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In order to study the sources of quantum-mechanical divergences, an elementary model, consisting of a
one-dimensional 'vibrating string elastically coupled to a harmonic oscillator, is studied in detail. Following
a preliminary discussion of the classical eigenfunctions of the coupled system for both a finite and an
infinitely long string, the system is quantized by the standard methods of boson field theory. The per-
missible experiments upon the system are investigated from the viewpoint of regarding the measuring
apparatus as providing initial conditions for the system. It is shown that certain infinities are of mathema-
tical origin, and arise from breakdown of perturbation theory. Others are physical, and are the result of pre-
scribing impossible requirements for the measuring apparatus. Cut-ofF methods which remove the infinities
are presented.

I. INTRODUCTION

HILE quantum mechanics has been highly suc-
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cessful in treating systems of mass points, the
extension of its methods to continuous systems has
always been beset with divergence difBculties. The
present paper is an attempt to obtain an understanding
of one source of these divergence di6iculties by con-
sidering a very simple continuous syste~.

One of the simplest possible types of continuous
systems is that type which is described by the wave
equation in one dimension. Examples of such are the
transmission line and the transverse vibrations in a
plane of a uniform string. For de6niteness we shall
consider the latter. However, an isolated vibrating
string is almost too simple, because it becomes diQicult
to determine just what are the physically realistic
questions to ask. Therefore, in order to be able to
describe appropriate experiments, it was felt desirable
to couple a harmonic oscillator to the string. This
system is still suKciently simple that its equations of
motion can be solved explicitly. %'hile the classical
theory of vibrating strings has been the subject of
innumerable investigations, the corresponding quantum
theory has only been considered very brieQy. ~

The subject matter of this paper is then a study of
the classical and quantum-mechanical properties of a
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vibrating string coupled to a harmonic oscillator. It is
not pretended that this study is complete. Rather, we

hope we have formulated the problem and have made
some start on its solution. For convenience, we have
divided the problem into two parts, the study of a
string of finite length and the study of a string of
infinite length.

2'�(ca' vo'2) costa—L+e(co2 rom) sincoL =0, —
vo"——ve'+ e/m,

(2)

and for these eigenvalues the corresponding eigenfunc-
tions are

II. Cr,&SSICAL MECHANICS OF THE FINITE STRING

A sketch of the system under consideration is given
in Fig. 1. The variables describing the system are the
displacements of the string and of the oscillator, denoted
by f(x, t), q(t), and their conjugated momenta s(x, t),
p(t). The units of length and time are so chosen that
the string density per unit length and its tension are
unity, with the string then of length 21. and 6xed at
its end. The oscillator, of mass m and fundamental
frequency vo, is coupled to the string at its midpoint by
a spring whose elastic constant is e. The equations of
motion of this system are:

L(~'/»') ~'/»'3—(*, t) = e~(*)8 (o, t) —q(t) j,
[(a'/at')+ vo' jq(t) =e/m[g(0, t)—q(t) j. (&)

Only those solutions of these equations which are
even in x will be coupled to the oscillator, and hence
only such solutions will be considered. If an even
solution of these equations of the form P(x, t) =P„(x)e'"',
q(t)=q„e'"' is assumed, thereby dehning the eigen-
values and eigenfunctions of the system, it is found that
co must satisfy the transcendental equation:

FIG. 1. The quantized string-oscillator system.
*Submitted in partial ful~Ument of the requirements
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f„(x)=sin(u„(L—~x~)/E & sine&, v =(e $)s/L, —
(3)

for the q„=—e sine&+/mX„& sine„L(&u„'—v0").
of Arts

(1949} The quantities v„ introduced here are the eigenvalues
of the system without coupling, that is, when e is zero.
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The eigenfunctions appropriate to that system are

P.(x) =cosv„/gL, q.=b.:o/g~
are

oooo =Q v'T„.T .+e Q
o i I&

The eigenfunctions in both (3) and (4) are so nor-

m,alized that T~'v T~'~o
X Q —— —. (12)

I.& m&
~

E~

J
Pg(x)lgo(x)dx+qgqo= bing. (5)

%e may further assume that the matrix T represents
an orthogonal transformation, so we impose on T the

The normalization constant S appearing in Eq (3) further conditions:
is given by

e sin'(u L[oo '+(vo"—3vo')run'+ vo'vo"j
g„„=L+ . (6)

2oo '(oo '—vo")'

The equations of motion (1) may be derived from the
least action principle:

)L
dx

~-z, ~ io

ra C1

d&L(x, i) =0,

in which the lagrangian density I.(x, i) is given by:

2L(x, t) = P' —(8$/Bx)'

+5(x)[olq' —oui o'q' —e(f(0, t) —q) '], (8)

and the corresponding hamiltonian is

(13)

The solution of these equations may be found directly,
or we may use &e fact that the elements of T are the
fourier components of the coupled system eigenfunc-
tions with respect to the uncoupled system eigenfunc-
tions, and evaluate the appropriate integral. Either
method yields the result:

e sinoo L(oo„'—vo')
Tean&tc

(LX~„)&sinv„L(oo o—vo'o)(oo o—voo)

(14)
e sin~„I.

Tcuvtrp =—
(oaA~ )t sinvQ(oo„' —v,")

2tt=
J

I [~o+(aP/ax) jdx+(P'/oa)+mvo'q'
—I.

The evaluation by fourier components is simpler here,
while the direct solving of the equations is simpler when
one treats an in6nite string. %e shall next take up the

+e(4'(0) —q)' (9) classical theory of the latter.

IIL CLASSICAL MECHANICS OF THE
INFINITE STRING

The system variables f, or, etc. , may be expanded
both in a fourier expansion using the functions of (4),
or by a normal mode expansion using the eigenfunctions

(3). The fourier expansion yields

4(x, ~)=Z f.(x)a.(~) q(~) =a (~)/&~
1

The equations of motion for the inhnite string are
the same as (1), but the boundary condition that the
displacement vanishes at the ends must of course be
lif ted. As before, only even solutions shall be considered.
Instead of the fourier series representation (10), we use

(10) the fourier integral representation:

~(x, ~) =g y„(x)b„(&), p(&) =oa~ b, (t)-,
1

and when these expansions are inserted into the
hamiltonian (9), one obtains

Cp

2tI=Q[b„'+v'a„'j+e Q ———.. ~ I&

The eigenfunctions (3), being the normal modes of the
system, provide that representation for which the
hamiltonian is diagonal. vrhen the system variables are
expanded in terms of the basis (3). This fundamental

property enables one to 6nd the eigenfunctions (3) by
assuming that there exists a matrix T vrhich diago-
nalizes the hamiltonian (11), and then solving the
equations that result. The conditions on the matrix T

P(x, t) =
l a(v, t) cosvxdv/Qs,
0

a(v, t) = t f(x, t) cosvxdx/+or,

and, a similar expansion for or(x, t) This gives .rise to
the hamiltonian, analogous to (11):

2tt= ~~ [bvo(v)+v a (v) jdv+boo+vo ao
dp

QQ

+e Jt [a(v)dv/go. )—ao/Qm . (16)
0

. 2

The matrix T satis6es the system of equations, similar
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to (12) and (13):

co 6(co oo )
'At

v'I'(oo, v)T(co', v)dv+vo'T(oo) v, )T(co', v,)

orthogonality of the eigenfunctions:

[a„(t),b„.(t)]=zb„„, [a,(t), b,(t)]=i,

[A„(t),8 .(t)]=zb . .
(20)

oc

+e J~ [T(co, v)dv/gzr] —T(co, vo)/gm
p

I Go

X Jf [T(co', v)d v/y/vr] —T(a&', vo)/~'m, (17a)
p

All other commutators involving separately variables
of the coupled system or of the uncoupled system taken
at the same time vanish. A system of creation and
destruction operators, u„*and u„respectively, is defined
by

a„=(2v) '(u„+u„*), b„= (v/2) &i(u„*—zz„), (21)

with similar relations for ap, bp, A, 8 . In terms of
these operators, the haniiltonian may be expressed as

T(co, v) T(co, v')dco = b(v —v'),

I'(co, v) T(co, vo) dco =0,

(17b)

(17c)

H= z Q v(u„u„+upuy )
p

(u„+u„*) (uo+ uo*)
+-', e P 2

(vt ) ' (vom) '

J
Go) Pp dG0 = 1.

p

(17d)

These equations can be solved directly, but the solutions
involve singular terms. The result for T is

T(co, v}= co[(co'—vo")8(co—v)

+e(co' —vo') P/zr (co'—v') ]/[F(co}]Z,

(18)
T(co, vo) = es&/[zrmF(c—d)]l,

F(co) = co'(co' vo")'-+—e'(co' v, ')'/—4

The symbol I' denotes that in integrals the principal
value is to be taken. The zeros of F(cd) represent re-
sonances between the string and the oscillator. F(co) has
no real zeros, but there are two pure imaginary zeros
and four complex ones.

IV. QUANTIZATION OF THE SYSTEM

The quantization of the finite string is considered
first. The quantum theory retains the equations of
motion for the variables when they are expressed in the
Heisenberg representation, but interprets the variables
as operators We introduce the commutation relations:

[1b(z, t), ~(z', t)]=ib(z z'), —
(19)

[V(t), P(t)]=z, (&=1).

All other commutators vanish when the variables are
taken at the same time. The equations of motion (1)
may be obtained by transcribing the hamiltonian (9),
and then using the commutation relations and the
quantum-mechanical equation of motion iF=[F, H],
where Ii denotes any quantity not explicitly dependent
upon the time. The fourier amplitudes introduced by
the expansion (10), and the corresponding amplitudes
for an expansion in the eigenfunctions (3), which latter
set of amplitudes are denoted by A„(t), B„(t),will satisfy
the commutation relations, derived from (19) and the

H=z 2 ~(U-*U-+U-U-*)=2 ~(U.*U.+o).
p p

(22)

II=+ coU *U =P coX„,
p p

(23}

where the operator LV„ is that operator whose expecta-
tion value in any state denotes the number of quanta
of frequency co in that state.

A complete set of eigenstates for this hamiltonian is
given by the eigenstates of the number operator E,
describing states with a fixed number of quanta in each
of the normal modes of the coupled system. These
states may all be derived from the coupled system
vacuum state vector, which shall be denoted by 4'p,

by the application of creation operators V„*.The hamil-
tonian (23) is so arranged ths, t its expectation value is
zero in the state Cp, and is positive in all the other
eigenstates, whence it is a positive definite operator.
Another complete set of states, which, however, are
not eigenstates of the hamiltonian (23), are the eigen-
states of the number operator iV„which states are
eigenstates of the uncoupled system hamiltonian, after
the subtraction of the zero-point energy of the latter.
This latter set of states is customarily used for pre-
scribing initial conditions. We shall return to this point

4Ve thus see the appearance of the zero-point energy
P oco. The hamiltonian, of course, is arbitrary to within
an additive constant. In the usual theories the zero-
point energy is taken to be the zero-point energy in
the absence of interaction, which here would be repre-
sented as P zzv. We shall instead take the zero-point
energy to be P z co, the zero-point energy in the
presence of the interaction. These two sums are not
only unequal, they diBer by an infinite amount. With
this choice of the additive constant, the hamiltonian
becomes
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(H)0 xQ P 2', '(——cv' —2cuv+ v')/v.
0 0

(24)

The orthogonality relations for T enable the terms

after briefly considering the quantization of the system
when the string is in6nite in length.

For the in6nite string, the commutation relations
(20) are replaced by continuous spectrum commutation
relations in which the Kronecker 8-symbol is replaced
by the Dirac 8-function. The sums appearing in (22)
and (23) are replaced by integrals, derived from (16)
in the same manner as (22) is derived from (11).The
creation and destruction operators are introduced in

the same way, and so are the sets of states.
Now that the basic formalism is set up, we shall try

to use it to answer some questions.

V. EXPERIMENTS ON THE FINITE STMNG

The attempt to answer some questions must neces-
sarily involve the introduction of a measuring apparatus
and a determination of how the measurement is to be
described in the formalism. The measuring apparatus
may be expected to prescribe the state of the system at
some time, and then the equations of motion serve to
carry the system through time, Thus, the apparatus
provides suitable initial conditions or the system.

Almost universally, the initial conditions in an experi-
ment described quantum mechanically are represented
as the eigenstates of the hamiltonian without coupling.
A typical experiment to be described within the frame-
work of the formalism might go as follows: At time
t=o the system is prepared in a state C which corre-
sponds to the oscillator being in some definite excited
state and no quanta present in the string —all in terms
of the hamiltonian with e=o. We may then ask what is

the probability, of finding the system in some definite
state of the uncoupled system hamiltonian at a later
time.

Before one goes to any great lengths in carrying out
such a computation, he should investigate whether it is

possible, in the light of the hamiltonian with coupling,
to prepare such a state as considered, or whether impos-
sible requirements will have to be placed on the
measuring apparatus. We therefore shall investigate
what requirements are called for.

A 6rst question we may ask is the expectation value
of the energy in the initial state. This shouM clearly be
finite. The state C, as indicated, may be derived from
the uncoupled system vacuum state vector, which shall

be called Co', by application of the creation operator
No*, so it is sufficient that the state Co' have 6nite
energy. We recall that the hamiltonian has been reor-
dered so that its energy is zero in the state Co, and it
may easily be shown that the state C&' contains an
in6nite number of quanta in the various normal modes
of the coupled system, so its energy is not obviously
6nite. However, the detailed calculations yield for the
expectation value, denoted by (H)0,

involving 2~v and v' to be summed over v and ~
respectively, and Eq. (12) for T enables the term
involving w' to be summed over co. There results:

(H)0 =~[2+ v —2P ru+eQ (1/vt)+e/vomj. (25)
0 0 1

The three series are separately divergent at high fre-
quencies, the first two quadratically, the third
logarithmically. However, approximations to the roots
of Eq. (2) at high frequencies show that the divergences
completely compensate each other, so the entire ex-
pression (25) is 6nite. This finite result is a result of the
reordering of the complete hamiltonian by subtracting
the zero-point energy of the coupled system, rather than
the customary method of subtracting the zero-point
energy of the uncoupled system. If the latter zero-point
energy had been subtracted, only the third series in
(25) would remain, and we would conclude that the
state Co' had a logarithmically infinite energy, rather
than the 6nite value (25).

A second question is as to the magnitude of the rate
of change of the initial state wave function. This quan-
tity is proportional to the expectation value of the
square of the hamiltonian in the initial state, using
SchrOdinger representation. For considerations of 6nite-
ness, again only the vacuum state Co' need be considered.
The expectation value may be computed by the same
method as before, and after much reduction we obtain
the resul. t:

(H')0 ——(H)0'+-', e'[Q (1/vL)+1/vow]'. (26)

This expression diverges like the square of a logarithm, so
that the state C 0' will have an infinite time rate of change.
Physically, this in6nity would seem to indicate that the
state C under consideration couM not be prepared, since
it would tend to jump discontinuously into some other
state or set of states. On the other hand, one is led by
strong arguments to consider such a state as the initial
state.

A way out of this di6iculty presents itself if one
considers the measuring apparatus. To prepare a state
which will tend to change in6nitely, rapidly one must
have at one's disposal a measuring apparatus with
infinite band width. Such a property is also required if
we realize that we have speci6ed the absence of quanta
from the string at all frequencies including the very
highest, and the statement that such quanta are absent
implies that we measure or in some way detect their
absence. Such measuring apparatuses are not normally
at the disposal of physieists.

An alternate viewpoint, not directly involving the
band width of the measuring apparatus, but rather its
time response, is available. The attempt to measure very
high frequencies is equivalent to measuring very short
time intervals. It is clear that no measurement can take
place in zero time, since no apparatus can act with
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infinite speed. Thus, it is perhaps desirable to consider
what happens if the preparation of the initial state
takes place with finite rapidity. One is then led to
introduce a function to describe the time behavior of the
measuring apparatus. %e would then consider an
initial state of the form:

4'(&) =E~t. g(t t')4—(t')dh' . (27)

Here we have temporarily gone over to Schrodinger
representation, and Eis a normalizing "constant. "From
the known time behavior of states in the Schrodinger
representation, this expression may be transformed into

Now the usual specification of measurements corre-
sponds to g(t) =b(t). We may insert a small parameter r
into g, so that it corresponds to measurements taking
place over a small but finite time, and then determine
the modifying operator 8'. A reasonable program would
then be to compute the result of a thought experiment,
retaining the parameter v in the analysis. The operator
S' mill mainly affect the high frequency parts of the
states, and it will provide an automatic high frequency
cutofF for the system. After the appropriate transition
probabilities have been obtained, one idealizes them by
letting v approach zero. These considerations are
similar to those of Stueckelberg. '

VL EXPEMMENTS ON THE INFINITE STMNG

Consideration of the possibility of preparing an
initial state with no quanta in the uncoupled system
leads to the same infinity at high frequencies for the
mean square value of the hamiltonian as before.
Furthermore, even the expectation value of the energy
itself is infinite, this time because of a divergence of
logarithmic type at low frequencies. This may be
expected from a consideration of the third sum in Eq.
(25). If one allows L to approach infinity, the sum is
replaced by an integral from zero to infinity, while the
I. in the denominator is replaced by m, so the limit is
infinite. %e may further observe that a computation of
the energy per unit length for a finite length string
shows that the energy is uniformly distributed in the
state CD' and of order e/L, so the entire energy of the
string may be expected to be of order e logL and hence
to diverge as I becomes very large.

This low frequency divergence may again be inter-
preted in terms of the characteristics of the measuring
apparatus. In order to insure that in an infinitely long
string there is an absence of low frequency quanta, it
is necessary to have a measuring apparatus which
extends over the string length. Such a measuring ap-
paratus cannot be easily constructed. The method of

' E. G. C. Stueckelberg, Phys. Rev. Sl, j.30 (1951).

taking this into account in describing a physical
problexn has not yet been discovered, although some
possibilities are being considered. The methods are
related to the Quctuation considerations of Welton. '

VII. PERTURBATION THEORY CONSIDERATIONS

%e shall discuss here the relation of the exact formula
(25) to what might be expected from perturbation
theory. Suppose we assume that the coupling constant e,
which in these units is a frequency, is small compared
with all other frequencies involved; and, in fact, that it is
small compared with the lowest frequency of the string.
Then we may expand the eigenvalues ~ in powers of e.
The result for (25) correct to the second order in e is

(H)0 ———,'e'[0.136L

+([log(voL/s)+1. 963j/s vp'm)+1/4vo'm'j. (29)

The constants 0.136 and 1.963 appearing here are re-
spectively 7f(3)/2s' and C+2 log2, where f(3) is the
value of the Riemann zeta-function t (s) for s=3 and C
is Euler's constant. The three terms in (29) represent
the string self-energy due to its being partially bound
at its midpoint, the coupling energy between the string
and the oscillator, and the change in the oscillator
fundamental frequency.

The formula (29) is derived under the assumption
that the expansions in powers of e are valid, which is
on1y satisfied if the string is not too long. Since the
lowest frequency the string can transmit is s/2L, when
L is so great that this quantity is no longer large com-
pared with e, the expression breaks down. Therefore, we

may expect that the result of interchanging the limit
processes e becoming small and I. becoming large will

give diferent answers. The formula (29) corresponds to
keeping the string length fixed and then making e small.
If we keep e fixed and let the string length become very
large, so there are many string modes with frequencies
below e, we obtain as an approximation to (25):

(H)0 ——~t e[logeL 0 6675— .
+e'(1/s) [log(2vo/we)/~vo'm j+e'/4vo'ns'JI. (30)

The constant 0.667 is ~(s —1)—(C+log2)/s. . We see
that the self-energy of the string, which for small eJ is
of order s'L, is only of order e log (eL) for sL large. This
corresponds to the partial binding becoming less
effective as the string length increases, which is reason-
able, since a very long string will not be very much
afFected by what happens at one point. However, for
very low frequencies, which practically correspond to
bodily displacing the string, the binding efFect is irn-

portant, and it is these low frequencies which give rise
to the term e log (eL) in (30).

The coupling energy, which is of order e' log(voL/s)
when eL is small, is of order e' log(2va/se) when eL is
large. Hence, the coupling energy remains finite as the
string length tends to infinity. However, because of the

3 T. A. Kejton, Phys. Rev. 74, ii57 (1948).
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The second term in the summation may be simplified by an alge-
braic identity, why~~ reduces it to the form:

L i i
X (A3)

% vpes g (s-$)Q-(VQL/%)» (s-$)(e-$+vpL/K}-
The first sum appearing here is simply evaluated by observing
that the fourier coefficients of siny(2f. —x) are proportional to
1/p(a —$)v —y'], determining the constant of proportionality, and
then setting x=0. It is then found that this sum exactly cancels
the last term in (A2). The remaining series are well-known
transcendental functions. The series involving the inverse cubes
of the odd integers is evaluated by adding and subtracting the
even terms, whence the sum becomes a constant multiple of the
sum of the inverse cubes of the integers, which by definition is the
Riemann zeta-function evaluated at z=3. The constant of pro-
portionality is found immediately to be 7, whence this sum
becomes 7$(3)L/2' .

The sum appearing as the second term of (A3) may be evaluated
in terms of the logarithmic derivative of the gamma-function.
The series may be split into two sums, each of which has a general
term of the form 1/La(a+z) g. The latter sums are then found by
the formula:

appearance of loge, the coupling energy is not analytic
in e if we make the transition to small values of e
after letting I. become very large. If we expand the
coupling energy in a power series in e, we will obtain an
infinite coeKcient for every term beyond the second.
This corresponds to a purely mathematical breakdown
of the perturbation theory, and the apparent io~rlities
have no physical significance. Calculation of the mean
energy for the infinitely long string, using a low fre-
quency cutoff, leads to the same result as (30) except
that the constant 0.667 is changed to0.682 = (i+logs)/s. .
This latter calculation shows that the major contribu-
tion to the energy arises from a set of damped vibrations
whose time behavior is approximately as exp( —et), and
that the oscillator is in resonance with these vibrations.
The energy content of these damped vibrations is of
order e~ loge.

The details of the derivation of Eqs. (29) and (30)
will be found in the Appendix.

Z 1/a(a+z) = Lp(z)+Cj/z. (A4)
1

Here p(s) denotes the logarithmic derivative of the gamma-func-
tion and is not to be confused with the string displacement func-
tion. Upon collecting the several formulas, we have for the expec-
tation value of the energy the result correct to order a':

7$(3)L C+21I(2 pL/ )—P( L/ ) 1
pr ~ +'". 2~ O'VQW 4vpamQ

'

If the string length is many oscillator wavelengths, we may use
the asymptotic formula $(3)-+logm', and (AS) reduces to (29).

The expansion of the eigenfrequencies oo„breaks down when e
and cu are of the same order of magnitude. Suppose the string is
so long that there are many string vibrations whose frequency is
less than e. We assume, however, that as before e is small compared
with vp and that the string length is many oscillator wavelengths.
Then for the very low frequencies we use an expansion in inverse
powers of e, or rather of eL Since under these conditions the roots
are very close together, we will lose nothing by setting eL/2 equal
to k2f, where k is an integer. Then an approximation to the roots
of (2) which is quite accurate when anL«km, and is only oG by 20
percent when coL= k2f, is

~.L= N~ —(e/k)+~/&&. (A6)

In the low frequency terms of the series in (25) we may use the
approximation {A6).The sum becomes an arithmetic progression,
which may be summed immediately. We thus have, upon neglect-
ing higher powers of i/k„

—Z (m-$)~- elf--+—+e Z
L g k kQx g (e—$)x

2 —z(k —1), 1 1 hk(k+1) z ' 1

L 2 k P&~/ 2 ~, (g —$}

VIIL CONCLUSIONS

We have shown in the above that the a priori physi-
cally sensible system of a vibrating string elastically
coupled to a harmonic oscillator leads to some non-
trivial problems and divergences owing to the possibility
of mathematical breakdown of the perturbation theory
or the ascribing of impossible properties to the measur-
ing apparatus. On the other hand, this problem was
carefully chosen so as to assure that the hamiltonian of
the system is sensible. This is primarily assured by its
positive definiteness. Hence, one would not expect that
the above considerations, even when carried to their
ultimate, would lead to correct solutions and. treatment
for all hamiltonians. It seems likely that the hamiltonian
of quantum electrodynamics is not positive definite;
it is probably infinite in having a negatively infinite
eigenvalue.

The authors would like to take this opportunity to
express their appreciation for the encouragement and
interest shown by Professor K. O. Friedrichs of the
Mathematics Department of New York University in
this research. Further work along the above lines is now

progressing under the support of the ONR.

k
= e +—Z . (A7)

2 ~, (e-))
When k is a large number, an approximation to this last series is

Z 1/(e —$)= logk+(2 log2+C)+0(1/k). {AS)
1

Consequently, the total contribution from the low frequency
terms is

zj(1/v) log (eL) —$(s -1)+(log2+C)/s g. (A9)

In the high frequency terms, we may again use the approxima-
tion (Al). We then obtain the equivalent of Eq. (A2), except that
the lower limit on the sums is k+ i.The series involving the inverse

We shall now discuss the reductions whereby (25) is simpli6ed
to the forms (29) and (30). In the case where (29) is valid, e is
treated as so small that all frequencies involved are large com-
pared with it. We may then expand the roots of (2) in powers of e,
and obtain successive approximations by equating the powers of e
on both sides of (2}.The result of this straightforward calculation
is given to the second order in e by:

cv„=v +(e/2v, L)+ [8/2mv~(v„s vp') j rs/4v„'L', — —
(Ai)

cop VQ+ (e/2 vs) —{e/Svp&Q) —
fv {tanvpL) /4v pet.

When these expansions are inserted into (2$), the terms of order
zero and one cancel from the resulting expression, leaving

e L LQ

4 g 2&(e-$)' ~(e—$)De—$)Q-(VQL/a)pj

+$..WP+(tan. pL)/2v~ . (A2)
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cubes of the odd integers now is of higher order in 1/k than are
already neglected terms, and hence it may also be neglected. In
the second series we make the transformation {A3), add and
subtract the terms from 1 to k, and cancel the final term of (A2).
The high frequency contribution is now:

k

2'
2+vpm 1 (n ——,')' —{vpL/x)'

CO 1 1+Z (A10)
p+I (n —$){n—)+vpL/m) Svp'm'

'

In the first series we may neglect the first term in the denominator
in comparison with the second, because of the assumption that the
coupling constant e is small compared with the fundamental oscil-
lator frequency vp. The resulting expression may be summed and
it is of order es and thus is to be neglected. We add and subtract

the terms from 1 to k in the remaining series. The sum from one
to infinity is equal to the middle term in (A5). In the sum from
1 to k that we subtract, the n —q may be neglected compared with
vpL/m. This last sum then becomes

1 ~ 1 1
, - flog{eL)+log2+ C). (A11)

2~vp'm I (n —g) 2mvp'm

Hence the total contribution from high frequency terms is;

2e
log(vpL/m)+2 log2+ C log(eL)+ log2+ C 1

2Ãvp m 2m vp2m 8vp'm'

log(2vp/me)

~vp'm 4vp'm'

When this is combined with the low frequency contribution (A9),
the formula (30) is obtained.
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Oscillator Strengths for the ~- and y-Bands in Alkali Halide Crystals*
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The oscillator strengths for the n- and P-absorption bands are calculated for NaCl. These bands, investi-
gated experimentally by Delbecq, Pringsheim, and Yuster in KI, lie on the long-wavelength tail of the
first fundamental absorption band and are interpreted by use of a model according to which valence electrons
of the adjacent halide ions are raised to bound states in the fields of negative ion vacancies (O.-transitions)
and F-centers {P-transitions). The oscillator strengths turn out to be only slowly varying with the assumed
wave functions and are about 1.9 and 0.6 for the a- and P-bands, respectively.

I. INTRODUCTION

ECENT experiments of Delbecq, Pringsheim, and
Yuster' have shown the existence of two new

absorption bands in the long-wavelength tail of the
first fundamental absorption band in KI. Pringsheim
et at. point out the unlikelihood that the a- and P-bands
are caused by t/'-centers' and suggest that "The
presence of certain well-defined singularities in sufhcient
numbers, such as negative ion vacancies or F-centers,
may aGect the first fundamental frequency of the
crystal in such a way that new well-defined absorption
bands corresponding to perturbed transitions of the
valency electrons of the adjacent halide ions appear
superimposed on the tail of the fundamental absorption
band '"

In the present paper the oscillator strengths of the
n- and P-bands are evaluated for NaCl, assuming
models in which Cl ion 3p electrons make transitions
to bound levels in the field of a negative ion vacancy
for the n-band and in the fieM of an j -center for the
P-band. It is found that the oscillator strength of each
band is of the order unity and that the results are

*Research supported by the ONR.
'Delbecq, Pringsheim, and Yuster, J. Chem. Phys. 19, 574

(1951). See also, E. Burstein and J. J. Oberly, Phys. Rev. 79,
903 (1950), and H. Dorendorf, Z. Physik 129, 317 (1951).' F, Seitz, Phys. Rev. 79, 529 (1950), and references therein.

rather insensitive to the assumed final-state wave
functions.

II. DISCUSSION OF WAVE FUNCTIONS

In order to determine the dipole matrix elements
needed for the calculation of the oscillator strengths,
the following four wave functions will be required.

Let P~ be the wave function of an otherwise perfect
crystal of NaCl containing a single negative ion
vacancy. As discussed in a previous paper' the wave
function of a 3p electron in a Cl ion may be written
as an analytical approximation of the Hartree wave
function'

pq~ ——r(e "t"—Ce "t ),

where A =co/1. 1, B=ao/8, C= 23.2, and Qo= It /rwe;
P& may be approximated by a permutation of the
products of such functions. Specific changes in these
one-electron functions due to the presence of the
vacancy will be neglected, and the presence of the
positive ions may be ignored for the moment.

The excited state of this crystal is described by a
wave function, f&, representing a con6guration in which
any one of the 72 surrounding 3p electrons is in a 1s

~ D. L. Dexter, Phys. Rev. 83, 435 (1951}.
4D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)

A156, 45 (1936}.


