Penndorf’s work.* Penndorf starts
with an atmosphere having an assumed temperature distribution
T(k) and total pressure distribution P(k) before dissociation by
solar radiation takes place. On assuming the proportion given by
(7), the total oxygen concentration [O.]¢ before dissociation is
calculated by means of the relation,

P(h)=([N2Je+[0:2J0)4T. (61)

Let A* be the number of quanta of solar radiation absorbed in a
thickness s per unit cross section per second at the height 4, and
Jm be the number of quanta in the solar radiation per 104
interval crossing unit area per second at the height k. Let k" be
the absorption coefficient (k\'’=a, of the present paper) and let
the subscript G denote the steady state. Thent

a*= [Toll—exp(=sh"[0J0 3N, (P-21)
and for the upper regions where sk\’[0:]e<1,
A*=5[0,Tc [ Tikr"d. (P-22)
For either (P-21) or (P-22), one has
A*=f1[01]s, (P-23, 24)

which defines f; as the probability per second of a molecule at
the height k absorbing a dissociating photon from the solar
radiation. The steady state is given by

Sfi[O:Je=2[M Je[0Je?, (P-18)
where % is the recombination coefficient for three-body processes.
For the upper regions where the dissociation is almost complete,
Eq. (P-18) is replaced by (P-19), which is obtained from (P-18)
by setting [OJ¢ equal to 2[O2]:.

(1) It is seen from Table IV of Penndorf’s paper} that the

assumption
[0:J¢+4[0Je=[0:1 (P-9)

has been made. This implies that the oxygen atoms and molecules
do not readjust themselves after dissociation has taken place.
This is equivalent to assuming an atmosphere which is separated

t For convenience we follow Penndorf's notations in this Appendix and
denote by (P-18) Eq. (18) in his paper, etc. .
1 There are many misprints in the exponents under [O1]g in Table IV
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into parallel layers by transparent partitions before the solar
radiation is “turned on.” As a consequence of assumption (P-9),
there results an inconsistency. The total pressure P(k) with
which the calculation is started is that given by (61). After
dissociation has taken place, the total pressure is given by

P(h)=([N:1:+[0.]e+[0Ja)%T,

which in view of (P-9) becomes
P(h)=([NJ:+[0:]:+4[0Je)% T, (62)

which is obviously different from that given by (61) except where
there is no dissociation. To illustrate this, let us consider the
height 130 km. From the assumed T'=330°K and P=0.00011 mb
and the relations (7) and (61), Penndorf obtains [0;];=3.92
X101 /cc, and [N,];=1.78X102/cc, as shown in Table II, Now,
according to Table IV, which has been calculated on the basis of
Table II, the oxygen is almost completely dissociated so that
[0Je=17.84X10"/cc; but this would have led to a total pressure
of 1.17X0.00011 mb, contradicting the original assumed value.
The difficulty emphasized here is not so much with the factor
1.17 as with the intrinsic impossibility of obtaining [0:]¢ or [0Je
from (62) on any assumed T'(k) and P(k) without the use of
Eq. (11).

(2) Consider now the central part of the calculation in Penn-
dorf’s paper. The procedure of the calculation is described as
follows: “The calculations started at 130 km, where the amount
of [0;]¢ is found to be small, and formula (22) was used. . . .
Having computed A* by numerical integration, f; was obtained
by (23). Thereupon, the amount of oxygen atoms or molecules in
the equilibrium state was computed by either (18) or (19). Since
[0:]q resulting from formula (19) enters the basic equation for
the absorption (20), the correct value had to be found by testing
until the value used in the exponent equaled the result of (19).”

Now Eq. (P-18) or (P-19), together with the assumption (P-9),
gives only one equation containing two unknowns [O;]e¢ and fi.
The quoted paragraph above seems to have stated that f; is
obtained from (P-21) and (P-23) (or P-22 and P-24); but Eq. (21)
or (P-22) is not an additional equation for f; and [O;]g in the
sense that it can be combined with (P-18) or (P-19) to give f; and
[O2]e, since A* is not known from any other relation than Eq.
(P-21) or (P-22) itself. Thus, it is not clear how [O:]¢ and f,
could have been obtained from essentially a single equation—
namely, (P-18) or (P-19). In fact it is not clear how 4* could
have been obtained by “numerical integration” at all, since Ja
at the height # depends on f3*[0;]edk according to Eq. (2), and
to find [O;]e¢ at all heights is exactly the central part of the
problem.

On trying to reconstruct Penndorf’s procedure, it seems that
the only reasonable way the calculation could have been started
is as follows. At 130 km, J;\ was assumed to have the value of
the solar radiation unattenuated by absorption by the overlying
layers. With this Jx at 130 km, f, was calculated for this height
from (P-23), and with this f;, [Os]¢ was calculated from (P-19).
This [O:]e¢ was then inserted into (P-22) to give A* for a layer
of 1 km thick, and the reduction in Js\ therein, so that J for
the next layer below could be calculated.

If this is the actual procedure adopted by Penndorf, then the
following objection may be raised. On the technical side, since Ja\
depends exponentially on the total number Ny=/3*[O:]adk of
the existing molecules above %, the calculated result will depend
very strongly on the assumption made about N,. The assumption
that Jx\ at 130 km has the full, or any other, value of the solar
radiation implies that k\"’N:<1, and this in turn implies that the
oxygen is highly dissociated at and above 130 km; but this is
exactly what is to be calculated from the theory and must not be
assumed in the calculation. In principle, the objection is that the
problem is already completely determined by Eq. (11) and the
boundary conditions (11a) and will be inconsistent with any
further assumption about N,. It is the failure to recognize this
that has led to this and the other difficulty with the total pressure
discussed above.
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(3) Another debatable point in Penndorf’s work is the assump-
tion that the oxygen atoms recombine in three-body processes.
The relative importance of two-body and three-body processes
has been discussed in Appendix 5 above. It may perhaps be
mentioned here that since no provision is made for the emission
of radiation in Penndorf’s theory, the oxygen will keep on trans-
forming solar radiation into the kinetic energy of the atoms and
molecules, with a consequent continual rise in the temperature of
the atmosphere; for at the low pressure and low values of the
d@*T/dk? in this part of the atmosphere, the loss of heat by con-
duction is very slow.

(4) The result given in Table VII for the time of “half-recombi-
nation” in the absence of solar radiations does not seem right.
One certainly expects the time taken for “half-recombination” to
be shorter the greater the value of the coefficient of recombination
k. The reverse, however, is shown in Table VII.

B. Consider now Rakshit’s work.? As Rakshit’s work is a
refinement of, and supersedes, the earlier work of Majumdar,? it
will be sufficient to confine our discussions to Rakshit’s paper.

(1) Rakshit also assumes a given temperature distribution T'(%)
and the proportion (7). From T'(k) and the total pressure P at
80 km, the total pressure and the partial pressure p of oxygen
before dissociation are calculated for other heights. Here, as in
Penndorf’s work, the assumption (P-9) is also made, with the
same consequent difficulty with the pressure. Thus at 115 km,
the assumed T'=300°K and P=1.50X10"* mm of mercury lead
to the partial pressure p of oxygen p=3.00X10"% mm as given
in Table II. On the other hand, from Table III, one finds for the
partial pressure pg after dissociation the value 5.4X107% mm,
contradicting the original total pressure assumed.

(2) Rakshit calculates the total number N, of oxygen molecules
in a column of unit cross section above the height % by means of
the relation N.=pNH, where p is the partial pressure of oxygen
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before dissociation, H the height of the homogeneous atmosphere
for Oq, and N the number of molecules of a gas per cc at standard
temperature and pressure. It is not clear how H has been obtained,
but the use of the partial pressure of oxygen molecules before
dissociation instead of that of the existing molecules is obviously
unjustified. Thus, Rakshit’s calculation is open to the same
objections discussed in A, (1) and (2), above.

(3) Rakshit assumes that the recombination process is simply
the reverse of the dissociation process—namely, (1a). The distri-
bution of oxygen atoms in the 3P and 1D states is assumed to be
given by the Boltzmann theorem. Now for 7=300°K, the Boltz-
mann factor is exp(—77) so that the concentration of 1D atoms
will be extremely small and the dissociation process becomes
practically unidirectional. For this reason, recombinations in-
volving two 3P atoms, even though very improbable, have to be
considered. Failure to consider these would lead to too high an
estimate for the degree of dissociation.

That the calculated values for the degree of dissociation x
are not too high is due to an error in the calculation. The ratio
na'ng/nap should have been 4N exp(—E/kT)/(1—x) instead
of the expression Na?/(1—x) given by Rakshit, since 74’
=np exp(— E/kT) and hence #n4'{{(ns. E is the energy difference
between the 1D and the 3P states of oxygen. When this correction
is made, Egs. (12), (14), and (15) in Rakshit’s paper should all
be multiplied by the factor  exp(E/2T) =4 exp (77) on the right-
hand side. It is seen that Rakshit’s theory, when correctly calcu-
lated, would have led to too high values for x for all heights.

(4) The relation between the absorption coefficient ¥, (¢»=0»
in the present paper) and the recombination cross section 8, of
the reverse process as obtained by Rakshit depends on the
temperature of the gas. This cannot be correct, the correct
relation being (43) given in Appendix 1 above.
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Semiconducting Nio.4Zn,.¢Fe,O4, prepared in different ways, has been investigated. It appeared that the
ac resistivity and the apparent dielectric constant of the material show a dispersion which can be explained
satisfactorily with the help of a simple model of the solid: there should be well-conducting grains separated
by layers of lower conductivity. Dispersion formulas are given. There is good agreement between experiment

and theory.

L INTRODUCTION

EASUREMENTS by Blechstein! in 1938 showed

that certain manganese ferrites have an aston-
ishingly high apparent dielectric constant. Brockman,
Dowling, and Steneck? also found such high dielecttic
constants in ferromagnetic cores made of ferrites which
had been developed in this laboratory.® This property
was, in fact, essential in the theory for the dimensional

* This paper has been written by Dr. J. Volger of this laboratory
from observations and calculations left by the late Ir. Koops
(deceased October 22, 1950).

1 E. Blechstein, Physik. Z. 39, 212 (1938).

2 Brockman, Dowling, and Steneck, Phys. Rev. 77, 85 (1950).

2J. L. Snoek, New Developments in Ferromagnetic Materials
(Elsevier Company, New York, 1947),

resonance effects in these cores investigated by these
authors.

In order to obtain more quantitative information
about the behavior of the ferrites, precise impedance
measurements were carried out with disks and rods of
several compositions. In the present paper the measure-
ments at room temperature and a phenomenological
theory of the impedance of NiZn ferrite and its disper-
sion are given.

II. EXPERIMENTAL DETAILS

A new alternating current bridge constructed and
already described by Kéhler and Koops* was used. The

4J. W. L. Kéhler and C. G. Koops, Philips Research Repts.
1, 419 (1946),



