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On Relativistic Qss~~ts1srs Mechlnics and the Mass Operat(h'
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The theory of the electron developed by Bopp, Honl, and the author is discussed in relation to the relativist-
ic wave equation of Gelfand and Yaglom, with particular regard to the in6nite, hermitian representations of
its matrix apparatus. It is shown that the ambiguity left in the work of the Russian authors is completely
removed in our formulation. Only the form of the mass operator, which depends, in Bopp's interpretation,
on the cut-oB function in the Born-Bopp variation principle, remains uncertain. It is shown that in the
infinite representations the mass operator must necessarily depend on one of the invariants (I) of the mo-
mentum tensor, because otherwise its eigenvalues would have a point of accumulation at zero. In order to
avoid this possibility, the diagonal transformation of the invariant in question is accomplished, and a neces-
sary condition for the analytic form of the mass operator is established, which considerably restricts its choice.

of the poisson brackets as a closed commutator
algebra. '

A better foundation of the theory, whose connection
with the radiation reaction force had become somewhat
indistinct, was given by Bopp, ' who was able to show
that a charge by its mere extension in space gets an
acceleration-dependent rest mass and third (and higher)
time derivatives in its equation of motion even if the
irreversible part of the radiation force is discarded. The
motion is then conservative and may be derived from
a variation principle erst given by Born, which leads
automatically to the right poisson brackets. Bopp
reached exactly the same quantum-mechanical formal-
ism as the author, although his classical equations of
motion look rather different. In fact, they differ from
ours only by the disappearance of one of the constants
of motion, i.e., by a supplementary condition, that does
not affect the system of poisson brackets. The details
have been discussed elsewhere. ' There is no doubt that
the supplementary condition, which unduly restricts
the quantum-mechanical possibilities, should be re-
moved. Meanwhile, after the quantum-mechanical
schemes are coincident and self-consistent, it seems
reasonable to go forward with them 6rst.

Another support of the present ideas from a very
different standpoint was given by Honl, ' who tried to
describe the spinning electron by the superposition of a
(positive) mass and a (positive-negative) mass dipole.
A mass dipole in motion has an angular momentum, just
as an electric dipole in motion has a magnetic moment.
As Bopp has shown, the Honl theory just coincides with
the 6rst approximation of his own. In this interpretation
the appearance of a mass dipole, which makes the point
of gravity of the particle noncoincident with its mass,
corresponds to the fact that, owing to the emission-

reabsorption processes, the energy Auctuates around the

' 'N various papers, Bopp and the author have put
~ ~ forward the theory of the electron in an attempt to
avoid the difhculties of 6eld quantization by a recourse
to some unexhausted possibilities of the older theory.
In short, the general idea may be characterized as
follows. Surely an electron, if its 6ner interactions with
radiation are considered, is a system of an in6nity of
degrees of freedom. In quantum electrodynamics, as it
is commonly used, these degrees are introduced by the
coupling of the moving charge with quantized hohlraum
states. This procedure is well known to lead to dHB-

culties by divergence of most of the occurring summa-
tions over the frequency spectrum. In the classical
theory the energy of a point electron is also inanite, but
for a charge extended. in space it becomes 6nite. On the
other hand, the equation of motion of an extended
electron, if developed in powers of the retardation
parameter, includes time derivatives up to an inhnite
order. This corresponds again to an in6nite number of
degrees of freedom. In this scheme, however, it is easy
to restrict it in a controlled way by breaking off the
development at a convenient place. Likewise, one may
also get a purely point mechanical or, as Bopp puts it,
field-mechanical theory of the electron without in6nities
in quantum mechanics,

Starting with radiation reaction forces, the author
was led to promising analogies with Dirac's theory of
the electron. ' Indeed it is possible to explain the inde-
pendence of momentum and velocity and some more
kinematical details in Dirac's theory by the fact that
the equation of motion of a radiating point electron is
of the third order. Attempts to write the equations of
motion in the form of poisson brackets necessitated the
introduction of an acceleration dependent rest mass'
and of a magnetic moment of the particle as an inde-
pendent variable. ' After these accomplishments it was
possible to quantize the theory by reinterpretatio

'%. Wessel, Z. Physik 92 407 (1934).' W. Wessei, Nstnrwiss. 3(},606 (1942};Ann. Physi}s (5}43, 565
(1943).

1%'. Wessel, FIAT Report No. 1131; Z. Naturforsch. 1, 622
(1946}.

4%. Kessel, Phys. Rev. 76, 1512 (1949).
~ F. Bopp, Z. Physik 125, 615 (1948); Z. Naturforsch. 1, 196

(1946);3, 564 (1948).
s W. Kessel, Z. Naturforsch. 4a, 645 (1949).
~ For the present state and bibliography of this work, accom-

lished partly in collaboration with A. Papapetrou, see H. Honl,
. Naturforsch. Sa, 573 (1948}.
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[g;M"']= i(b,'z"—h,"a'),

[cg~—]=iMP= [~;a~];

(1.3)

(1.4)

(c) two invariants, I and K, connected with the invari-
ants of the momentum tensor by

&M. Ms& —P

2'M;I, *M'~ = IK,

(1.5)

from which I commutes with all quantities, whereas K
commutes with the M;& only, being related to the cI„
Ky by

[i;a~]= iKbP& —[K~~]=i~I„[a~K]= is~ —(1.7).

Further relations fulfilled by these quantities may be
disregarded for the present purpose.

The momentum-energy relation ("wave equation")
reads (sum over repeated indices)

~gp~= —m(I, K)c' (12+K')&, (1 8)

i.e., the possible energy states are determined by the
eigenvalues of cp' in this equation, if the momentum
components p~, pm, p& are given. It is a main result of
the present theory, that Eq. (1.8) is derived from clas-
sical conceptions and not freely postulated as the
similar relations in the papers mentioned below. Ex-
ternal fields may be introduced in the usual way by
their potentials without supplementary conditions. The
function m(I, K) is the mass operator, a previously
arbitrary function of the character of an invariant,
with which this paper will mainly be concerned. The
reasons for its arbitrariness are best seen from Bopp's
interpretation, where it stems from the arbitrariness
of the relativistic "cut-oG" function, which determines
the "shape" of the electron in the variation principle.
The separation of the radical on the right is advised

8 For a short survey see F.Bopp, Z. angew. Physik 1, 387 (1949).' For the physical interpretation of the following quantities the
reader must be referred to the original papers. Mathematically,
they are substitutes for the higher time derivatives in the equation
of motion of an electron with a finite extension in space ~g, . The
vector is the four velocity but for a factor.

charge. ' Charge fluctuations may happen even whqn

the total charge is zero; hence, the Bopp-Honl model
admits a spin also for noncharged particles, which
were a grave difhculty for the original conception of
the author.

Regarding the quantum-mechanical aspect, the
three preceding theories coincide in the following state-
ments. In addition to being described by its coordi-
nates and momentum components, the electron is
characterized by'
(a) a six-vector (momentum tensor) M, ~, whose com-
ponents obey the commutation rules

[M kM"*]=i(b'Ml, ' 4"M—'—8'My"+8g'M') (1 1)

(b) two (!)four-vectors, az and x&, 4=1.4, obeying the
relations

[~ M"']= i(b a' —b 'a ) (1.2)

by the fact, that in the classical theory cq/(I'+K')~ is
the four velocity.

Mathematically, the foregoing commutation rules
establish a so-called Lie algebra. Owing to its derivation
from poisson brackets, it is essentially closed; i.e., the
commutator ab —ba of two elements a, b leads to an
element c belonging to the system. The number of ele-
ments is 16 in our scheme; in the classical interpretation
of Bopp and Honl one of them (I) is identically zero.
This algebra is connected with the representation theory
of the Lorentz group. The commutation rules (1) of the
components of the momentum six-vector M;I, are just
the "nucleus'"' which "engenders" such representa-
tions. In the frame of our commutation relations
(1.1)—(1.4), (1.7) the M;q form a sub-algebra. They are
known to admit finite and infinite representations. Ac-
cordingly, the matrices of the whole system (1.1)—(1.7)
may be finite or infinite.

Finite representations have already been studied by
many authors from mathematical points of view. "They
do not always comply with all of the foregoing require-
ments; for instance, the representations discussed by
Bhabha are not always closed. Closed finite representa-
tions of the whole system have been derived by Bopp
and Bauer. "These authors have been able to show that
the Dirac and DufFin-Kemmer equations are contained
in the present scheme, so that it is now possible to trace
these theories back to purely classical concepts.

Further details about the finite representations lie
out of the scope of the present paper. Indeed, as Bopp
and Bauer have shown, one obtains (for instance) the
Dirac and Kemmer equations in their original forms,
but no more. Now, since the starting point of the present
theory is the finer interaction of the electron with its
own field, one should expect also to have eGects like the
Lamb-Retherford shift included. Indeed, there exist
still the infinite representations mentioned above. They
have exactly the same physical basis as the finite ones,
but involve a much ampler mathematical apparatus;
and it is very suggestive to assume that they provide the
necessary generalization, for instance, of Dirac's theory.
For the physicist accustomed to ordinary quantum
mechanics these representations are particularly attrac-
tive because they provide infinite, hermitian matrices,
partly with continuous spectra, for all physical quan-
tities, especially for the velocity components. It was
primarily this feature, and subsequently the important

'o van der Kaerden, Die gruppentheoretische 3Iethode in der
Quantenmechanik (Verlag. Julius Springer, Berlin, 1932);H. Acyl,
The Classical Groups (Princeton University Press, Princeton, New
Jersey, 1946),

» Kramers, Belinfante, and Lubanski, Physica 8, 597 (1941};
H. Bhabha, Revs. Modern Phys. 17, 200 (1945); 21, 451 (1949);
Madhavarao, Thiruvenkatachar, and Venkatachaliengar, Proc.
Roy. Soc. (London) A187, 385 (1946};H. Honl and H. Boerner,
Z. Naturforsch. Sa, 353 (1950); K. J. Le Couteur, Proc. Roy. Soc.
(London) A202, 284, 394 (1950}.

~ F. Bopp and F. L. Bauer, Z. Naturforsch. 4a, 611 (1949).
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iz ——z', [z'M4z.]. (2 1)

Now, without further information, the component t,
'

remains widely undetermined insofar, as a whole set of
constants [c„,Eqs. (3.13), (3.14)"7 may arbitrarily be
chosen. In our representations ~4 is completely deter-
mined, ztiz , equal to .

( I(+1, ( I(+2, ~ ~, where I is the
minimum spin, ' and so are all other matrices. Indeed,
it is evident from the derivation of our commutation
rules that they contain far more physical information
than is yielded by the mere principle of invariance. It is

"J.M. Gelfand and M. A. Neumark, J. Phys. (U.S.S.R.) 10,
93 (1946); Bull. Acad. Sci. URSS., Shr. Mat. 11, 411 {1947);
V. Bargmann, Ann. Math. 48, 568 (2947); Harish-Chandra, Proc.
Roy. Soc. (London) A189, 372 {1947)."J.M. Gelfand apd A. M. Yaglom, Doklady Akad. Naul
SSSR 59, 655 (1948); Zhur. Kksp. i Teoret. Fiz. 18, 703 (1948}.

fact that they permit the setting up of wave equations
with purely positive energy, 4 that led the present author
to their investigation. Besides, it is a favorite idea of the
author that the in6nite dimensionality of the Hilbert
space is correlate to the infinite number of degrees of
freedom of the moving particle, and it seems an advan-
tageous coincidence to get it imposed by so a natural
postulate as hermiteity.

The representation theory of the I.orentz group, i.e.,
the realization of the rules (1.1), by infinite matrices
has been analyzed by Gelfand and Neumark, Harish-
Chandra, and Bargmann. "Just as the representations
of the angular momentum (rotation group) are charac-
terized by one parameter, vis. , the value of the total
angular momentum, so are the momentum components
M;z (Lorentz group) characterized by two parameters,
for which the quantities I and K of Eqs. (1.5), (1.6) may
be chosen. As long as one is only concerned with the
Lorentz group, i.e., with (1.1), these parameters are of
a scalar (c-number) character, because they commute
with all M;I, . In our present scheme I is still scalar
(although quantized), but K must be represented by a
matrix because it does not commute with the
~~-components, which in turn reproduce the M;I, in
virtue of Eq. (1.4).

We have already shown, ' starting from Harish-
Chandra's paper, how the necessary generalization may
be accomplished. In the meantime, papers of Gelfand
and Yaglom'4 became known in this country, which
come nearer to our aims in so far as they introduce,
besides the M;g„a four-vector I.~, which corresponds
(zlzz , for t.he infinite representations) to our P. The
Russian authors postulate, as usual, the relation (1.8),
n.b. , with constant right side, demanding no more than
relativistic invariance of this equation. It is interesting
from the physical standpoint to see that this postulate
is not sufhcient to determine the representations com-
pletely. As the authors show, it leads to our formulas
(1.2), where the M;i must be known from Eq. (1.1).
Moreover, it is easily seen [see also our formula (3.25)'j,
that once i' (resp. L') is gained, the other iz, k= 1, 2, 3,
may immediately be constructed by

exhibited by the existence of another four-vector, I(:~,

which in virtue of the relations (1.7) makes the invariant
K a matrix, whereas in the work of Gelfand and Yaglom
K is still a (complex) number (=ikz) and ~~ does not
appear. The question arises, whether these relations
(1.7) together with the formulas (1.3) and (1.4), which
provide for the closedness of the algebra, make the
above choice necessary. In the foregoing paper' only its
sufficiency has been demonstrated by mere veri6cation.
Indeed, it is not very dificult to show, that there exists
no other choice. The proof is given in Appendix I."

The wave equation (1.8) is now well defined but for
the analytic form of m(I, K) on its right side. The origin
of this uncertainty has already been mentioned at the
end of Sec. I. An analytic dependence exists only on K,
because I is discontinuous. For brevity let us write in
the following:

m(I, K) (Iz+K')&=mr(K). (3.1)

As long as K is a scalar, mi is simply a constant para-
meter. It is a special feature of our theory, by providing
a matrix character of K, to provide a matrix nature of
mz(K), and it is easy to see that mz must be a matrix
in these in6nite representations. Indeed, consider a
particle in free motion, i.e., with constant momentum
vector pi, p&, ps, and chose the system of coordinates
so that Pi= Pz =Pz= 0. The particle will then be
"macroscopically" at rest, although its "internal mo-
tion" (determined by the z", K, etc., mechanism) per-
sists, and p'/c will be its rest mass m, so that Eq. (1.8)
becomes (note i'= —i4):

mz'= mz(K). (3.2)

Now the eigenvalues of i' are of the form
~
I~+n,

e=integral number; hence, with a constant mi the
eigenvalues of m would be inversely proportional
to

~

I
~
+zz, zz=0, 1, 2, , i.e., they would have a point

of accumulation at m=0, an evidently unacceptable
consequence. The same thing happens in all examples
selected by Gelfand and Yaglom. The seriousness of
this argument seems not yet to be recognized, and in-
deed it could not be as long as the unambiguous
character of the in6nite representations was not shown.
It should be remembered, however, that a similar
calamity exists in all hnite representations, where the
eigenvalues of (i') ', although, of course, without points

'~ For the sake of a complete survey it might seem desirable to
derive this result by a direct reduction of the scheme of Gelfand
and Yaglom, but this does not seem easily possible, because, in
spite of great formal similarities, our representations are not
strictly a special case of theirs. We have already shown that the
spectrum of our K, that is the ikI of the Russian authors, is con-
tinuous. (It will be an essential subject of the second half of this
paper to accomplish the diagonal transformation of this matrix. ')

As a consequence, the number of irreducible representations of
the Lorentz group involved in the sense of Gelfand and Neumark
(labeled by k0{ =our Ij and kI) is not countably infinite, in con-
tradiction to a basic assumption made by these authors.
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of accumulation, have far too simple intervals to be
actually comparable to the very irregular mass dis-
tributions realized in nature.

For this reason a constant m~ should be excluded. On
the other hand, it seems possible, after a whole fQnction
of K is available, to represent almost every desired mass
spectrum by its appropriate choice; but this, too, is not
as simple as it seems. Let us formulate the problem
more precisely. Our representation is essentially a
~'-representation, i.e., f,

' is diagonal, and K is given in
the form (~'

I
K

I
c").Bring all eigenvalues of a' essentially

positive, the matrix (~4) ' can immediately be written
down; and so, from Eq. (3.2),

m = (a')-'mr (K) (3.3)

provided that the matrix mq(K) is weH defined in
c'-representation. The admissible values of es are the
eigenvalues of the matrix on the right side of Eq. (3.3).
For a real computation we have to go over from the
~'- to a K-representation, because, apart from reasons
of practicability, only then is the radical in Eq. (3.1)
well defined. The operator (~') ' becomes a symmetrical
integral kernel,

(')-'= «I(')-'IK'& (3.4)

and Eq. (3.3) goes over, after division by m, into an
integral equation of the form

f (K)=(1/m) J'(Kl(a')-'IK'&mr(K')P„(K')dK', (3.5)

where f (K) is the eigenfunction belonging to the
eigenvalue m of the mass. By a transformation

4 (K)=fmi(K)] 'x (K), (36)

Eq. (3.5) is easily brought into symmetrical standard
form. The difhculty is now that es appears as the
reciprocal eigenvalue of this equation. It is well known
that the eigenvalues of a symmetrical integral equation
increase towards infinity as long as the kernel is regu-
lar;" hence, the eigenvalues of es will continue converg-
ing to zero unless mr(K) is chosen so as to make the
kernel singular. %'e will see in the next section, that
(Kl (a')-'I K') is strongly regular, so that this condition
really restricts the choice of mr(K). At first glance this
argument may appear rather arti6cial, but merely from
a physical point of view the mass values occurring in
nature look far more like the eigenvalues of a singular
than of a regular integral equation; and since the difIi-

culty is of a very general character, it seems worth while
to study its consequences thoroughly. For this reason,
we compute in the following two sections the (c'I K)
transformation function and, with a slight simpli6ca-
tion, the operator (3.4) explicitly.

& *=f11('——1)/11('+ )]'V,

Insertion into Eq. (4.3) gives

(4.4)

(i'—o)V,+gz+(('+o')V, —i, x=2K V, x. (4.5)

From this recurrence formula the V,K may easily be
determined but for a common factor depending on 0.

alone. The lowest value of ~' is a+ I.' To avoid too much
formal complication let us henceforth consider only the
case I=~. The possible values of 0 are then' o-=-,', ~~,

5/2, ~'—1. Instead of considering these values of e.

for a given ~' we may as well consider the values

a'=a+1+v, v=0, 1, 2

for a given o.. Putting for brevity

and writing

V,a=W, (z)$ «(z),

we obtain from Eq. (4.5), for instance, with o =q

W1)(z) = 1, Wptm, )(z)=-,'(z' —3),

Wty(z) =z, Wept, t(z) —',(z' —11z),

Wntg, )(z)= (1/24) (z' —26z'+45),

Wgzt g, 1(z)= (1/120) (z' —50z'+309z)

etc.

(4.6)

(4 "t)

(4.8)

(4.9)

By the usual methods these polynomials may be shown
to be generated, for arbitrary 0, by the function

Eq. (3.22), by

('IKI "&=klf('+ )('——I)]'&."+
+f(~'+ ~+1)(~'—e))'&. -il (4 1)

We use here the symbol 0 instead of our former a, to
avoid confusion with the components of ~~. In the fol-
lowing formulas the index 4 of f.' will be dropped, for
typographical reasons, when a4 is used as an index.
There mill be a unitary matrix U, K depending on 0.

and I, so that

E"" ~K"'(~'IKI~"&~" -=«'IKIK"). (4.2)

By a left side multiplication with U, K we obtain from
Eq. (4.2), using Eq. (4.1),

$ f U,+gxf(i'+e+1)(a' —e')]

+U „ f(i'+e)(i' —~—1)]~}= V, „K. (4.3)

For simpli6cation put

m (z, t) =e*"'""'(1+t2) (4.10)
Our 6rst problem will be to bring K into diagonal

form. In the a4-representation it is given, according to'
"We disregard the possibility of a degeneracy of the kernel,

which wouki also settEe the problem, but which seems mathe-
matically very unlikely.

m, (z, t)= Q W,.(z)t' (4.11)

as the coefBcients of the powers of t in its development
at I, 0:
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To find the normalizing function $,(z), we start with

p +cN

dKU, KUK, t=8„. (4.12)

This formula must be an identity in 6, and we may use
the smallest value of c', i.e., cc= a+1, for the determina-
tion ofS,.The polynomial lF„becomes then W,+~, = 1,
and with the substitution

arc tant= 8; (4.15)

formula (4.14) may be written (~8~ &z/2)

S (z)eo*dz=2(2cr+I)!(cos8) " ' (4.1.6)

Inversion gives immediately

.V.(z) =2(2a+1)!(1/2z))~ e-'o*(cosh') —"—'dc!

doa+c
~ o ~

oe+o

=i'~c lim' d~"+' (sinhe)

xs 0 integral, (4.17)
~isa, !

l cosh cz'orz a half odd integral. (4.18)

Of course, E, is always real, Especially, we have

Xo(z) =z/sinh)orz, E)(z) = (2+z')/cosh$orz,
(4.19)

Xc(z) =z(1+hz')/3 sinh~zors.

It is not very difficult to verify Eq. (4.14) for arbitrary
c' by insertion of the integral form (4.17) of N, (z). A
test for Eq. (4.19) is that E,(z) must be finite for
~z~&2o+2. With formulas (4.4), (4.8), (4.9) [resp.
(4.10), (4.11)j, and (4.18) the desired unitary trans-
formation is completely established. Owing to the
real character of the eigenfunctions, there is simply
&K,t= O' K.

We now go over to the construction of (c') ', formula
(3.4), in K-representation. For simplicity let us make

With regard to Kqs. (4.4) and (4.7), (4.8) this means

IIs+oe II(c4+o)
de, (z)W„(z)W, .(z) = (4.13)

2 " II(c4—0 —1)

Multiplying w, (z, t) with a given N, (z) W„(z) and
integrating, we get from Eqs. (4.11) and (4.10) with

regard to Eq. (4.13)

II(c'—0 —1)
]z-o—1

II(cc+o)

1 +"
$,( )z W, (z)dz(1+8) ' ce*'~ ~c. (4.14)

2~

two»important restrictions. First let us be content
with the simplest case

It will be seen that the kernel is regular in this case, and
there is no reason to believe that it will behave di6er-
ently for higher r-values. Furthermore, to study the
asymptotic behavior of the eigenvalues of m, it will
make no essential difference if we substitute (c')-' by
(c'—sc) ', which may be evaluated in closed form. Owing
to the diagonality of 6, the transformation correspond-
ing to Kq. (4.2) reduces to a single sum:

«I('-!)-'IK')=Z. I7 .t('-!)-'I/ " (5.1)
The polynomials W„(z) may be represented, after Eqs.
(4.10) and (4.11), by derivations:

1 8"
W.+c+„,.(s) =——ov. (z, t)BP,a o

(5 2)

Sg)(z/2, z'/2) = —', i
cosh-,'n. (z+z')

I sinh-', or(z —z')

8+8'
+

coshrcor(z —s')
sinh-'z (z+z') —2zs'o

X(1+z')-~(1+z")-». (5.5)

Of course, 5 is symmetrical. Introducing this into Eq.
(3.5) and using the transformation (3.6), one finds

approximately, allowing for the substitution of c' by
c'—$,

1 f

y (K) —! Sg(K, K')

ofay(K) oa)(K')
[ x„(K')dK'. (5.6)

(coshorK coshorK')

It is easily verified that SH(K, K') is finite for all real
values of K and K', hence, the regularity (quadratic
integrability) of the kernel in Eq. (5.6) is entirely
determined by the relation m~(K): coshorK, and one sees
immediately that the integral equation will be regular,
i.e., that zero-accumulation of the m-values will occur,
unless ovct(K) has either singularities of at least first

Thus the series (5.1) has the form (with c4= a+1+v,
2K=z, as before, and cv=sc):

II(v) (v+1)-'
(z/21(cc —I/2) '

I
z'/2) = (&~(z)1V~(z')) ~ P—

o II(v+2)
8"wy(z, t) 8"uc~(z', t')

X (1/v!)' (5 3)
8~" 8~"

The summation process is described in Appendix II. As
a result, we find (the indices zczc of S refer to I=$, cr =$):
«i('-s)-'IK')

=SH(K, K')/(coshorK coshz K') & (5.4)
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order for finite K or else outweighs coshxK at infinity.
In the second case tttI(K) would have to behave at
infinity like K~ coshyK with y=m, 5& —1 or y&x, 8

arbitrary. For ttt(I, K), formula (3.I), the same condi-
tions hold with 8—1.

With that we have at least a necessary condition,
which allows exclusion of a great variety of functions.
We shall not enter here into more details about the
presumable form of ttt(I, K), in order not to spoil the
conclusiveness of the present arguments by considera-
tions of a necessarily more hypothetical character; it
may briefly be mentioned" that considerations along the
lines of those given in reference 3 favor the choice of an
operator m(I, K) =mz coshL(3)'tcK/2e')+const). On the
other hand, a few words should be added about a formal

difhculty, which might cause some trouble: evidently,
the operator tttr(K) does not exist in ~'-representation.
This means only that the c4-representation is inappro-
priate and that one has to use others. In the present
case, one will either continue working with the K-repre-
sentation, i.e., with the singular integral equation, or
else invert formula (3.2) and start with Lmi(K)j ',
whose matrix elements will be excellently convergent
in c4-representation. i8

atrKtr —3,
=Ktra,

K, ia ~=a,tK,
{I.5}

K is given, in c'-representation, by A {3.16) in the form

(ilKla')=A(~, ~)b, , ;+)+2'(n, c'}s,, , y, (I6)
where the A, A* are determined by A (3.20). They depend on o.

"See a forthcoming paper, Z. Naturforsch. 6a (1951).
' There exists a1so an interesting representation of c as a

difference operator, which makes K diagonal; see another forth-
coming paper, Z. Naturforsch. 6a {1951).

APPENDIX I

The formulas quoted in the following are those of the author
(A)6 and those of Gelfand and Yaglom (GY),"second paper. The
relations to be proved are the formulas A (3.23), (3.24') for the a
which substitute the Bf, in GY (2.2"), (2.3").The last formula is
coincident with A {3.13), if K=iki is taken as a scalar. The for-
mulas A (3.11) and GY (2.3') coincide immediately. Note that
our fc, I are the k, Q of GY. In the following we write tr instead
of fc, with regard to the use in the rest of the present paper.

Starting with A (3.9)„which corresponds to GY (2.2"), we

obtain in virtue of the relations

Zl C M4fzj, Et, Cft j=Zlll4fz, {I.i}
Eqs. {1.2}, (1.4) above, and with A (3.11) and (1.7) above:

{I.2)

Owing to the diagonality of c4, this gives immediately

l{,—')2 —Il( la, l~'}=o, {l.3)

and the same relation for a,t (we omit in the following the index 4
of c' throughout); hence, c=c+1, i.e., a~ and a~~ (hermitian con-

jugate matrix; note that the a, need not be hermitian) must have
the forms (an asterisk indicates the complex conjugate quantity),

(~
I ~. I

~') I(~, ~) ~"=+i+n(~, ~) s, , "-i,
(I.4}

(~lz.tl~'}=n'(~, ~')si, +t+I*(~, ~')s, -i,
where the g, g are to be determined. We have first to fulfil the
first two relations A {3.10), i.e., with regard to A (3.11},

by the previously unknown function

p(o) (I 7)

Substituting (I.4) and (I.6) into (I.S) one obtains, for (c, c'+2),
(c, c' —2), and (c, c') respectively, the three relations

f(o, c)A (o —1, c—1)= f(o, c—1)A (cr, c),

g(o, c)A*{o—1, c+2) = g(cr, c+1)A*{o,c+1),
g(cr, c)A*{a—1, c)+g(o, c)A(o —1, c+1)

(I.8)

= g(cr, c—1)A (o, c)+g(cr, c+1)A*(o', c+1)
and a similar triple for the conjugate quantities. The g- and
g-terms on the right side of the third relation (I.8) are reducible
by the two foregoing ones to the corresponding terms appearing
on the left, so that the p(o, c) may be expressed by f(cr, c):

n(~, c) =g(~, c}f(~,c),
where

A*(0 —I„a+I) l l A ((r —I, a) l' —
l
3(0, c+I)

l
'l

g(o, c) = ' ' ' . {I.io}
A (n —I, a) l l

A {(r, ~) l' —[A (a —I, ~+I) l' l

Finally, the |(o, c) are determined, in virtue of the relations
A {3.13},by the a,a~t and a,'ta, . For (c, c'~2) and (c, c') one ob-
tains four relations for the f(o, c), which must be fulfilled simul-
taneously and identically in c by an appropriate choice of the only
available function p(o). Hence, the problem is considerably over-
determined; and being sure that a solution exists, one has only to
show that its determination by any two of the four relations is
complete. In order to avoid reproduction of somewhat complicated
formulas, this elementary process will better be left to the reader.
As a result one obtains formula A (3.21), i.e.,

p'= —~(~+1) (I.l 1)

as the only possible solution, and with that the relations A (3.23),
(3.24) to be proved. Hence, our representations' are completely
determined by the full system of commutation relations (1.1)—
{1.4), {1.7), if hermitian character is demanded, with the excep-
tion, of course, of a unitary transformation, which may change
them, for instance, into the form with which we started originally.

The present proof settles also a question raised occasionally by
the author regarding the possible existence of positive values of
I2+p~, in the negative sense. Furthermore, it may be mentioned
that relation (I.11), which may also be written, because of A
(3.18) and (3.6), (3.7),

{fc')'+K' —(c4)~+M'= 0 (I.12)

represents one of ten algebraic identities of the Dirac algebra,
which seem not yet to be noticed.

v,K=|II( + )/II( ——1}q&v,. {II.2)

APPENDIX II

Consider first series (5.3) without the first factor behind the
Z-sign. Its summation may be accomplished in the following way:

Z —, „,„m,(z, t)m, (z', t')
~=0 v! Bt Bt

v(f g cvq

dq Z Z — ——,„w,(z, t)m, {z', t')
2x 0 „~p~ p, ! vf Bt" Bt'"

1 2~=—J dqno, (z, t+e'")w, {t'+e '~) {II.I)
2m'

to be taken with t =t'=0. In formula {5.3) this process is rendered
more dificult by the factor II(v)/(v+1) D(v+2) = 1/(v+1)'(v+2)
With (c4) ' instead of (c4—$) ' we would have the still more in-

convenient factor 1/(v+1)(v+~){v+2). The matter would be
much simpler, if in (5.3) the quotient of the two II-functions were
inverted, so that we had merely to do with a factor II(v+2)/
(v+1)~(v) =v+2 in the numerator, which might easily be gener-
ated by differentiation.

Indeed, the determining equation (4.3) is Uivariant under the
substitution o—+—o —1, so that instead of Eq. (4.4) one may put
as well
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Insertion into Kq. (4.3) now gives

(I,4+v+1}'P,+j, K+(~4—r —1)V, I.K=2K l,K. (II.3)

Of course, the polynomials generated by this formula are identical
with those arising from Eq. {4.5) but for a common multiple of
II{i4—a —1)/G{c4+cr). The advantage is that they can again be
expressed in the way of formula (5.2) without further factorials:

~ K=@' (z)& ~(z}, (II.4)

0'~+i+„,,(z}= (1/v f)8"Co~(z, t) /8t" ( ]~ (II.5)

e,(z, t) =(2~+1)(1+t)'*t—' 'e"~ ~I

X t2 (1+t) ' 'e-" ~~dt. {II.6)
0

For proof write the polynomials {II.5) in the form

8',+I+,, (z) =(1/2~i)ye, (z, t)dt. t ", {II.7)

where the integral is taken in the complex t plane along a path
inside the unit circle surrounding the point t=0. Separating, in
the case of g', +I, , a factor t ~+v+ instead of t " and inte-
grating by parts, it is not very difficult to verify formula (II.6}by
substitution into (II.3).

The factors are choseiI so that the generating functions w, {z, t)
and C (z, t) render 8'~+i, ~=8'~+i, ~=1; hence, the normalizing
functions S and S, are the same but for a factor that accounts
for the inverted factorials in Eqs. (4.4) and {II.2) for ~4=o+1:

g,&{z)= t 1/(20+1}!)CV,&(z). {II,8)

In the case o = ~ formula (II.6) yields

et(z, t) =2(1+z') 9~$(1+P)&e*~t"—(1+zt)g. (II.9}
With the help of Co,{z, t) one may now set up {~'—~) ' in the way
indicated above. For the case a=~ it reads

(z/2[(~' ——',) ')z'/2)=(t1't(z)X)(z')}& & (z+2)
V~

$2v
X (1/vl)~ „,„wt(z, t) tot(z', t') . (II.10)8t"N'"

To calculate it we write first the series (II.1) with S instead of m

and with a factor q"+2 in its vth term:

@+2 $2vZ, , „,„-et{z,t) ra)(z', t')
l~t'~

Coy(z, g&e'") S~(z', q&e '"). (II.11)
2Ã

From this the series in (II.10}is easily obtained by 8/8q, for p = 1.
Of course, S,{z,t) obeys a simple differential equation of first
order. A somewhat lengthy integration process, whose details will
not be of interest, leads then to the formulas (5.4), (5.5) of the
text. The author has checked formula (5.5) by insertion of the
first three polynomials (4.9) into the integral equation of the
U-functions:

U, K=(i' —zz)f (Ki(a4 ——',) 'iK')U. K dK'. (II.12)

The evaluation of the integral may be based on the following
formula, after a suitable rationalization by a transformation like
Eq. (3.6),

e1,CZ

4 — cosh~ ~z'

(1 'tcz h )
sinhe

where the t ) indicate the bracketed expression in Eq. (5.5).
Developing both sides in powers of ~ and equating the coefficients
of equal powers, one obtains the necessary expressions. Formula
(II.13) holds for every real e, it may be evaluated in a complex z'

plane by a displacement of the path of integration from the real
axis towards z'=+i~ (for e)0) resp. z'= —i (for &&0) and
summation of the residues at the complex zeros of the hyperbolic
functions.
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