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tions 811b(x'), commute or anticommute with qP(x),
II (x) for all x and x' on a given 0., where the relation
of anticommutativity holds when both u and b refer to
components of half-integral spin Gelds. The consistency
of this statement with the general commutation rela-
tions that have already been deduced from it is easily
verified. By subjecting the canonical variables in Eq.
(2.81) to independent variations, we obtain

L~.(x), &e'(x') &+=f11'(x), be'(x') j+=o,
L@'(x), bIIb(x') j+=LII (x), hlIb(x') j~——0, (3.25)

which is valid for all x, x' on 0. In addition, Kq. (2.81)
properly states that all physical quantities commute at
distinct points of o.

%e conclude that the connection between the spin

and statistics of particles is implicit in the requirement
of invariance under coordinate transformations. "

'o The discussion of the spin and statistics connection by W.
Pauli I Phys. Rev. 58, 716 (1940)) is somewhat more negative in
character, although based on closely related physical requirements.
Thus, Pauli remarks that Bose-Einstein quantization of a half-
integral spin Geld implies an energy that possesses no lower bound,
and that Fermi-Dirac quantization of an integral spin 6eld leads
to an algebraic contradiction with the commutativity of physical
quantities located at points with a spacelike interval. Another
postulate which has been employed, that of charge s mmetry
W. Pauli and F. J. Belinfante, Physica 7, 177 (1940), suffices

to determine the nature of the commutation relations for suflici-
ently simple systems. As we have noticed, it is a consequence of
time re6ection invariance. The comments of Feynman on vacuum
polarization and statistics fPhys. Rev. 76, 749 (1949)j appear to
be an illustration of the charge symmetry requirement, since a
contradiction is established when the charge symmetrical concept
of the vacuum is applied to a Bose-Einstein spin $ 6eld, or to a
Fermi-Dirac spin 0 6eld.
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In Part I of the present series of papers an approximate equation was derived governing the diffusion of
high energy gamma-rays through matter. In Part II an approximate solution of this diffusion equation was
obtained in the energy region where the total gamma-ray cross section was substantially independent of
energy. In the present paper, by consideration of the methods employed in obtaining the solution in II,
a refinement of the solution is carried out which reduces the errors introduced by the approximations made
both in the energy distribution and the angular distribution of the multiply-scattered gamma-rays. The
solution is also modi6ed to take into partial account the effect of small variations of the total gamma-ray
cross section with energy. An upper and lower bound on the solution is obtained when the cross section is
independent of energy.

I. INTRODUCTION
'

N the 6rst (I) of the present series of papers, ' an
& ~ approximate equation governing the diffusion of
gamma-rays through matter was derived. The gamma-
ray energies for which the equation is valid extends
from a few Mev up to energies (depending on the
material) where the radiation of gamma-rays by the
secondary electrons (photoelectrons, Compton recoils,
and pairs) produced by the primary gamma-rays be-
comes important. In the second (II) paper of the series,
the solution of the diffusion equation was considered
in the energy range where the total cross section for
gamma-rays was practically independent of energy. In
all materials this latter energy range coincides prac-
tically with the energy range over which the diffusion
equation itself is valid. However, in order to obtain a
solution to the equation, even with this restriction, it

~ Supported by the AKC and by a grant-in-aid from the Scien-
tific Research Society of America.

'L. L. Foldy, Phys. Rev. 81, 395 (1951), hereinafter referred
to as I, and L. L. Foldy and R. K. Osborn, Phys. Rev. 81, 400
(1951),hereinafter referred to as II.

~f(~, 5, n, 0)l~f+4rf(~, 6 n, f)

=(1/s) '

4~4 ~&(~'l~)f(~' 5' n' t')d&n' (1)

was necessary to make a rather poor approximation to
the Klein-Nishina formula; and this last approximation
leads to rather large errors, especially for gamma-rays
whose energy lies far below the energy of the incident
gamma-rays. The present paper is directed towards
refining the approximation somewhat, making certain
corrections to the solution to improve its accuracy, and
studying the magnitudes of the remaining errors. The
notation used is the same as in I and II, and reference
should be made to these papers for the meaning of
symbols not sufficiently defined below.

II. APPROXIMATIONS TO THE KLEIN-NISHINA
FORMULA FOR WHICH THE DIFFUSION

EQUATION CAN BE SOLVED

The equation governing the diffusion of gamma-rays
derived in I is
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FIG. 1. The function K(cr'/o) together with several power law
approximations to this function.

=(1/n)JI ~r g(a', $', n', f)d$'dn' (5).
This is the equation whose solution corresponding to
monoenergetic gamma-rays of softness 00 incident
normally on the surface of the material was found in
II to be

g(a, 6 n, f)=L Z g-(a, k, n, P)7 em( —Crt), (6)

where f is the distribution function for the gamma rays
in softness a (reciprocal of the gamma-ray energy
measured in units of the electron rest energy= gamma-
ray wavelength measured in electron Compton wave-
lengths), and angle (as specified by the "rectangular"
orientation variables $ and n), at a depth f' (dimension-
less depth parameter) in the material. pr is the (con-
stant) total gamma-ray cross section,

a'= a k I (5 6')—'+ (n —n')'}, — (2)

and the kernel,

E(o'/a) =
~ (o'/ )[1a+(a'/a)'7, (3)

represents (apart from a constant dimensional factor)
the Klem-Nishina cross section for scattering of a
gamma-ray from a softness cr' to a softness 0..

We wish to note erst that a solution of Eq. (1) can
easily be obtained if the kernel E can be approximated
by any power of a'/a, say (a'/a)". For, if one replaces IC

by this factor, then by the substitution,

f(a, (, n, P) = («l~) "g(~ 5 n, 1 ), (4)

Eq. (1) can be reduced to the form

I:e(., ~. f)/e7+~.g(, S. t)

where

go= ~(a «-) ~(k) &(n),

g~= (i/~)&3~ «—2—(P+n')7

(m 1)(21.)m p g2+n2~ m —aI, m&2.
2~(m')'

In the above, the asterisk subscript on the parentheses
indicates that if the quantity contained in parentheses
is negative, then the parentheses is to be replaced by
zero. The distribution function f is then given simply
by g multiplied by («/a)". In II, the solution for the
choice n= 1 was examined.

In Fig. 1, we have plotted IC as a function of (a.'/a)
together with several power law approximations (m=1,
~3, 2, and 3) to it. It can be seen that n= 1 is not a very
satisfactory approximation, being everywhere too high,
but it is the only power law approximation behaving
correctly for small a'/a. Since physically E determines
the probability of a Compton scattering of a gamma-ray
of softness 0' to a softness fT, this means that in this
approximation we predict too many scattered gamma-
rays at all energies, particularly at low energies. It will
be noted further that the choice n=2 is a rather good
approximation for o'/o)0. 5; and, hence, the solution
obtained with this choice will give quite accurate results
for the distribution of gamma-rays in the range from
half the incident energy to the incident energy
(o'p&o'(2«), but it will predict far too few gamma-rays
at the lower energies. On the other hand, the choice
n=~3 is a fair approximation over the range from
a'/a =0.2 to a'/a=1 (better than 15 percent), and so
might be relied. on to give good results over the softness
range (aa to Sa a). It represents probably the best power
law approximation to the Klein-Nishina formula but
will predict too many scattered gamma-rays at high
energies at the expense of too few at low energies.

Now the fact that a change in the power by which the
Klein-Nishina formula is approximated leads only to a
change in the power of (oa/o) by which g is multiplied
to give the distribution function suggests that a still
better approximation to the solution can be obtained by
"interpolation" on the coefficient of g. The natural
choice here is to take this coeKcient to be just IC{oa/o):

f(&, k, n, f') =k(«!a)L1+(«I&)'7g(a 5, n f'), (8)
since this decreases the number of high energy gamma-
rays slightly and brings it into accord with what one
obtains by a good approximation (n= 2) for this energy
region and at the same time increases the number of low
energy gamma-rays substantially so as to give a number
much closer to what one would anticipate on the basis
of the results from the choice n=1. Hence, we would
expect Eq. (8) to be superior to any solution obtained
by a simple power law approximation to E.

Actually the approximate solution (8) has a very
simple interpretation. The problem to which we are
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trying to find a solution corresponds to the diffusion of
gamma-rays which are Compton scattered with a prob-
ability proportional to K(o'/o) = x~(n'/0) [1+(0'/o)'j. If
we replace this problem by one in which the incident
gamma-rays are divided into two equal groups, one
group being scattered with a probability proportional to
a.'/0 and the other with a probability proportional to
(~'/s)', so that the average probability is given by K,
then Eq. (8) would be the exact solution to this latter
problem.

III. IMPROVEMENT OF THE SOLUTION

As we pointed out in II, the series (6) has the inter-
pretation that the 6rst term represents gamma-rays
reaching the depth f' unscattered, while the second,
third, fourth, etc. , terms represent, respectively, the
gamma-rays reaching the depth g after having been
scattered once, twice, three times, etc. Actually, the
solution for a power law approximation to E given by
Eq. (4) could have been obtained by an iteration pro-
cedure on the original diffusion equation. One is led to
inquire why one can easily obtain a solution to the dif-
fusion equation when E is approximated by a power law
and yet a solution is difIicult to obtain when the correct
expression for E is used. By investigating the iteration
method of solution the reason for this difference is
found to be the following: Consider a gamma-ray scat-
tered m times and as a result having its softness modified
from fTO to o. If oi, o-2, o ~ are the softnesses of the
gamma ray after the first, second, (m —1)th, scat-
terings, then when Kis approxim'ated by (0'/0)", the
probability that this sequence of scattering takes place
is proportional to

(&O/0 i) (+i/+2) ' ' (0 —i/+) (0 0/+) ~ (9)

The fact that this expression is independent of the
sequence of intermediate softnesses is what makes the
simple solution possible, and the fact that it is inde-
pendent of m (the number of scatterings) is what allows
the factor (00/&r)" to be factored out of the expression
and appear as the coeKcient of g in Eq. (4). If K had
these same simple properties, then the solution of Eq.
(1) could be written in the form (8).

Actually, E does not have these properties; but we
can show that it does not deviate too greatly from
having these properties. If we define the functions

K (~0/~;~i, ~2, . ~ i)
=K(pro/0i)K(ai/(r2) ' ' K'(0 i/'IT)

=K i(pro/(r i)K(a i/a), (10)

then we must show 6rst that E is not very sensitive to
variations of oi, o2, o. ~. In the appendix we give
a proof that E is always bounded from above by E
and from below by (0'o/a)' for any values of the inter-
mediate softnesses. ' Referring to Fig. 1 we see that this

' From this it follows by elementary arguments that

( o/' )'c(, 5, n, 0) &f(, 5 n c) & k( o/ )I &+( o/' )'lc( 5 n, t').

con6nes E to a relatively narrow range, particularly
for 00/rr) 0 5 .I.nsofar as K may be approximated by K,
Eq. (8) will be the solution to our problem.

Actually, however, it is possible to improve on the
solution given by Eq. (8), since a tractable form can
still be obtained even when the E„are approximated
by functions which are different for different m. Statis-
tically, we would expect that a gamma-ray would
reach the softness o from an initial softness oo in m
scatterings far more frequently through those sequences
of intermediate softnesses which are uniformly dis-
tributed between o.o and o- than by such sequences
which include one or more large changes in softness and
many small ones. This in turn would lead one to expect
that if one had to pick an effective K for scattering inde-
pendent of oi, f72, o i, the best choice would lie
close to that K, which we shall denote as X (00/o),
for which o &, o2, o.

& are uniformly spaced between
ao and o.. We have plotted these for m= j., 2, 3, and 4
in Fig. 2a. The exact expressions for K (so/o) are quite
complicated, but one can approximate them closely by
the series of functions,

W~(ro/e) = (no/a) I (00/o)+(m+1) 'L1 —(ao/a)] I, (11)

which have a simple analytical form. These have been
plotted in Fig. 2b for comparison with the curves in
Fig. 2a. 5' is slightly larger than E for small values
of (&ro/0); but this is fortuitous, since we would expect
the best effective value for E to lie above X in this
region.

We shall now show that to within the error made in
replacing W (oo/o')K(o'/o) by W +i(00/n), the func-
tion

f(., f., ~, f)

=[2 W ( o/ )g ( $ 9 f))exp( —4 f), (12)

with the g„given by Eq. (7), is a solution of Eq. (1).
The proof rests on the fact that

~g-+i(~, 5 n, f)/~f

as can be seen by substituting Eq. (6) in Eq. (5). If one
substitutes Eq. (12) in Eq. (1), one obtains easily

W-+i(~o/~) ~g-+i(~, 6, n, f) ~f

= (1/'ll)
J

l K((r'/o) W (00/a')

xg.( ', g', q', f)&~'6',

which establishes our contention. . On the basis of the
discussion above, it is unlikely that the errors in the
solution (12) are large at any depth and for any softness.
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1.0 softness 0 actually occurs at the angle 0 fixed by the
equation: mI1 —cos(8/m)} =o —00. Hence, we might
expect an improvement in the angular distribution
represented by Eq. (8) if the factor (0 —00—cP/2m)+ is
replaced by the factor (~—00/mI1 —cos(8/m) })+.

0.5

(b) Correction of the Term for Single Scattering

One can easily show that the correct form for the
term in Eq. (8) representing a single scattering of a
gamma-ray when employing the rigorous Klein-Nishina
formula should be

(2~) 'I'(-~0/~)L1+(~0/~)' (~—0/a) sin'a]
X h(~ —~,—I 1—cosa}).
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Hence, we can employ this correct term in place of the
result obtained above for the single-scattering term in
the series (8).

(c) Correction of the Exponential Absorption Factor

It has been assumed in the work above that the total
gamma-ray cross section is independent of softness in
the range of energies in which we are working. Actually
this cross section varies somewhat with energy. Since
the exponential factor exp( —Pr 1') represents simply the
over-all absorption of the gamma-rays in pepetrating to
the depth P and since a gamma-ray with softness 0. at a
depth f has generally filtered down to this softness
through a series of intermediate softness values, some
improvement of the solution would be anticipated if one
replaced the constant p& in the exponential by the
average value of p& over the softness range from t7p to 0'.

We shall represent this average value by 4 r(era, 0).
Making all of the above corrections, our "best" solu-

tion of the diffusion problem now takes the form

FIG. 2{a) The function E (oojo}for m = 1, 2, 3, 4; {b) the func-
tions W {e'0/0') for m= 1, 2, 3, 4, representing approximations to
the corresponding functions E .

f(, P, g, f)=[& f„]e p[—4 ( o, )f],

fo = ~(~- ~o) &(I)~(~)

Absolute, but rather wide, limits on the errors are f (2 ) y~( / )[1+( / )2 ( / )provided by the inequality in reference 2.

X&(0.—0 0
—

I 1—cos& }),

X(tr 0Otpt t 1—cos(d'/tn) })~, m&~2. (14)

V. SPECIAL CASES

IV. FURTHER REFINEMENTS IN THE SOLUTION

The best solution we have obtained so far for our f-= —+-
diffusion problem is given by Eq. (12). In this section ~ ~ ~+1 l ~ ) 2~(~J)2
we shall make some small modifications of this solution
to ameliorate the eGects of some of the other approxi-
mations we have been forced to make.

(a) Improvement in the Angular Distribution

In the solution (12) each term for m&&2 cuts off at an
angle 0= [2m(~ —oo)]& because of the asterisk on the
parentheses in g . One can easily show that the rigorous
cut o6 in angle for an m-fold scattered gamma-ray of

In certain special cases, the solution given by Eq. (14)
can be made to take simpler forms by the use of
methods such as those employed in II. In particular,
for the special cases where P((2(0 —oo) or where
p=[8$(0 —00)]&»P/2(o —00), the series in Eq. (14)
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may be summed to give the closed form:

f= Lb(~-«) &(k) &(~)+(1/2~) (~o/~)
XL1+(«/o)' —(«/o) sin'8]b(o —o o

—[ 1—cos8})
+ (4/~) i'(«/~)'({ L1—Io(p)+kpI|(p))/p'}
+ [ (o'/&ro)(1 —«/&) Lp

—2Iq(p)+ pIo(p)]/p })
Xexp' —&'/2( —o)]]exp L

—4 r( )f'] (15)

To obtain the distribution function at any depth
integrated over all angles for the gamma-rays, it was
found necessary to omit the slight improvement in the
angular distribution, resulting from the replacement of
t)'/2m by mL1 —cos(8/))))] in order to carry out the
integration. Once this is done, the series can be summed
to give for the integral distribution function

10

0.5

0.2—

0.1

=
I ~(~—«)+L4f'(«/~)'I 1(p)/p]

+81 («/o')(1 &ol&) Io(p)/p'}

Xexp[ —
C r(«, o) f']. (16)

0.05-

0.02—

For convenience in calculations the functions

[1 Io(p)+ppI—i(p)]/p') Lp —2Ii(p)+ pI)(p)]/p',

Iq(p)/p, and Io(p)/p', occurring in the above formulas,
have been plotted as a function of p in Fig. 3.

APPENDIX

We wish to establish that

0.01

0.005

0.002-

0.001—
0(ap/a) ~& K))){apja) a1) a2) a))) 1) ~&K1(ap/a) =—K{ap/a). (A-1)

We shall use the method of mathematical induction based o
fact that

2 p

K{ao/a) &~ (ao/a)'.

K (ap/a) &~ {ao/a)',
We have first that if

superior limit in Eq. (A-2). We have

K~+1(ap/a) =K~(ao/a~) K(am/a) ~ K(ao/am) K(am ja) )

(ICo o&/)IC(& /&) = k(&o/& )I t+(&o/& ) 3' k(~ /&)Lt+(~ /~)']=l(./ )11+(./ )'7
Ikr1+(a /a)'7t:1+(«/a )'7/r1+(ao ja)'7

=&(~o/~) I k+kL(~ /~)'+(~ol~ )']/
9+(ao/a)'7I ~ K(ao/a)

The last inequality follows from the fact that (a~/a)'+(ao/a~)
has its maximum value for a equal to ao or a) this maximum value
being just 1+(ap/a)2.

then

K +1(ao/a) =K («/a )K(a /a) w(ao/a )'(a /a)'=(ao/a)', (A-4)

which combined with Eq. (A-2) is sufhcient to establish the
inferior limit in Eq. (A-1).

Secondly, we shall show that if

K {ao/a) ~& K(ap/a),
then

K +1(ao/a) &~K(ap/a))

which combined with Eq. (A-2) is su%cient to establish the

n the
FIG. 3. Plots of the functions entering Eqs. (15) and {16).(A)

The function I1(p)/p, (B) the function I2(p)/p; (C) the function
t 1—Ip(p)+gpI1(p)7/p, ' {D) the function pp —2I1(p)+pI2(p)7/p .


