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In this paper we have considered certain problems which arise when one attempts to cast a covariant
field theory into a canonical form. Because of the invariance properties of the theory, certain identities
exist between the canonical field variables. To insure that the canonical theory is equivalent to the under-
lying lagrangian formalism one must require that these identities, once satisfied, will remain satisfied
through the course of time. In general, this will be true only if additional constraints are set between the
canonical variables. We have shown that only a finite number of such constraints exist and that they form
a function group. Our proof rests essentially on the possibility of constructing a generating function for an
infinitesimal canonical transformation that is equivalent to an invariant infinitesimal transformation on the
lagrangian formalism.

Once a hamiltonian is obtained by one of the procedures outlined in previous papers of this series, and
the constraints have all been found, the consistent, invariant canonical formulation of the theory is com-
pleted. The main results of the paper have been formulated in such a manner as to make them applicable to
a fairly general type of invariance. In the last sections we have applied these results to the cases of gauge and
coordinate invariance. In the latter case a hamiltonian, corresponding to a quadratic lagrangian, has been
constructed in a parameter-free form; and in both cases the constraints, together with the poisson bracket
relations between them, have been obtained explicitly. As was to be expected, two constraints were found
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for a gauge-invariant theory and eight for a coordinate-invariant theory.

I. INTRODUCTION

N this paper, we shall complete the examination of

the constraints which are met with in the hamil-
tonian formulation of theories possessing invariance
properties. This examination had begun in earlier
papers,'3 with particular emphasis on the type of
covariance met with in the general theory of relativity,
and is in some respects similar to the results obtained
by L. Rosenfeld.*3 All theories dealt with in physics
possess some covariance properties, i.e., the laws of the
theory take the same form in more than one repre-
sentation. In general, different representations of the
same situation may be converted into one another by
means of so-called transformation equations, and we
say that a given theory is covariant with respect to
such-and-such a transformation group. These trans-
formation groups fall in general into three distinct
classes: The group may contain only a finite or at least
discrete number of transformations, such as the sym-
metric group (of permutations), of importance in spec-
troscopy, and the space group of crystallography. The
group may be a continuous set, the members of which
can be identified by a finite number of continuously
variable parameters, a so-called Lie group; among
these groups are the group of orthogonal transforma-
tions and the Lorentz group. Finally, the group may
again be a continuous set, but so that the number of
parameters required to represent it is no longer finite

*This work was supported by the ONR under Contract
6N-onr-24806.

LP. G. Bergmann, Phys. Rev. 75, 680 (1949), referred to as I.

2P. G. Bergmann and J. H. M. Brunings, Revs. Modern Phys.
21, 480 (1949), referred- to as II.

3 Bergmann, Penfield, Schiller, and Zatzkis, Phys. Rev. 80, 81
(1950), referred to as III.

4 L. Rosenfeld, Ann. Physik 5, 113 (1930).

5 L. Rosenfeld, Ann. inst. Henri Poincaré 2, 25 (1932).

but equivalent to one or several arbitrary functions;
examples for this class are the group of canonical trans-
formations, the group of unitary transformations in
Hilbert space, the group of gauge transformations in
electrodynamics, and the group of coordinate trans-
formations in the general theory of relativity. Our
attention in this paper will be focused on covariance
of a theory with respect to groups belonging to the
third class.

More particularly, we shall be concerned with field
theories whose laws can be derived from a variational
principle. The Euler-Lagrange equations will possess a
certain number of so-called identities which depend
directly on the group of transformations with respect
to which the theory is invariant. The Euler-Lagrange
equations of the theory will be covariant with respect
to certain transformations if the lagrangian integral
transforms by adding at most a surface integral, which
is immaterial for a variational principle. (For continuous
groups, it is sufficient to consider the infinitesimal
transformations from which the whole group can be
constructed.) But this change is an integral over the
product of the variational derivatives of the lagrangian
and the infinitesimal changes of the field variables. At
each point in space-time, this integral must then be a
complete divergence (or zero), even when the varia-
tional derivatives of the lagrangian are different from
zero, i.e., even when the field equations are not satisfied.
This condition will lead to identities between the
field variables and their derivatives which, depending
on the character of the group, will take the form of
integrals or will hold at each point separately. In the
third class of transformation groups, the identities are
generally point-to-point.

For certain groups the identities can be converted
into the form of a pure divergence, and hence lead to
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conservation laws. These are ‘“‘strong” conservation
laws (I); they are satisfied even if the field equations
are not, e.g., when there are singularities in the field.
In the case of the gauge invariance of electrodynamics,
we have one such law, the conservation of charge, while
coordinate covariance leads to the four laws of con-
servation of energy and linear momentum. It is the
existence of the strong conservation laws which leads
to equations of motion for the singularities of the field
without requiring separate assumptions such as the
Lorentz force.

When the theory is carried from the lagrangian over
into the hamiltonian (or canonical) formalism, it turns
out that the various momentum densities, defined in
the customary manner, are not algebraically inde-
pendent of each other, but satisfy a number of relations,
free of time derivatives, which we shall call primary
constraints in analogy to the customary terminology
of mechanics; these relationships are analogous to the
first subsidiary condition of quantum electrodynamics.
Unless the momentum densities satisfy these con-
straints, there will be no conceivable set of “velocities”
(time derivatives of the field variables) consistent with
the momentum densities.

In the canonical formalism, the field equations are
replaced by the first-order canonical field equations.
Not all solutions of the canonical field equations satisfy
the primary constraints, nor is it sufficient to satisfy
the primary constraints on one initial hypersurface to
assure that the equations of motion will preserve them
elsewhere. But if we were to start with a solution of the
lagrangian field equations and translate this solution
into the canonical formalism, both the canonical field
equations and the primary constraints would be satis-
fied everywhere. Hence, they are at least compatible
with each other. Compatibility, while necessary, is not
sufficient. We must discover the totality of all condi-
tions to be satisfied on an initial hypersurface which
will guarantee that solutions of the canonical field
equations will satisfy the primary constraints every-
where. We shall show that these additional conditions,
called the secondary constraints, are finite in number
and that their exact number depends on the details of
the transformation laws for the field variables and for
the lagrangian.

In this paper, we shall derive a number of results for
an assumed transformation law for the field variables
somewhat more general than that postulated in I and
II (though including that law as a special case). Fur-
thermore, we shall carry the argument through without
using the parameters introduced in II; their introduc-
tion into the theory can be accomplished without
difficulty, but contributes little to the developments
presented here.

II. INVARIANT TRANSFORMATIONS

In what follows, we shall consider field theories in
which the field equations can be derived from a four-
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dimensional variational principle:

5= f Ly, ya,0)d'%, @.1)

85=0.

The lagrangian density L is to be a function of the field
variables y4(#!, - - -, 2*) and their first derivatives y4,,.
We shall assume that the field equations go over into
themselves if the field variables are subjected to any
one of a group of transformations; we shall call the
members of this group invariant transformations, a
designation that is meaningful only with respect to a
particular theory or class of theories. We shall further
assume that the group structure permits the identifica-
tion of its members, including the infinitesimal trans-
formations, by a finite number of arbitrary functions.
Well-known examples of this type of transformation
group are the gauge transformations of electrody-
namics, whose infinitesimal transformation law can be
written in the form

ou=§u (2.2)

and the coordinate transformations, whose infinitesimal
(substantive, see I) transformation law taken the form

5y4=Fa,B"ypt" o~ ya, ut", (2.3)
provided the field variables transform according to a
linear homogeneous law (Christoffel symbols, for in-
stance, do not). Accordingly, we shall adopt as our
general transformation law for the field variables

8y a="faik 24t y b AP TE s, (24)
dxp=0.

For the sake of generality, we shall not assume any
particular geometric or physical significance for the
arbitrary functions £¢, the “descriptors,” which appear
in this infinitesimal transformation law. The coefficients
*fa# 7 are some functions of the field variables and
their derivatives, generally such that the sum of the
orders of differentiation in the various factors of any
one term in Eq. (2.4) does not exceed the finite number
P. For the two laws (2.2) and (2.3), this total order P
equals one, and these two laws are, moreover, homo-
geneous with respect to the order of differentiation.
To assure group character, we must and shall require
that the commutator of two expressions (2.4) with two
different sets of descriptors will be an expression of the
same kind (with the same coefficients f), with a third
set of descriptors.

III. IDENTITIES

By a method similar to that employed in I we find
that the field variables satisfy a number of identities.
We require that the lagrangian density, in the face of a
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transformation of the form (2.4), shall add only a
pure divergence. If this is the case then

8L=LA5y4+[(OL/3y4,0)8y41,=0%, (3.1
where the L4 are the field equations, i.e.,
LA=(dL/dya)—(0L/3y4,s).5- (3.2)
6L will be a divergence only if
LA 4= (LA fa) i
F(=1D)PLA Pfa "), per=0. (3.3)

These equations are the generalized “Bianchi identities”
of the theory. There are as many of them as there are
descriptors in the transformation law. In such identities,
the terms containing the highest derivatives of the
field variables must vanish by themselves. These terms
are of the form

LAPBs Pf b Typ rueeer =0,

(3.4)

where L4#B7 is shorthand for %[(62L/dya4,,0y5,s)
+(82L/3y4,40¥4,,)]- Symmetrizing with respect to
pou- - *T, we have

{LAPB Pf oo} ey =0,

3.5)

(pou- - -7) indicating that the expression is symmetrized
with respect to these indices. Of particular interest for
what follows are those expressions in which all Greek
indices are set equal to 4. They are
LABiy =0,

(3.6)
(3.7

where
UBi= PfAi4'“4-

IV. HAMILTONIAN FORMALISM

Let us now specialize our problem by assuming that
our lagrangian is quadratic in the differentiated quan-
tities; i.e., it has the form

L=A4B%, ,yp ;. 4.1)

Momentum densities canonically conjugate to the y4
are defined in the customary manner to be

oL
w4 E—— = ZAA"B“Z)B+ 2AA4BsyB~ 8

(4.2)
Y4

If we now try to solve these equations for the y4,4 in
terms of the 74, we find that we cannot do so directly
because of the fact that A44B* is a singular matrix, as
shown by Eq. (3.6), and hence has no inverse in the
ordinary sense. However, we can circumvent this diffi-
culty by introducing the quasi-inverse (III) to A44B4
by the equations

E 4 pABCEcp=E4p,

AA4BSF (A C4Da— A A4D4,

(4.3)
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These equations do not determine Esp completely,
but only up to a linear combination of the null vectors
of the matrix A44B4 the up;. It can be shown easily that

AASCSE = §pC— o Cigyp.
. . _ (4.4)
vc‘ECA=0, ¥Cinug;= 04,
where the expressions v depend on the choice of
E4p. If we now multiply Eq. (4.2) by E,p and intro-
duce as a convenient abbreviation
TA—QNABry, = h

4.5)
we find

y=3EpcwC+2upaCiyc. (4.6)
It is not difficult to see that the expressions A44Byp
entering into Eq. (4.2) and the expressions vB%p of
Eq. (4.6) are completely independent of each other, i.e.,
all of them can be given arbitrary values without giving
rise to inconsistencies. As a result, the #4 determine
the yp only incompletely, and the extent of this in-
complete determination is expressed accurately by a
set of equations

Yp= %Eﬂcﬁ'c-l- upw? (47)
with arbitrary functions w".
If we multiply Egs. (4.2) by #4;, we find
giEuAﬂ?A = 01 (48)

a set of algebraic relations to be satisfied by the canoni-
cal momentum densities together with the field vari-
ables y4. These relations are the primary constraints.
If we wish to form a hamiltonian and to reformulate
the whole set of field equations in terms of a canonical
formalism, it can be shown that for the quadratic
lagrangian density (3.1) the corresponding hamiltonian
density H is
H=}EprA7B— A4Boy, yp +wig,, 4.9)
where the functions ' are arbitrary and identical with
those of Eq. (4.7). This result, first obtained by Pen-
field® for the coordinate formalism (which dispenses
with the introduction of the parameters), is complete
in the sense that it describes the full extent of the
arbitrariness remaining in the choice of hamiltonian.”

6 R. Penfield, Ph.D. dissertation, Syracuse University, 1950
(to be published).

7 Although this result has been obtained using a quadratic
lagrangian, it is quite general. The identities (3.6) can be written
in the form,

upi0rB/dy.=0

and, since by definition #p; contains no differentiated field vari-
ables, we can integrate them and obtain, as primary constraints

upinB—Ki(y, 5,,) =0.
We then have the problem of solving the set of equations
w4=0L/dYa
together with the above constraints. Since we actually have
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Naturally, other forms of the hamiltonian density can
be obtained by canonical transformations; but the
arguments appearing in such new expressions will no
longer have the significance of the original field vari-
ables y4 and the momentum densities defined by Eq.
(4.2). It follows in particular that transformations of
the form (2.4) will change the expression (4.9) at most
by adding to it further linear combinations of the
primary constraints, i.e., by leading to new arbitrary
functions w:. To avoid misunderstandings, it should
also be noted that whenever we speak of arbitrary
functions, we imply that they are arbitrary in our
configuration or phase space; i.e., they may depend on
the coordinates as well as the field variables and their
derivatives and, in the canonical formalism, on the
momentum densities and their derivatives as well.

V. CONTACT TRANSFORMATIONS AND
INFINITESIMAL TRANSFORMATIONS

Let us now return to the infinitesimal transforma-
tions defined by Egs. (2.4). We may interpret this
transformation law in a number of different spaces.
We shall call the function space of all functions y(«!,
a2, #%) the configuration space of the theory and denote
it by S.. In such a formulation, ¢ appears as a parameter
outside the function space, S., and the change of the
physical system in the course of time appears as the
motion of the representative point. Obviously, the
transformation (2.4) is not a transformation in S,
since it involves on its right-hand side 34, %4, - - +. We
might introduce the function space of which the ele-
ments are y4, ¥4, * - -0Py4/3¢P, and call that space the
configuration-plus-‘‘velocity” space, S.,. In that space,
the transformation law for the y4 is properly defined,
but then the transformation law for 34 will involve
P+1 time derivatives, and so forth indefinitely. A
possible way out of this difficulty is to introduce a
different type of space, the space of the functions
yalxly - -+, x%). A whole trajectory of a representative
point in .S (its motion as a function of {) becomes a
single point in this new space, >_.. In this new space,
the transformation law (2.4) is properly defined, and
with the arbitrary functions &%, constitutes a group.

We now ask the following question: if the y, are
subjected to a transformation of the form (2.4), what
effect does this have on the corresponding canonical
formulation? To answer this question, we shall first
introduce as the phase space 3 (without subscript) the

fewer equations than variables, a particular solution can always
be found. Let it be of the form,

. Ya'=Ta(m, y,3.0).

It is easy to see that . . )
Ya=ya'+wusp;
is also a solution. Hence, we can, after forming a hamiltonian
according to the equation,
H=m4y4°— L(y, §°)

add to it a term of the form w¥(up;wB—K;) and still obtain the
same canonical equations.
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function space of all functions ya(«!, ---, x%), w4(x!,
- -+, *). Most of its points will not correspond to pos-
sible points in }_.. But X is the space in which all
canonical transformations

dya=0C/br4, dri=—0dC/dy4,

5.1
83c=9¢C/at G-1)

are defined. There is, however, a space which is iso-
morphic with the space 3., although not identical with
it; it is a subspace, which we shall designate by Y,
(lagrangian subspace), consisting of all points of 3
that satisfy the conditions (4.2). We shall call a one-to-
one mapping between 3. and 3_; in which the functions
ya of corresponding points are simply the same func-
tions (and they define 74 in }_; uniquely), the “identifi-
cation.” Under the identification, each possible trans-
formation in ). corresponds uniquely to one in I,
and vice versa. All these transformations can be ex-
panded into canonical transformations in Y. by the
following method (and possibly in other ways as well):
First, replace the original field variables by the trans-
formed variables in the lagrangian of the variational
principle. Then transform this formally new lagrangian
theory into a hamiltonian theory. The new hamiltonian
theory is equivalent to the original one and, therefore,
connected with it by a canonical transformation. We
shall call the class of canonical transformations which
correspond to transformations in )_, ‘“‘canonical trans-
formations in )_;,”” because they map the points of the
original 3~; on the points of the new >_;. The two sub-
spaces )_; are in general not determined by identical
Egs. (4.2), because the lagrangian will have changed
its form.

Of special interest are the invariant infinitesimal
transformations, Eq. (2.4). We shall call the corre-
sponding infinitesimal canonical transformations “(in-
finitesimal) invariant canonical transformations.” Be-
cause of the invariant character of these transforma-
tions, we may adopt the same formal expression for the
lagrangian density (2.1) before and after the trans-
formation, and we shall do so, because with this choice
the identity of the subspace 3_; remains unaffected by
the corresponding canonical transformations.

Given an invariant infinitesimal coordinate trans-
formation, we can expand it into a canonical trans-
formation in Y in infinitely many ways. If we have
obtained one such transformation and its generating
functional, we can add to the generator any expression
at least quadratic in the primary constraints. These
additional terms will have no effect in the subspace
2_1, but they will affect the transformation equations
elsewhere in 3.

To each invariant canonical transformation belongs
only one invariant transformation in Y., because such
a transformation leads uniquely to a transformation
law in 3_; and hence in }_.. The degree of arbitrariness
in going from X", to 3_; and thence to }_ is completely
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exhausted by the addition of terms quadratic in g; and
has no effect on the transformation law in 3_;, which is
uniquely determined by the transformation law in ..
Any nonconstant addition to the generator of a canoni-
cal transformation other than terms at least quadratic
in the primary constraints would have an effect on the
transformation law in Y_;.

We can conclude that the invariant canonical trans-
formations form a group. Because of its importance,
this argument will be presented at some length. First
of all, the commutator of two invariant transformations
in Y. must itself be an invariant transformation;
under the identification, the corresponding transforma-
tions in >_; must form a group, too. The only difficulty
arises in connection with the expansion into canonical
transformations in >_. Let 4 and B represent two in-
variant transformations in Y_; and A’ and B’ expan-
sions of A and B, respectively, into canonical trans-
formations in Y. Let C be the commutator of 4 and B
in 3°;, and C’ some canonical expansion of C in 3. On
the other hand, let C"" be the commutator of 4’ and
B’ in Y. Obviously, both C’ and C” are canonical
transformations by definition, but they might not be
identical. Actually, for the proof of group property, it
will be necessary and sufficient to show that C” is an
invariant transformation and an expansion of C, that
it differs, in other words, from C’ at most by terms at
least quadratic in the primary constraints. Inasmuch
as A’ and B’ map ) _; on itself, their commutator must
have the same property, and this mapping must be C.
Therefore, C”” must be a canonical expansion of C, and
that was the burden of the proof. A corollary is that the
generators of the infinitesimal invariant canonical
transformations form a function group in the ter-
minology of Lie; i.e., their poisson brackets are again
generators of infinitesimal invariant canonical trans-
formations.

We now turn our attention to these generators and
their relation to the hamiltonian (or hamiltonians) of
the theory. We know from the form of the infinitesimal
transformations in .. that the generators will be
homogeneous linear in the descriptors and their de-
rivatives. The question arises as to the order of the
derivatives that appear in the generators. They will, of
course, contain no higher derivatives than the trans-
formation laws for the y4 and 74 in 3_.. We have as-
sumed that the order of differentiation of the descrip-
tors in the transformation laws of the y4 is P. In order
to find the order of differentiation for the transforma-
tion laws of the w4 we proceed as follows. From Egs.
(3.2) we have that

SrA_.__Z(sAAABA:[]B+2AA4B4SgA+. .., (5.2)
According to Eq. (2.4) the 74 transform as
Sa=Ofaibit - A (=1)P Pfap 2, (8.3)

Upon substitution of this expression into (5.2) we see
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that because of Eq. (3.6), time derivatives of the de-
scriptors appear only up to order P. Space derivatives
may appear to a higher order, but that does not con-
cern us, since they can be removed by an integration
by parts. In fact, if we restrict ourselves to infinitesimal
transformations whose descriptors differ from zero only
in a finite spatial domain (a “patch”), we may integrate
by parts and assert that the generating density can be
brought into the simple form

aP i
C="AH A bt PA
£ 3 Y

In this form we can ascertain the values for the poisson
brackets of the coefficients "4; by writing down the
correct expression for the commutator of two in-
finitesimal transformations, for, since

(5.4)

*(8ya)— 8(8*ya) = 6%y, (S.5)
where 8, 6*, and §** represent transformations of the
form (2.4), one has immediately
(€, C¥)=E**; (5.6)
i.e., the poisson bracket between two generators of the
form (5.4) is again of the same form. Hence one can
conclude that the poisson bracket between any two
functions of the set "4; must be expressible in terms of
members of this set: these "4; form a function group.
To investigate the poisson bracket relations of the
n4; with the hamiltonian, we proceed as follows. We
know from the results of Sec. IV that in the face of an
infinitesimal invariant transformation in ). the hamil-
tonian can change as a function of its arguments only
by terms of the form

§3c= f dwigdx, 5.7

the 8w’ being some functions of the descriptors of the
transformation. (Note that & represents the change
produced in a dynamical variable by an infinitesimal
transformation, at a point with the same coordinate
values, which, depending on the nature of the trans-
formation, may or may not be the same point, while
&’ represents the change in 3¢ and w® as a function of
their arguments, i.e., of the y4 and =4.) Under the cor-
responding canonical transformation in ) the hamil-
tonian changes by an amount

ac
3= (e, 3C)+5= f&’wig,-(ﬁx, (58)

where @ is the generator of the transformation. If we
restrict ourselves, for the time being, to descriptors
that do not depend on the canonical variables, but only
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on the coordinates, we can write

(')P'HE‘
f&’w"gidax=f(°A,-£‘+‘--+PA. )dax
(at)Pﬂ

QPEL

+ f (A, g+ -+ f (P4, 30)——d'x. (5.9)

(e)F

Now under an infinitesimal transformation ¢4 changes
by an amount

aP—HEi

6?]14: ot '+u41(6t)P+11

(5.10)

while, according to Eq. (4.7) the change in 34 due to the
change in the hamiltonian as given by Eq. (5.7) is

ya=---+usdw (5.11)

In each of the above expressions we have explicitly
written down only those terms containing (P41)st
time derivatives of the descriptors. If Egs. (5.10) and
(5.11) are to agree, as they must if we operate in 3,
the dependence of 6’w* on the (P+1)st time derivative
of the descriptors is simply

Swi= - - -+9PHE/ (91)PH (5.12)

and, therefore,
14 i=F4 IS

However, since §'3C is equal to some linear combination
of the g; and hence of the P4, we can conclude further
from Eq. (5.9) that the poisson brackets of all the "4;
with JC can be expressed in terms of the *4;. In fact,
since the left-hand side of Eq. (5.9) is nothing more
than a linear combination of the A4 the right-hand
side must also have this form. Now, since the ¢ and all
of their time derivatives are independent of each other,
the only way in which this can come about is for all of
the coefficients of different &%, both with regards to
index and differential order, to be linear combinations
of the "4,. Comparing terms, we find that

(°4, 3¢)=linear combination of g;,
14,4 ("4, 3¢)=linear combination of g;,

n=1, -+, P. (5.13)

In particular, we see that the "4, together with the
hamiltonian, form a function group.

These results are the ones needed to establish the
total number of constraints that must be set if the
canonical equations are to be solved and if the primary
constraints are to remain satisfied. A necessary and
sufficient condition is that the poisson brackets of the
primary constraints with the hamiltonian vanish. In
case they do not vanish identically, they must be set
equal to zero, and the requirement then becomes that
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the poisson bracket of these expressions with the
hamiltonian vanish, and so on until a point is reached
where no new constraints are being obtained. We see
that the »4; (or rather certain linear combinations of
them) are just the constraints which must be set equal
to zero and, because of Eq. (5.13), only a finite number
of them exist. This number is at most (P+1) times the
number of descriptors necessary to define our invariant
transformation group.

VI. APPLICATION TO ELECTROMAGNETIC THEORY

Here we assume a transformation law of the form
(2.1). Recasting this into the form of (2.3), we have

0u=10,"¢,. (6.1)
The lagrangian of the theory is
L= (1/8x)(n*n"*—1*"1°") by, o1, - (6.2)
The field equations are
Lr=— (1/4m) (" 0" = 10" )5, - (6.3)
The Bianchi identity is
— (1/4x) (n4n**—0"#1°°),, upo =0. (6.4)
The equation which corresponds to (3.6) is simply
npri—nrig=0. (6.5)
The momenta canonically conjugate to the ¢, are
wt= (1/4m) (n* 0" — "), 0. (6.6)

We see immediately that the primary constraint [ there
is just one, since there is just one descriptor in the
definition of the infinitesimal transformation law (6.1)]
is simply

m=0. (6.7)

The generating density which corresponds to Eq. (5.4)
can be written down immediately. It is

C=r* t+mif.

At first glance it might appear that this generator is
incomplete, since it produces no change in the 7*. How-
ever, examination of the transformation law for the
7+ produced by combining Egs. (6.1) and (6.6) shows
that this is just the case.

The A’s for this theory are then just »* and =*,.
Direct calculation then verifies the assertion that to-
gether with the hamiltonian they form a function
group. In fact, we have that

(w4, 7*,,)=0,
(“Aa GC) =7
(w2, 3¢)=0.

(6.8)

(6.9)

Equation (4.6) is thus verifiable directly.
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VII. APPLICATION TO COORDINATE-COVARIANT
THEORIES

Although the results of the preceding application are
well known, it was inserted in order to familiarize the
reader with the methodology employed. The applica-
tion to arbitrary coordinate transformations is not as
trivial, and the results are not as well known. We will
assume a transformation law of the form (2.3). Here
the £ are the infinitesimal coordinate changes. A
thorough discussion of the resulting Bianchi identities
has been given in I and will not be repeated here. We
merely set down the main result for lagrangians of the
form (3.1). For such a langrangian, Eq. (3.6) becomes

(7.1)

For this type of invariance Egs. (4.2) to (4.6) can be
taken over intact. The primary constraints (four in
number, since there are four descriptors in our trans-
formation law) become

AABIR , Biyp=0.

g“EFAMB“yBﬁ'A:O,

(7.2)
The generating density corresponding to Eq. (5.4) is
not as easily obtained as was the case for electromag-

netic theory. After some considerable calculations it
was found to have the form

C=g.é*— an_ (FaBrysvtega), ,— 6. v4%ay 4, »

avNa a.uCa
+%Fcf"y3( - )b~ p#?
6yc 6y1v

—du'v4%ga }E“, (7.3)

where the new quantities which appear are defined as

L,= (g 3C)

1 0Eap
=—{Fa4,"*Ecp—3Fc,P*yn

}7?“7?1)

dyc
+F,BlygT4rC.ABy o E 4 oD
+F o, BrypA44cs(E 4 pi D).,
+FC“B4yBI‘rsC, A By, VE, s — ZFC“BAlAArCsyB,yA’ v
GABHECY A AkCy

ayB

(7.4)

JABsA»

A,BC =
WA BC= :

6y,1 ay(!

and where the v¢« are defined by the equation

E 4pABC 4 oChF 4 Bhyp=5,C.

(7.5)

The appearance of the y4 in the expression for the
generator appears at first sight unfortunate, but is
unavoidable because the transformation law for field
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variables in configuration space (including the trans-
port term) depends explicitly on 74 [see Eq. (2.3)].
While in J_; there exist relationships between y4, 74,
and 74 at each point of space-time, these relationships
are not sufficient to express §4 uniquely as functions of
the canonical variables alone. Consequently, there
may exist two different fields of y4(f) in 3_; which on
one spacelike hypersurface have identical values of y4
and 74 everywhere, but nevertheless different 4. Thus
the transformation law under the canonical trans-
formation cannot be equivalent in }_; to the infinitesi-
mal coordinate transformation for all conceivable fields
y4(¢) unless the lack of unique determination of the
74 by the canonical variables is reflected in their ex-
plicit appearance in the generating function.

These “velocities” are all multiplied by primary con-
straints, and thus in >_;, at least, transformation laws
can be formulated without knowledge of the “poisson
bracket” between a velocity and other canonical vari-
ables. However, elsewhere in Y., and also for the
determination of commutators, these poisson brackets
are needed, and we have, as a general rule,

(Wa, F)=0(ya, F)/0t.

This rule is valid because 4 may be interpreted as the
difference between two slightly different y4’s, and the
poisson bracket is a linear operation with respect to
either one of its two components.

We are now in a position to assert that g, and L, are
the only constraints which will appear in a theory be-
cause of coordinate invariance, and furthermore, that
without or together with the hamiltonian they form a
function group. By examining the commutator be-
tween various subgroups of transformation laws (2.3)
together with the corresponding poisson brackets be-
tween the corresponding generators, one can verify
that

(7.6)

(gu(x), g (x")) = (8,%6,7— 6,48,) g, 6(x— x'),
(Lu(@), L&) = (6,78, 8,78,7) Lo (6(x— ). ,
(Lu(x), g(x")) = —8,4L,8(x— ')+ (8,8,
—8,78,7)g.(8(x— %)),

where L, is the coefficient of & in Eq. (7.3). All of the
above results can, of course, be checked by direct calcu-
lation, and one finds that the results are the same.
However, owing to the great amount of labor involved
in such a calculation and the fact that the calculations
cannot be readily carried over to the case of a non-
quadratic lagrangian, they will not be presented here.

VIII. CONCLUSION

With this present paper, the canonical formulation
of covariant field theories with quadratic lagrangian
has been completed, According to our present results,
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a field-theoretical situation is completely determined if
on a three-dimensional hypersurface the canonical vari-
ables are given in such a manner that all the constraints
(which are finite in number at each point) are satisfied
and a hamiltonian has been chosen for all of space-
time. In that case, the solutions are unique and do not
permit even a coordinate transformation. A coordinate
transformation which leaves the initial situation un-
changed is equivalent to the adoption of a new hamil-
tonian away from the initial hypersurface.

In attempting to quantize this type of theory, we
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can simplify our problem by first carrying out a canoni-
cal transformation that converts the primary constraints
into canonical momentum densities. As for the second-
ary (and higher, if necessary) constraints, it appears
that their conversion is neither easy in practice nor
desirable, because in singular regions the secondary
constraints may not be satisfied. Once we have found
a proper formulation for the singular regions, the
“sources’” and “‘sinks” of the vacuum field, the examina-
tion of the quantized covariant theory can be under-
taken in earnest.
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Data telemetered continuously from photon counters in a V-2 rocket, which rose to 150 km at 10:00 A.M.
on September 29, 1949, showed solar 8A x-rays above 87 km, and ultraviolet light around 1200A and 1500A
above 70 km and 95 km, respectively. The results indicated that solar soft x-rays are important in E-layer
ionization, that Lyman «-radiation of hydrogen penetrates well below E-layer, and that molecular oxygen

is rapidly changed to atomic above 100 km.

V-2 ROCKET, fired in September 1949, carried a

set of photon counter tubes which were sensitive
to light in the soft x-ray and extreme ultraviolet regions
of the spectrum. Each tube responded to a relatively
narrow portion of the spectrum in one of four bands
covering 0-10A, 1100-1350A, 1425-1650A, and 1725-
2100A. The experiment provided an uninterrupted
telemetered recording of solar radiation intensities
within these wavelength bands throughout the flight
of the rocket. Intense solar x-ray emission was detected
at altitudes above 87 kilometers. In the atmospheric
window near A 1200A, the photon counters responded
strongly above a level of about 70 kilometers. Most of
the solar radiation near the peak of the Schumann-
Runge absorption band of molecular oxygen, was ab-
sorbed between the levels of approximately 95 and 115
km. Only one tube was flown which was sensitive to the
longer wavelengths between the oxygen and ozone bands
(~2000A). Its counting rate rose sharply when the
rocket reached an altitude of 7 kilometers, but the
tube was too sensitive to provide any useful data above
20 kilometers. These measurements support the ideas:
that E-layer ionization is directly related to soft x-ray
emission from the corona; that Lyman a-radiation
penetrates the atmosphere well below E-layer; and that
the transition from molecular to atomic oxygen takes
place at altitudes near 100 km.

FLIGHT DETAILS

The rocket (V-2, No. 49) was fired at 10:00 A.m.,
M.S.T. on September 29, 1949 at the White Sands Prov-

ing Ground, New Mexico. The altitude of the sun was
43 degrees. No unusual solar activity was noted at the
time of the flight. The telemetering record was con-
tinuous over the entire flight period of 336 seconds,
during which time the rocket soared to a height of 150
km. Fuel cutoff was made at 64 seconds after take-off.
For the first 60 seconds the rocket was in stable flight,
after which time it developed a slow, steady roll of
approximately 12 seconds average period. The roll
persisted until the warhead was blown off at 336
seconds.

EXPERIMENTAL DETAILS

An assortment of 6 photon counter tubes was con-
tained in two pressurized boxes, each unit comprising
in effect a photon counter spectroscope. The boxes were
located on opposite sides of the warhead, with exposed
window areas parallel to the surface of the warhead. In
addition to the counter tubes, each box also contained
one control tube, sensitive only to cosmic rays, and
one photocell for determining the roll orientation of
the rocket with respect to the sun.

Each tube consisted of a chrome-iron cathode
cylinder, % inch in diameter and 2 inches long, and an
anode wire, 0.025 inch in diameter. The cathode also
served as the envelope of the tube. Glass caps, which
supported the anode wire, were sealed to the steel
cylinder at each end. A circular aperture i% in. in diam-
eter was provided in a flat recess, milled midway along
the length of the cathode. This aperture was covered by



