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Nonstatic Solutions of Einstein's Field. Equations for Syheres of Fluids Radiating Energy
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The energy tensor for a mixture of matter and outflowing radiation is derived, and a set of equations fol-
lowing from Einstein's 6eld equations are written down whose solutions would represent nonstatic radiating
spherical distributions. A few explicit analytical solutions are obtained, which describe a distribution of
matter and outflowing radiation for r&a(t}, an ever-expanding zone of pure radiation for a(/) &r&b(t) and
empty space beyond r =b{h). Since db{h)/dh is almost equal to 1 and da {h)/Ch is negative, the solutions obtained
represent contracting distributions, but the contraction is not gravitational because m/r is a constant on the
boundary r=a(t), m being the mass. The contraction is a purely relativistic effect, the corresponding
newtonian distributions being equilibrium distributions. It is hoped that the scheme developed here will be
useful in working out solutions which would help in a clear understanding of the initial or the Gnal stages
of stellar evolution.

I. INTRODUCTION

T is well known that during the initial stages of
stellar evolution, and during the Gnal stages when

the thermonuclear sources of energy are exhausted, the
conditions within the interior of the star are such that
the general relativistic corrections to the newtonian
theory become important. So a description of the stellar
interior based on the relativistic gravitational theory
would provide a clearer picture of the processes
during these stages of stellar evolution. Taking
appropriate static solutions of Einstein's 6eld equations,
Oppenheimer and Volko8' have found that equilibrium
con6gurations of massive neutron cores do not exist for
masses greater than 0.70. Therefore, for description,
of the 6nal evolutionary stages of heavier stars non-
static solutions of the Geld equations have to be con-
sidered. Oppenheimer and Snyder' have succeeded in
getting a nonstatic solution representing the continued
gravitational contraction of a stellar body after all its
sources of thermonuclear energy are exhausted. But in
obtaining this solution the radial pressure of the stellar
matter and the gravitational efFect of any escaping
radiation were neglected. The importance of nonstatic
solutions in understanding certain aspects of the earlier
stages of stellar evolution has been recently emphasized
by Klein. ' Thus it appears that a study of the field
equations of general. relativity with a view to getting
solutions representing nonstatic spherically symmetric
distributions is a necessary 6rst step toward a clear
understanding of the problems of the earlier and the
later stages of stellar evolution.

A nonstatic distribution would be radiating energy,
and so it would be surrounded by an ever-expanding
zone of radiation. If this radiating distribution together
with its radiation is to form an isolated system, beyond
the zone of pure radiation we must have empty space

*Springer Research Scholar, University of Bombay, Bombay,
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' J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374
(1939).

~ I, R. Oppenheimer and H. Snyder, Phys. Rev. 56, 4SS (1939).' O. Klein, Arkiv Mat. Astron. Fysik 34A, 19 (1947).

given by the Schwarzschild's exterior solution. In the
following we shall develop a scheme for working out
solutions of Einstein's Geld equations which will sustain
the above picture of a nonstatic distribution. Using a
line-element we have

ds' = e"dR' R—'(de'+ —sin'ader')+ e'd T'
(1.1X=X(R, T), v= v(R, T).

We shall work out solutions which will describe (1) a
"mixture" of matter and outflowing radiation for
R&R,(T), (2) a zone of pure outflowing radiation for
R,(T)&R&R,(T), and (3) empty space for R)R,(T),
the line-element being then given by the well-known
Schwarzschild's exterior solution,

ds'= —(1 2'/R) 'dR—'
—R'(d8'+sin'8dio')+(1 —2M/R)dT', (1.2)

M, a constant, being the total mass of the distribution
and the radiated energy. We shall call the solution for
R&R;(T) the interior solution and the one holding
good for R;(T)&R&R,(T) the exterior solution. In this
notation the boundary R=R;(T) will be called the
interior boundary and R=R,(T) will be called the
exterior boundary. We begin with the method of 6nding
the interior solution.

II. THE ENERGY-TENSOR FOR THE
INTERIOR FIELD

Following Tolman' we express the energy-momentum
tensor for the combined 6eld of matter and radiation in
the form

~""=&""(.)+~""(.
&

~ (2.1)

Here T&"(,) stands for the mechanical energy tensor,
i.e., the tensor due to matter. T&"(,

~ stands for the
electromagnetic tensor, i.e., the tensor due to radiation.
The matter comprising the distribution may be regarded
as a perfect Quid so that

T""t,&=(p+p)v v" pg ";—(2.2)

v"8„=1) (2 3)
' R. C. Tolman, Relativity Thermodynamics and Cosmology

(Oxford University Press, New York, 1934), p. 261.
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and for the directional Row of radiation in empty space,
the author has proved elsewhere' the formula

(2.4)

(2.5)

0 being the density of the Rowing radiation. This simple
formula can obviously be taken over to the case of
radiation flowing through a medium; the presence of
the medium will affect only the law of variation of the
scalar 0. Thus we can write the final expression for the
energy tensor (2.1) as

T""=(p+ p)e~v" pg""+—ew"w" (2.6)

with the further Eqs. (2.3) and (2.5) for the vectors s"
and mf'.

We shall now work out the consequences of the funda-
mental equations

(2.7)

For this purpose we choose a co-moving frame of
reference, i.e., a frame of reference relative to which the
Quid comprising the distribution is at rest. In such a
reference-frame the line-element showing spherical
symmetry cannot be of the form (1.1) but has to be of
the general form

de — ead»2»mes(d82+sin28dp)+e&dt
2.8~=~(», ~), P=P(», f), v=v(», ~).

Using this line-element and the form (2.6) of the energy
tensor with the additional restrictions

be a purely relativistic equation having no newtonian
counterpart. It has already been proved that' in space
not occupied by matter

ew„w" = F„—F" +r'6„"F eF e, (2.14)

where Ii&" is the skew-symmetric electromagnetic field
tensor, so that

(ew").=0.

When the radiation traverses a medium, it is weakened
by absorption and so (2.14) will not hold good. If e is
the density of Rowing radiation after it has traversed
a length s of the medium and f70 the density that would
be obtained if there were no medium present, we may
write

fT = 00e
—f

so that

ew„w"= e f[ F„F"~+—'8 "F eF~-e], (2.15)

where f=f(r, t) may be regarded as the "optical depth"
of the medium which is connected with its mass ab-
sorption coeKcient I~. through

df/ds= w'(8 f/—8»)+w'8 f/Bt =op

With this law of absorption of the medium, (2.10) im-
mediately transforms to

—p' —2 (p+ p) y' —epew' =0.

Again, for quasi-static processes, writing.~=.2=.3=O) (2.9) p„'= —apl. (»)//4m»'

p'+ p' = (p+P) 7'/2, — (2 16)
p' k(p+r)—v'+—(~")wi=o (2.10)

where I.(») = —4s.»'ew& measures the luminosity of the
distribution at the newtonian level of approximation.
Equation (2.16) readily gives the familiar equation
(2.13). We are thus able to recover the newtonian
equation of stellar equilibrium from our energy-mo-
mentum tensor (2.6). This gives an increased con-
6dence in the form (2.6) of the energy tensor for a
mixture of matter and radiation.

I +(p+P)(i+~/2)+(~'). w4=o (2 11).
Here a prime denotes a diBerentiation with regard to
r, while an overhead. dot denotes that with regard to I,.
On elimination of 0 between these two equations we find

p'+ 2(p+n)v' e' "'"L~+(p+—~)(P+~/2)3= 0. (2 12)

Equation (2.12) replaces the familiar equation

p'+(p+~)~'/2=o
III. GENERAL METHOD OF FINDING THE

INTERIOR SOLUTION

due to the co-moving nature of the reference-frame, we can finally get
Eqs. (2.7) lead to

for the static distributions. We shall now show that
(2.11) leads, at the newtonian level of approximation,
to the well-known equation expressing the equilibrium
of a stellar configuration'

p'+ p„'= —GpM(»)/»', (2.13)

p, being the radiation pressure; while Eq. (2.11) will

~ P. C. Vaidya, Proc. Indian Acad. Sci., to be published.
6 S. Chandrasekhar, Introduction to t$e Study of Stellar Structure

(Chicago University Press, Chicago, 1939), pp. 213, 214.

Using the co-moving frame of reference introduced
in the last section we write the line-element as

ds = —e d»' —»'ee(d82+sin 8dy')+e~dt'
3.1~=~(», r), p=p(», t), q=~(», r)

The components of T„"can now be calculated in terms
of the functions a, P, y with the help of the held equa-

' V. V. Narlikar and P. C. Vaidya, Nature 159, 542 (1947).
g See reference 6, p. 191.For simplicity we are considering here

the case of homogeneous radiation.
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tions of Einstein. %e find these components to be

P" PY P'+v'
82r T)' ———e- —+ + +—.4 2 r r'

T' 1 T 2 —
e{y

—a)/2T 4 (3.13)

tribution at any time t. Equations (3.9) lead to the
following relation between the components of T„":

e
—

&

+—+e~
r2

~'P 3 . Pi+-P' ——;
Bt2 4 2 . (3.2)

Substituting the values of T&', T22 and T,4 from (3.2),
(3.3), and (3.5) we find that (3.13) gives

-pll II P/2 I2 IPI

8m 2 22=8m T3'= —e + + +
2 2 4 4 4

O'V' a'V' a' O' V'

+ — + +
4 4 2r r 2r

82a/Bt2 82P/Bt2 a' p'
+ +—+—

2 4 42

aP ai Pi
+——;(3.3)

4 4 4

3 IPI 3PI I ]
8)rT44= —e ~ P"+ P" — +— +

4 2 r r r'

aP P'
+ +e & —+—;(3.4)

2 2 4

P'r' . P' . 1
84rT)4= —e " P' —— +(P—a)—+(P—a)— .

2 2 r
(3.5)

But the form (2.6) of the tensor T„", v22.

T„"= (p+ p) v„v"—pg„"+ow,w"

with
u'=e2=e'=0 u4=e yn

and

(3 6)

(3.7)

gives

w' —w' —0, w„w"—0, (w") w" —0 (3.8)

T = —P+oww T2 =T = P
T4 = p+~4R', Ty =~g ~

Hence we can find the physical quantities p, p, o, v",

and wl' in terms of the functions a, p, and y:

p= T22; p= T)'+T—44 T2'I (3.10)—
e(2a—»/2(wl)2T 4.

=e 'N '

(3.11)

BR'1 O'R~

+ebs
—y) /2 +~&

Br R

a'+y'
+e&~ »/2a =0. (3.12)

2

The last equation (3.12) follows from (3.8). Once a, p,
y are known as functions of r and t, Eqs. (3.2) to (3.6)
determine the components of T„"as functions of r and t

and then (3.10), (3.11),and (3.12) determine the march
of the physical variables p, p, &r, etc. , through the dis-

+ +

e"-e 4)2P-/4)t2 82a/Itt2 a' P'
+ +e ——+-

r2 2 2 4 2

aP W' ai . Pv'
+ +e( —»/2 p'

4 4 4 2

p' . 1
+(P-a) +(—P-a)- =o (3.14)

2 r

It may be noted that this relation is identical with Eq.
(2.13) of the last section. Equation (3.14) is one relation
between the three functions a, P, and y. This relation,
it will be remembered, is a consequence of the co-moving
nature of the coordinate system used. Two more rela-
tions are necessary in order to determine the three
functions a, P, and y. These relations are not supplied
by the gravitational theory but are given by the physical
nature of the distributions under consideration. They
are: (1) the equation of state of the material of the dis-
tribution usually expressed as a relation between p and

p; (2) the law of energy generation within the dis-
tribution. Given these two relations we must use (3.14)
with them and determine the forms of the three func-
tions a, P, and y; and then, as stated above, the
complete march of the physical variables within the
distribution can be determined. This is then the general
scheme of working out the internal solution.

But even in the static case (where o =0) the problem
treated in this direct way presents a formidable mathe-
matical task and explicit solutions are not known for
any but the simplest equations of state (p=0 and p= a
constant). We therefore adopt the indirect procedure
suggested by Tolman' of solving (3.14) together with
two assumed relations between o., P, and y and then
seeing what equation of state and what type of energy-
generating system the solution so obtained possesses.
But there is one important point to be noted in applying
Tolman's method to our case. The interior boundary is
obtained by finding the first value of r at which the
Quid pressure p vanishes. But as the coordinates in use
are co-moving, the radius of the interior boundary must
be constant so that the two assumed relations between
a, P, and y must be such as would make the resulting P
vanish for a constant value of r. This considerably limits
the choice of the two relations to be assumed. In the

9 R. C. Tolman, Phys. Rev. 55, 364 (1939).
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ThsLE I. Relations among the constants in the nine mutually independent interior solutions.

13

Solution

IV

VII

VIII

pand m

p=s
m=n

P=s
m=n

p=s —2q
m=n —1

P=s—
q

m=n —$

t4 and l

I=s+1
l=n

u=s+1
l=n —1

N=s+1
l=n —1

u= s+1
l=n

Q=S+1
l=n

N=s+1 —2q
l=n —1

N=S+1 —2q
l=n —1

N=s+1.—2q
l=n —1

(3~v'5}4

(3~+5)/4

s+1

q{2n'—1)/n

2nq

2(s+1—q)

Bq(3—4n)/(n —1)

s+1—q

s+1 —
q

(1—2n)q

(1—2n)q

D'I

—2{s+1)(s+1—2q)

2(s+1)(s+1—Ck)

2q'(1 —2n')/n'

4'(2nm —1)

2qL(4n —1)q—(2n —1){s+1))

8n'q2+4Cknq

2B(s+1)~—4Bq

4Bq2(2' —1)

next section we show that a large number of solutions
of Eq. (3.14) can be obtained by choosing particular
forms of the functions n, P, and y:

IV. PARTICULAR INTERIOR SOLUTIONS

We try to solve Eq. (3.14) with the following forms
of the functions a, P, and y:

parameters are determined by (3.14), there is always one
dash in one of the last four columns for every solution.
The physical contents of all these solutions have been
investigated and it is found that they can be grouped
together into four diferent groups. We put on record
here one solution of each of these four physically
distinct types.

(4.1)e
—a g 2e22tr 2e(B+r2q-) 2n ~

e—e—g 2D2e22tr 2P(B+r2—q) 2m ~

e &=A'C'e' 'r '"(B+r 2)".

Solution III

(4.2) We have

(4.3) ~
—2ktr2e 8

e& = r2(B+r22) 2—,
A2(B+r")'" D' Q2All the twelve new symbols introduced here stand for

constants whose values are to be suitably determined. "
When these forms of a, P, y are used in the differential
equation (3.14), it will be found that, in general, seven
restrictions are imposed on these twelve parameters so
that seven of them get determined in terms of the rest.
Now it happens that Eq. (3.14) leaves a fairly wide
choice of the seven constants to be determined by it
and as many as 39 difterent solutions of that equation
can be obtained by this method. But some of these
solutions are mutually. transformable by simple trans-
formations of the radial coordinate. The accompanying
table gives the nine sets of relations between these con-
stants representing the nine mutually independent
solutions of (3.14). In Table I the second and the third
columns give the values of the four parameters p, m, I,
and l and the last four columns give the values of the
other four parameters n, s+1, Ck, and O'. As only seven

with 2+1=q(2n' —1)jn, Ck=2nqB, n2D2= 2q'(1 —2n').
We then have

e ~q2(1 —2n) (1—2n)r"+(1+2n)B
82rp=

r2n2 r2q+ B

e q' (1 4n')r"+(1+4n'—)B
Sop=

r2n2 r"+B

e ~4CBq' (2n —1)r2'+(2n' —1)B
Sm T)4=—

(r2q+, B)3

gt2(—a—y) /2

' There will be no occasion for any confusion between the
parameter p introduced in (4.2) and the 6uid pressure p.

E is an arbitrary constant. This solution can give a
6nite constant radius of the interior boundary where p
will vanish. If r =a is to be the interior boundary, the
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solution will be of physical significance only if

(i) p=0 for r=43; (4.4)

(ii) P)0 for r&43; (4.5)

(iii) p)0 for r&u. (4.6)

so that Or=0. This last property is common to all our
solutions.

We have

Solution VIII

e—2kt~2a e
e' = (8+r'q)

g 2(8+ r2q)2«D2
ev —r2—42(8+ r2q) 2e«/C2

with s+1=2nq, Ck= (1 2n)q—, D'=48q'(2n' 1). —
Ke then have

e
—«nr'q+(1 —n)B

S~p= 4q2(1 —n)
r' r"+8

e 3nr"+ (n+1)8
Sqr p =4q'(n —1) ——

r2 r2~+8

4q'(1 —2n) (n —1)CBe
8m-Tg4=—

r3—4q(8+r2q) 3

~=re-(-+»2.

This solution can give a finite constant radius r=a of
the interior boundary; and the conditions (4.4), (4.5),
(4.6) are satisfied if 8=n43'q/(n —1), q is positive, and n
does not lie in the range (—1, +1).It is now found that
T~4 is positive for a&a. This makes em' negative; and
since we have begun with m' positive, this means that
the solution gives negative values of r within the sphere
r=u. It appears, therefore, that the solution has no
physical significance. But then, as given by the dif-
ferential equation (3.12), qe' always gets determined
with an arbitrary multiplying constant and so the
negative sign of the product am' can as well be attributed
to m' making o positive. Of course, once we accept a
negative value of m', the whole problem of solving
Einstein's field equations has to be studied afresh. The
distribution then would not be radiating energy, but
it would be absorbing energy. The results of this paper

These restrictions are satisfied by this solution if
8= 43—22(1 2—n)/(1+2n), q is negative, and 0&n&-', .
For 4&n, &$, p —3P will be nonnegative for r&43. It is
now found that T&4 is negative for r&u so that the
product cd' is positive and we find

e3&q «'"4CBq' (2n —1)r'q+(2n' —1)8
E2r' (r'q+8)'

will no longer hold because an absorbing distribution
will not be isolated. This particular solution leads to
quite new types of distributions —radiation absorbing
distributions —allowed by the gravitational theory of
Einstein. These new types of distributions are at present
being investigated. "

We have

Solution IX

e
—2kt e

e e'= (8+r")
g rq(28+r'q)2«

eq —r2—4q(8+ r2q) qe«/C2

with Ck=(1—2n)q, D'= 4q28. —
We then have

e ~ 4q28
Sxp= —.

r2 r"+8
e 4q28

8~p=-
r'(8+ r'q)

8~T&4=
e «4Cqq(1 2n) —nr'q+8

(r23+8)3

Here we have p+p=0. If the cosmological constant g
is introduced, it will be found that DeSitter s static
cosmological solution is a particular case of this solution
obtained by putting n= $ here.

Solution IV

We have

e
—2kt e

ee= (8+r")'r 42-
g 2r2(8+r2q) 2« D2

e&=r2(B+rqq)'e /C'

with Ck= 8(3 4n) q/(n 1), —D'= 4q'(2—r3' —1).
Ke then have

4q2e
Sqrp= [(n 1)'r4q+Br"—

r2(8+r2q) 2

8'(2n —1)(6n —5)/4(n —1)'5—
4q'e ~

8~p= $(n2 1)r4q+ Br—"(1 6n)—
r2(8+ r2q) 2

+38'(2n —1) (6n —5)/4(n —1)'5,

4cq'e ~

SxTg4= 8(3—4n)r".
r3(8+r2q) 3

This solution can give a finite boundary r= a and the
conditions (4.4), (4.5), (4.6) are satisled by (1) q is
"P. C. Vaidya, Nature 166, 565 {1950).
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negative, (2) 8=a&/x or 8=—a&/y, where

x, y= 5k(12'—16e+6)&%1j/(n —1)~,

and (3) 1&I &2 when 8 is negative and 1&I &z
when 8 is positive, where z is that root of the cubic

45z' —123z'+106z—31=0

which lies between 1 and 2. Under these conditions we
have p 3p&—0 for r&a.

It is found that when 8 is positive, Tj. is negative, so
that m' is positive and the distribution is a radiating
one. It is further found that in this case p —3p does not
strictly decrease from r=0 to the value of p on the
boundary, but that it attains a non-negative minimum
value at a point within the distribution. When 8 is
negative, T~ is positive, so that the solution then
represents a radiation-absorbing distribution.

V. THE EXTERIOR SOLUTION

The exterior solution of a radiating star describing a
distribution of pure outflowing radiation has already
been completely discussed elsewhere, ~ and we put
down here the results of this solution that are useful for
our present work. The line-element describing this 6eld
ls

dS = dR' —R'(d8'+ sin'8d z ')
1—2m/R

m' ( 2m'
+—(1—IdT, (5.1)fL R)

where m=m(R, T), m=8m/8T, and f=f(m) is an arbi-
trary function of m given by

(8m/8R)(1 2m/R) =f(—m). (5.2)

This solution is true for R;(T)&R&R,(T), and it is
continuous at R=R.(T) with the Schwarzschild's ex-
terior solution

ds = —(1—2M'/R) 'dR —R'(d8'+sin'8deP)
+(1 2M/R) dT-

The continuity of g„.at R=R.(T) determines the func-
tion R,(T) and the arbitrary function y(T) of T which
occurs when (5.2) is solved as a differential equation
for m. It is found that R,(T) is given by

(dR,/d T)= 1—2M/R, . (5 3)
The function f(m) is left arbitrary and will be deter-
mined by the conditions at the interior boundary
R=R;(T). The energy-momentum tensor describing
this zone of pure radiation is given by

Tja =tTKPw 1 w+0+=Oq (R~)Pv =0
and we have

o =F(m)/4xr', w'= D'(m)/F(m) j&,

F(m) being another arbitrary function of m.
~ P. C. Vaidya, Current Sci. (India) 12, 183 (1943); see refer-

ence 5. See also H. Mineur, Ann. ecole normale super. Sbr. 3,
5, 1 (1933).

(m —xR) &'(m —yR)"= y(T)

satisfies (5.2) if

x, y=~~(1&(1—8f)&), j, h= 'z(1%(1—8f) 1).

(5 5)

The continuity of g„, at the exterior boundary deter-
mines q(T) to be

q (T)= (M xR,)'—(M yR, )"—.
We are now ready to make the connection of our
interior solution with this exterior solution over the
boundary.

VI. CONNECTION BETWEEN THE INTERIOR AND
THE EXTERIOR SOLUTIONS

Our interior solutions have been obtained with
reference to the co-moving coordinates characterized by
the line-element

ds'= —e dr' —r'ee(d8'+sin'8d ep)+e&dP, (6.1)

while the exterior solution is developed in the coor-
dinates (R, T) of the line-element,

ds'= —e"dR' —R'(d8'+sin'8dzP)+e"dT . (6.2)

The Grst problem then is to transfor~ the coordinates
(r, t) of (6.1) to the coordinates (R, T) of (6.2). As the
general features of all the radiating distributions ob-
tained here are the same, we illustrate the method of
making the connection by taking a particular case of
Solution III and connecting it with the exterior solution.

Detailed Consideration of a Particular Case
of Solution III

We shall choose n=$ so that p,/p, =3, p, being the
central density and p, being the central pressure. The
solution then is

8m.P=

e
—2kt. r—7q e

e'=
a 2rm(a+. 2~)~

e'y=
28q2

12q r2g g2g

e—a,
r2 3r2g g2Q

e r'(8+r")'
C2

4q' 9r&—Su"
Sxp= — e

r2 3r2~—cP'
(6 3)

q2g2g
8z.e= (12'" 7u'&), —

1882C2

2 &3 0 4 —e~/2
7

0 ~t Ee—(a~) lz ~4—Ee~ Ck = —qo~~/6.

Equation (5.2) for the function m(R, T) can be
readily solved in the particular case

f(m) =f=a constant.

If f&$ we 6nd that
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0= R'T'e ~+—RTe ).

(6.5)

(6.6)

(6.7)

Equation (6.5) immediately gives E(r, t) Equation . (6.7)
can be integrated to find T(r, t). It gives

(3) 'r'&(2 r4&—7a&)'(282'q') R)4'%(T) = 1, (6.8)

4'(T) being an arbitrary function of T. The boundary
E=R;(T) of the distribution is now easily obtained by
putting r=a in (6.8). We then find

so that

(3)-7(17)8(28+2q2)14au2))R ss)I)(T) —1 (6 9)

(1/q)) (Bq /BT)+ (28/R~) (BR;/BT) =0 (6.10)

The transformations of coordinates can now be com-
pleted. Ke find that

e"= 7(3r" a")/3(4r" a—")—
e"= [112(3r'~—a")'a 4))+e"](B)P/BT)2(R/28$) 2,

Sn.p=(9—14e ")/7R') 8)rp=(11—14e ")/7R')

q'a4~ 16—21e " 3 EC 7e "—4
Sxo=

$8jV2C2 7e—&—4 7q @2~

e'= —(7e "—4)!2(28)&.

Over the boundary E=R,(T) we have

e "=9/14, e"= (448+14/9)(dE;/dT)' p=0,
Sap= 2/7RP, Ss)r =Sq'a )/18E2e', s'= —1/4(28) &.

As e is negative, it is clear that dR,/dT is negative and
so the distribution is a contracting one. YVe now connect
this solution with the exterior solution (5.1). The con-
nection is made through the continuity of g„„p, and o

8 is given in terms of the boundary radius by 8=—a'))/3

and we must take q to be negative.
It will be noted that the solution corresponds to a

sphere of Quid of in6nite density and pressure at the
center, having at that point the ratio which would hold
for disordered radiation or for particles of such high
kinetic energy that their rest mass may be neglected in
comparison with their total mass. Other ratios could
of course be obtained with a different choice for the
parameter n. The constant 8 is negative. As 8 ap-
proaches zero through negative values, the ratio of the
pressure and the density approach 3 throughout, the
constant k approaches zero, and the sphere tends to be
static and larger without limit.

%e now transform this solution to the line-element
(6.2). Let the equations of transformation be

E=E(r, t), T= T(r, t)

The law of transformation of the tensor g&" leads to

e "=R"e-~—8'e &, (6.4)

at E=E,(T). The continuity of p is already obtained
by making p=0 on E=R;. The continuity of e" gives

m;/R, =5/28 or m(R, , T) = (5/28)E, , (6.11)

so that m/E is a constant on the boundary. Equation
(6.11) is an equation to determine%'(T) once the form
of the function m(E, T) is known. The continuity of e"

gives

[1/f(m;) j(Bm/BT), = (14)&17/9)(dE;/dT). (6.12)

We now show that (6.11) and (6.12) together determine

f(m) as a constant. For that purpose we determine
(Bm/BT);, i.e., the value of Bm/BT when E=R;, by
differentiating (6.11) with regard to T:
(Bm/BR ~) (dR;/d T)+ (Bm/BT);

= (5/28) (dE;/d T). (6.13)

But on using (5.2) we 6nd that

Bm/BE, = (Bm/BR); = (14/9)f(m;),

and therefore (6.13) gives

f(m, )=5/(28)'.

Now m; is not a constant, but f(m, ) is a constant. This
is possible only if the arbitrary function f(m) is a con-
stant. To complete the process of using the continuity
of g„„at R=R,(T) we must now determine m(E, T) of
the exterior solution so that (6.11) may determine the
arbitrary function%'(T). As f(m) is a constant=5/(28)',
the form of the function m(R, T) is the one given by
(5.4). We 6nd that

(m —xR) '(m —yR)"= (M xR ) '(M —yE—)~

x, y = —,'(1a (93/98) &); j, h = -,'(1W (98/93) &).

M is a constant and E,=E,(T) is the exterior boundary
determined by

dE,/d T= 1—2M/E, .

On the internal boundary R=R,(T) (6.14) and (6.11)
give

R,(5—28x) )'(5 —28y)"=28(M —xR,) '(M —yR, )~,

so that the arbitrary function @(T) now gets deter-
mined by

e(T) =E(M xR.) ")(M yR—) "~'—
Q —(3)1(28))4(]7)

—8(g q)
—28a-ii2q(5 2gx)2$)'(5 2gy)28))

Thus the continuity of g„„across R=R;(T) determines
the function f(m) of the exterior solution and the func-
tion %(T) of the interior solution. The only arbitrary
function left undetermined in the scheme of our solu-
tions is the function F(m) of (5.4). This is now deter-
mined by the continuity of 0., the density of the Qowing
radiation across R=R,(T). For this continuity leads to

F(m, )/4+RAN =5q'a)//144xE'e',

which is readily satisaed by

F(m) = [(14qa2)))'/45E'c']m'.
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This completes the connection of the solutions at the
interior boundary.

VII. CONCLUSION

Here we have given the first complete nonstatic
solution, holding from E=O to R= ~, representing an
isolated spherically symmetric nonstatic distribution
radiating out energy. There are two boundaries, the
interior one and the exterior one, but we have been able
to give a line-element whose coeS.cients are continuous
throughout from R =0 to R= ao. It has already been

proved by the author' that in the case of a distribution
with the line-element

ds' = e"dR' R—'(de'+s—in'Odyl)+ e"dT'

the continuity of g„„alone is su%.cient to insure that
the total mass of the isolated distribution is conserved.

The solution discussed in detail in the last section
shows that the corresponding material distribution is
contracting, dR,/dT being negative. But m;/R, is a
constant, m; being the mass of the distribution as ob-
served from its external gravitational field. So the
newtonian gravitational potential energy of the interior
distribution remains constant and the contraction
therefore is not gravitational. It seems to be a purely
relativistic eGect. The radiating distribution loses
energy and so its mass decreases. But if m;/R; is to
remain a constant, then E; must also decrease. This
may explain the contraction.

Some of the particular solutions derived here have
suggested the existence of a new class of solutions of
Einstein's field equation. These solutions would repre-
sent non-isolated spherically symmetric distributions
absorbing energy from the cosmos. These are at present
being investigated.
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On the Ionization Yields of Fission Fragments*f
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The disagreement between the distributions in 6ssion fragment mass and ionization is attributed to a
variation in ionization yield with fragment mass and to a dispersion arising from such effects as neutron
recoil and instrumental errors of ionization measurement. After the effects of dispersion in the available
data of fragments from U~ slow neutron 6ssion are taken into account, the variation in ionization yield
is estimated from the remaining disagreement in distributions. For the most probable 6ssion asymmetry,
the energy-ionization ratio of light fragments is found to be approximately 3.7 percent less than for heavy
fragments.

I. INTRODUCTION

A RECENT analysis' of the ionization produced by
slow, heavy particles indicates that appreciable

kinetic energy is lost to recoiling gas atoms having a
reduced ionization eKciency. The resulting increase in
the energy-ionization rate dE/dI as the heavy particle
is stopped accounts for the ionization defect, the dif-
ference between the actual energy of the particle and
the energy determined from the total ionization on the
basis of w =dE/dI of fast particles. Since the ionization
defect increases with the mass of the particle, it is
expected that m~, the energy-ionization ratio obtained
for complete stopping of a heavy fission fragment, is
greater than el, of a light fragment.

Any direct measure of ml, and mII would require
measurements of both the ionization and energy of
individual fragments. Because fission fragments do not
all have the same kinetic energy, mass and eBective

* Work performed in the Ames Laboratory of the AEC.
f Details of this analysis are contained in ISC 98.
f Now at Los Alamos Scienti6c Laboratory, Los Alamos, New

Mexico.
' Knipp, Leachman, and Ling, Phys. Rev. 80, 478 (1950).

charge, energy measurements of individual fragments
by such means as calorimetry, magnetic deQection or
electrostatic deQection have not been feasible. From the
momentum condition of fission and the measured mass
distribution, however, the distribution in the rela(inc
kinetic energies of the complementary light and heavy
fragments can be determined quite accurately. In this
investigation, a comparison of this energy ratio dis-
tribution with the corresponding ionization ratio dis-
tribution" is used to determine indirectly wr, /wrr for
the slow neutron fission of U'".

II. COMPARISON OF DISTRIBUTIONS

Method

Using double "back-to-back" ionization chambers,
both Brunton and Hanna' and Deutsch and Ramsey4
have made coincidence measurements of the number
of ion pairs Ir, and Ilr (subscripts L and II always refer

' Plutonium Project, Revs. Modern Phys. 18, 513 (1946).' D. C. Brunton and G. C. Hanna, Can. J. Research A28, 190
(1950).

4M. Deutsch and M. Ramsey, MDDC 945 (1946) (unpub-
lished).


