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The conventional correspondence basis for quantum dynamics
is here replaced by a self-contained quantum dynamical principle
from which the equations of motion and the commutation relations
can be deduced. The theory is developed in terms of the model
supplied by localizable 6elds. A short review is first presented of
the general quantum-mechanical scheme of operators and eigen-
vectors, in which emphasis is placed on the di6'erential character-
ization of representatives and transformation functions by means
of infinitesimal unitary transformations. The fundamental dy-
namical principle is stated as a variational equation for the
transformation function connecting eigenvectors associated with
different spacelike surfaces, which describes the temporal develop-
ment of the system. The generator of the infinitesimal transfor-
mation is the variation of the action integral operator, the space-
time volume integral of the invariant lagrange function operator.
The invariance of the lagrange function preserves the form of the
dynamical principle under coordinate transformations, with the
exception of those transformations which include a reversal in
the positive sense of time, where a separate discussion is necessary.
It will be shown in Sec. III that the requirement of invariance
under time reflection imposes a restriction upon the operator
properties of fields, which is simply the connection between the
spin and statistics of particles. For a given dynamical system,
changes in the transformation function arise only from alterations
of the eigenvectors associated with the two surfaces, as generated
by operators constructed from 6eld variables attached to those
surfaces. This yieMs the operator principle of stationary action,
from which the equations of motion are obtained. Commutation
relations are derived from the generating operator associated
with a given surface. In particular, canonical commutation rela-
tions are obtained for those field components that are not restricted

by equations of constraint. The surface generating operator also
leads to generalized Schrodinger equations for the representative
of an arbitrary state. Action integral variations which correspond
to changing the dynamical system are discussed briefly. A method
for constructing the transformation function is described, in a
form appropriate to an integral spin field, which involves solving
Hamilton-Jacobi equations for ordered operators. In Sec. III,
the exceptional nature of time reflection is indicated by the
remark that the charge and the energy-momentum vector behave
as a pseudoscalar and pseudovector, respectively, for time reflec-
tion transformations. This shows, incidentally, that positive and
negative charge must occur symmetrically in a completely
covariant theory. The contrast between the pseudo energy-
momentum vector and the proper displacement vector then
indicates that time reflection cannot be described within the
unitary transformation framework. This appears most funda-
mentally in the basic dynamical principle. It is important to
recognize here that the contributions to the lagrange function of
half-integral spin 6elds behave like pseudoscalars with respect to
time reflection. The non-unitary transformation required to
represent time reflection is found to be the replacement of a state
vector by its dual, or complex conjugate vector, together with the
transposition of all operators. The fundamental dynamical
principle is then invariant under time reflection if inverting the
order of all operators in the lagrange function leaves an integral
spin contribution unaltered, and reverses the sign of a half-integral
spin contribution. This implies the essential commutativity, or
anti-commutativity, of integral and half-integral 6eld compo-
nents, respectively, which is the connection between spin and
statistics.

I. INTRODUCTION

~[KSPITK extensive developments in the concepts
and techniques of the theory of quantized fields,

quantitative success has been achieved thus far only in
the restricted domain of quantum electrodynamics.
Furthermore, the existence of divergences, whether
concealed or explicit, serves to emphasize that the
present quantum theory of fields must, in some respect,
be incomplete. It is not our purpose to propose a solu-
tion of this basic problem, but rather to present a
general theory of quantum fieM dynamics which unifies
several independently developed procedures and which

may provide a framework capable of admitting funda-
mentally new physical ideas.

Quantum mechanics involves two distinct sets of
hypotheses —the general mathematical scheme of linear
operators and state vectors with its associated proba-
bBity interpretation and the commutation relations and
equations of motion for specific dynamical systems. It
is the latter aspect that we wish to develop, by substi-

*The author wishes to acknowledge the hospitality of the
Srookhaven National Laboratory, which is under the auspices of
the ABC. The general program of this series was initiated there
during the early summer of 1949, and the present paper was
largely written at this Laboratory during the summer of 1950.
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tuting a single quantum dynamical principle for the
conventional array of assumptions based on classical
hamiltonian dynamics and the correspondence princi-
ple. ' %e shall find it useful, however, first to review
brieQy some aspects of the mathematical formalism
that find repeated application in the construction of
our theory.

The simultaneous eigenvectors of some complete set
of commuting hermitian operators, %(a'), provide a
description of the arbitrary state 0' by means of the
representative

which has the interpretation of a probability amplitude.
Two such representations, associated with diGerent
complete sets of commuting operators, are related by

(1.2)

where J'dP' indicates integration and summation over

' Although our attention will be focused on field dynamics, the
analogous development of particle quantum dynamics should be
evident.
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the totality of eigenvalues P', and

(~'l p') = (+(~'), +(p')) (1.3)

is the transformation function. As a special example of
Eq. (1.2), we have

(~'
I

v') = (~'I p')d p'(O'
I
7'), (1.4)

the multiplicative composition law of transformation
functions.

The set of commuting hermitian operators

n=UnU ',

which is obtained from 0. with the aid of the arbitrary
unitary operator U, has the property that its eigen-
values are identical with those of 0., and that its
eigenvectors are given by

Therefore,

~(~'I) =(i/&)(+(~'), F+)=(i/&)(~'IF I), (113)
or

(a/i)s(a'I ) =~ (~'IF
I
~")d~"(n"I), (1.14)

which is a differential equation for the representative
(n'I). In a similar manner, we can characterize the
transformation function (a'

I
p') by the effect of altering

the two commuting sets a and P into n —bn and P—hP,
as induced by the two infinitesimal generating operators
Ji, and Fp. Thus,

01

(&/i)b(~'I P') = "(~'IF-I ~")d~"(~"IP')

4 (a') = UO(a'), (1.6)

where cx' and 0.' are the same set of eigenvalues. Con-
versely, two sets of operators that possess the same
eigenvalue spectrum are related by a unitary transfor-
mation. Note that the transformation function (a'I o")
may also be viewed as the matrix of U ' in the original
eigenvector system,

II. QUANTUM DYNAMICS OF LOCALIZABLE FIELDS

A localizable 6eld is a dynamical system characterized
by one or more operator functions of the space-time
coordinates, P (x). Contained in this statement are
the assumptions that the operators x„,representing
position measurements, are commutative,

The unitary operator Lx„,x„]=0, (2.1)

i Aha = aF Fn =
I n,—F]. (1.10)

If the system is such that it is possible to obtain
operators 5n that commute with the complete set n,
one can treat the 50. as arbitrary, infinitesimal numbers,
and 0'(a') provides an eigenvector of a with the
eigenvalue set o.'+ha. This evidently corresponds to
the special circumstance of a having a continuous
eigenvalue spectrum.

The concept of infinitesimal unitary transformation
can be used to provide a dift'erential characterization
for the representative of a state, or for a transformation
function. The change in the representative (a'I) when
the commuting set of operators is altered by the
unitary transformation generated by the in6nitesimal
hermitian operator F, is given by

h(~'I) = ((~—h~)'I) —(~'I) = (&+(~'), +), (1 11)

where

b%'(n') = U%'(a') —+(n') = —(i/h)F+(a'). (1.12)

U=1—(i/k)F, U '=1+(i/h)F, (1.8)

in which F is an in6nitesimal hermitian operator,
induces an in6nitesimal transformation in the com-
muting set of operators,

a= UnU '=o.—bn,
where

and furthermore, that they commute with the field
operators,

so that
lx y-]=0 (2 2)

(xi/ lx')=8(x —x')y (x). (2.3)

The difficulties associated with current 6eld theories
may be attributable to the implicit hypothesis of
localizability. However, our development of quantum
field dynamics will be confined to such fields. It remains
to be seen whether other systems can be included
within its scope.

The problem of constructing a complete set of com-
muting operators, that is, of simultaneously measurable
physical quantities, necessarily involves speci6c prop-
erties of the fields. Nevertheless, as a general principle
associated with relativistic requirements, we must
expect such mutually commuting operators to be formed
from field quantities at physically independent space-
time points, that is, points which cannot be connected
even by light signals. A continuous set of such points
form a spacelike surface, which is a geometrical concept
independent of the coordinate system. Therefore, a
base vector system, 4'(f', ~), will be specified by a
spacelike surface 0. and by the eigenvalues P' of a
complete set of commuting operators constructed from
field quantities attached to that surface. A change of
representation will correspond, in general, to the intro-
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duction of another set of commuting operators on a
diGerent spacelike surface. Of particular importance is
the transformation f'2, «~t'q, «, in which f& and i 2 are
similarly constructed operator sets which possess the
same eigenvalue spectrum and are therefore related by
a unitary transformation LEqs. (1.5) and (1.6)],

g&= Ui2f2Uu ',
0(tl g Pl) F16(i2 1 «)1 il 02 ) (2.4)

~U12 (&/~) ~12 ~+ 12) (2.7)

where b8'~2 is an infinitesimal hermitian operator,
and obtain

&(|i', ~i I12", ~2) = (~/&) (4', «I ~II'»
l l 2", «) (2.g)

The composition law of transformation functions I Eq.
(14)j,

= J~(0~' &~I f2" «)4"(C~" «IC~"' «) (29)

imposes a restriction on bW, the generating operator of
infinitesimal transformations. Thus,

(h', «I &+'»I 4'" ~3)

= "(i~', ~~I ~~»1 12" «)d&"(&2" «l&~"' ~s)

Ql

+J (f~«ll'2' «)d|' (f'2 «I&II »li3

BVg3= 8$')2+ BS'23, (2.11)

so that LEq. (1.7)]

(t i', ~i I i 2"
~ «) = (f2', «I ~» 'I|2" «) (2 5)

A description of the temporal development of a
system is evidently accomplished by stating the rela-
tionship between eigenvectors associated with different
spacelike surfaces, or, in other words, by exhibiting the
transformation function (2.5). Accordingly, we may
expect that the quantum dynamical laws will find their
proper expression in terms of the transformation
function. A differential formulation of this type will

now be constructed.
The operator U» ' describes the development of the

system from 0& to 0& and involves, not only the detailed
dynamical characteristics of the system in this space-
time region, but also the choice of commuting operators,
p~ and g2, on the surfaces C.i and 02. Any in6nitesimal
change in the quantities on which the transformation
function depends induces a corresponding alteration
in Ui2 ',

b(i q', apl 1'q", «) = (12 P2I 8U/2
I i2 (F2). (2.6)

Now it is a consequence of the unitary property that
iV»bU» must be hermitian. Accordingly, we write

the in6nitesimal generating operators satisfy an additive
law of composition.

Our basic assumption is that 85'» is obtained by
variation of the quantities contained in a herrnitian
operator 8'~2, which must have the general form

&1

W» ——(1/c) I (dx)zI xj,
&2

(2.12)

according to the additive requirement (2.11).Individual
systems are described by stating 2 as an invariant
hermitian function of the 6elds and their coordinate
derivatives,

is unaltered in form by a change in the coordinate
system. An exception must be made, however, for those
coordinate transformations that include a reversal in
the positive sense of time, which require a separate
discussion. %e shall see that the requirement of
invariance under time reflection imposes a general
restriction upon the commutation properties of 6elds,
which is simply the connection between the spin and
statistics of elementary particles.

If the parameters of the system are not altered, the
variation of the transformation function in Eq. (2.14)
arises only from in6nitesimal changes of pj, cr& and f2, o.2.
Such transformations may be characterized by infini-
tesimal generating operators, F(0~) and F(«), which
act on the eigenvectors O'Q &', 0&) and 0'(f'2", o2), and
are therefore expressed in terms of operators associated
with the surfaces Oj and 02, respectively. On referring
to Eq. (1.15), we obtain for such variations,

bW» ——F(og) —F(0,). (2.15)

This is the operator principle of stationary action, for
it states that the action integral operator is unaltered
by infinitesimal variations of the field quantities in the
interior of the region bounded by 0.

& and cr2, being
dependent only on operators attached to the boundary
surfaces. The equations of motion for the field are
contained in this principle. '

~ In the following discussions, one should keep in mind that the
lagrange functions of the simple systems usually considered are
no more than quadratic in the components of individual fields.

&I &3= &(4 (&) 4 (&)), 4 (*)=& y (*). (2.13)

In conformity with their classical analogs, we shall
call 5' and Z the action integral and lagrange function
operators, respectively. The invariance of the lagrange
function, and therefore of the action integral, guarantees
that our fundamental dynamical principle,

&(ii', «I fu", 02)

= (y /k) (l g', 0.
g I bW)2

I l,",0,)
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The evaluation of bS'~2 involves adding the inde-

pendent eGects of changing the Geld components at
each point by b04 (x), and of altering the region of
integration by a displacement bx„ofthe points on the
boundary surfaces. Thus,

where
x„—x„=—8x„,I

cN twvx» Cpv — 6vp
—~s~xvy

tesimal coordinate transformation

(2.21)

(2.22)

&I

hWi2 ——(1/c) I (dx) h, g

t' r+ (1/c) i
I

— id~„bx„Z, (2.16)
«1 «2~

where

b, Z= (BZ/B4.)b,4-+(BZ/B4„-)B„b,4.
= [(B~/B4 ) —B.(B~/B4. )5b04

the field components suffer a linear transformation, as
expressed by

4-'(x') —4.(x) = (i/fi)-', e„„S„„.s4s(x). (2.23)

Therefore,

@ '(x) —P (x) = B„g(x)bx„+(i/Ii) 'e„„—S„„~&~(x),(2.24)

and

b4. (x) =b,4.(x)+4 .(x)bx„
+ (i/h) ,'B„bx„-S„„~4s(x) (2.2. 5)

This expression for 802 is to be understood symbolically,
since the order of the operators in 2 must not be
altered in the course of e6ecting the variation. Accord-

ingly, the commutation properties of 80& are involved
in obtaining the consequences of the stationary require-
ment on the action integral. For simplicity, we shall
introduce here the explicit assumption that the commu-
tation properties of Bop and the structure of the
lagrange function must be so related that identical
contributions are produced by terms that diGer funda-
mentally only in the position of ho@ . %e may now
infer the equations of motion

With the introduction of the total variation, the
infinitesimal generating operator F(~) assumes the form

F(~)=, d~„[II.b4.+(I/c) Zbx„II„.4,„-—bx„

where
—(i/2h) II„Si,~4»Bibx„5, (2.26)

cii„-=BZ/B4„-. (2.27)

To simplify the last term of Eq. (2.26), we define

f„„„=f „„=(i/2h—)[II„S„„~P~+II„S„„~p~
+IIi S„~&~5, (2.28)

B„(Bz/B4i„)=Bz/By . (2.18)
and obtain

From the resulting form of 8Wi2 we obtain the infini-
tesimal generating operator F(0), which acts .on eigen-
vectors associated with the surface 0-,

F(0)= (1/c) d0„[(BZ/Bp„)bop+Zbxl 5 (2 19)J.
The total variation, bp (x), is composed additively

of the variation bo4 (x) at the point x, and of the
cliange in 4 (x) produced by moving from the point x
on 0. to x+Sx on o.+ha. . In evaluating the latter, we
shall take into account that the field components 4 (x),
although stated in terms of some fixed coordinate
system, are most advantageously considered in relation
to the local coordinate system provided by 0. at the
point x. Only such motions are contemplated that
correspond to a local rigid displacement of the surface
~. This restriction is expressed by

B„bx,= —8„8x„, (2.20)

being the condition that an infinitesimal space vector
on 0 be mapped. into one of equal length on 0.+ha.

, The displacement induced change in 4P(x) may be
obtained by an alteration in the coordinate system that
reduces, in the neighborhood of x, to the equivalent
local coordinate transformation. Thus, under the infini-

(2.30)

provided f„i„bx„effectivelyapproaches zero, with sufli-
cient rapidity, at infinitely remote points on IT. Finally
then,

where

F(0)=~ d~„[ll„bg+(1/c)T„„bx„5,(2.31)

(1/c) T„„=(1/c) Zb„„II„«4i„«—B&fi,„„—(2.32)

is the stress tensor operator. As we shall demonstrate,
this tensor has the property of being symmetrical,

TJlv TVile (2.33)
'All such characterizations of a spatially closed system, in

terms of an operator approaching zero at infinity, are to be
understood as a restriction to states for which the matrix elements
of the operator have this property.

(i/2h) II„S),„~y~B),bx„=f„i,„B),,bx„
= B),(f„i„bx„)+Bye„„bx„,(2.29)

since the last two terms off„i„aresymmetrical in X and
i, and therefore do not contribute to Eq. (2.29), in
view of Eq. (2.20). We now remark that, in virtue

Xpv
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as an expression of the conservation of angular mo-
mentum.

Conservation laws are associated with variations
that leave the action integral unchanged, since

hWg»=F(og) —F(o2) =0 (2.34)

implies the constancy of the corresponding generating
operator. The mechanical conservation laws for an
isolated system "are derived by considering a rigid
displacement of the entire Geld, or equivalently, of the
coordinate system, which is described by a common
infinitesimal translation and rotation of the surfaces a~
and 0'2~

~Xp 6p tpv&vy Gfsv type (2.35)

generating operator is

where
= (1/c)Q(o) bX,

alld
j„=—(iec/h)II„» 4 .

The implied conservation law,

(2.46)

(2.47)

(2.48)

(2.49)

combined with the field variation 6p =0. The dis-
placement generating operator is then given by

F»,(o) = »„P„(o)+2»„,J„,(&r), (2.36)
where

is that of the total charge in the system.
It is important to notice the ambiguity in the

lagrange function that is associated with given equa-
tions of motion. Thus, two lagrange functions that are
related by

P„(o)= (1/c) do„T„„,. (2.37) (4,a @ a) g(@a 4 a)+c»i f (@a 4, a) (2 50)

provide action integral operators that differ by surface
integrals:

Accordingly,

aild

Mopy —
SENT), v XvT) p.

(2.38)

(2.39)

(2.40)

(2.51)

Therefore, the principle of stationary action for FV» is
automatically satisfied by the equations of motion
deduced from W~~, and

SWAN» ——F(o g) F(o;), — (2.52)
which are the conservation laws for the energy-momen-
tum vector, and the angular momentum tensor, respec-
tively. Since the surfaces 0& and 0.2 are arbitrary, we
infer the corresponding differential conservation laws,

where

F=F+bw, w=~tdo„f„ (2.53)

'8 y Tpy Op (2.41)

8),M),„„=0, (2.42)

which, in conjunction, imply the symmetry of the stress
tensor:

8),M),„„=T„,—Tv„=O. (2.43)

The conservation law of charge can be obtained from
the required invariance of the hermitian lagrange func-
tion under constant phase transformations —the multi-
plication of mutually hermitian conjugate pairs of field
components by exp(Nip). We consider infinitesimal
phase transformations and, for convenience, write

y= (e/hc) B. (2.44)

Thus, we postulate the invariance of Z under the
infinitesimal transformation

84 = —(ie/kc)» bX&, (2.45)

where e is characteristic of the Geld component p,
and may assume the values 0, or ~1. The associated

Hence, augmenting a lagrange function by the diver-
gence of an arbitrary vector does not afkct the equa-
tions of motion, but modifies the infinitesimal generating
operator- associated with a given surface a. However,
this ambiguity of the lagrange function corresponds
precisely to the possibility of subjecting the commuting
set of operators on 0. to an arbitrary unitary transfor-
mation.

%e verify this statement by specializing the general
transformation theory to unitary transformations on a
given surface. Let us introduce f, a new set of com-
muting operators on ~, which are obtained from P by a
unitary transformation,

where 'h is characterized by an infinitesimal hermitian
generating operator bm, according to

(2.55)

As the analog of Kq. (2.8) we have, therefore,

b(l', 0
~

f", 0) =(i/h)(f', ~ob
~
w"|, o); (2.56)
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but
(2.57)

where F and F are, respectively, the operators gener-
ating infinitesimal transformations of fa'nd t'. This is
just of the form (2.53); and conversely, by employing
a particular w we obtain from Eq. (2.56) a differential
equation to determine the transformation function that
defines the new representation.

The commutation relations of our theory are implicit
in the signiGcance of F as an infinitesimal generating
operator. We shall consider first those transformations
that do not alter the surface o, so that bx, =0. It is
convenient to write

(2.58)

where n„is a unit timelike vector and do is the numerical
measure of the surface element. To avoid irrelevant
geometrical complications in the following discussion,
we shall henceforth restrict 0 to be a plane surface, so
that n„ is constant on 0. Note, incidentally, that
coordinate derivatives can be decomposed into compo-
nents normal and tangential to 0.,

(1/c)(BZ/By" ) =Bi II " (2.67)

that is, relations among the variables on cr. The nature
of these relations can be made more apparent by
exploiting the requirement that Eq. (2.66) be inde-
pendent of the coordinate system. We shall later show
that the implied restriction on the structure of Z is
expressed by

To obtain the proper interpretation of Fq~ or Fqo,,
it is necessary to recognize that some of the II can be
identically equal to zero. This expresses the possibility
tha& derivatives in timelike directions of some of the p
may not occur in the lagrange function. Accordingly,
we shall divide the quantities P and II into two sets:

and II, called the canonical variables, and @~, II",
termed the constraint variables, in which the second
set is characterized by

(2.66)

The name ascribed to the p~ refers to the fact that, for
these quantities, the equations of motion (2.60) de-
generate into equations of constraint,

+y~n+~tfxy
Ba '~yByy Btp (4m+'~y'Nv)Bey (2.59)

m„II"—N„II„"= (i/ft) II'S„:" (2.6g)

and that the equations of motion read
On multiplication with N, , we obtain from this equation
that

B.II~= (I/c)(BZ/B4 ~) —Bg„li~ (2.60) II "=(i/h)II' S„'"n., (2.69)
We have here introduced the notation

(2.61)

(2.62)

Another signihcant form, associated with a different
base vector system, is obtained from Eq. (2.53) with

Indeed, we have
f = —II (2.63)

for a quantity which, more precisely, should be written
II (x &r).

The generating operator F now becomes

which enables the constraint equations to be written

(1/c)(BZ/By" ) = (i/h)B II~S „'"ri„(2..70)

We shall now assume that it is possible to solve the left
side of Eq. (2.70) for P", thus exhibiting explicitly the
constraint variables as functions of the canonical vari-
ables. This excludes systems for which the p~ are
fundamentally ambiguous in consequence of the ex-
istence of gauge transformations. The latter situation
will be discussed subsequently in terms of the familiar
example provided by the electromagnetic Geld.

It is evident from these considerations, and from the
structure of the generating operators,

F„=&d Ii.by. ,

= —j/do(II b@ +811 Q ) (2.64)
(2.71)

so that

It should be emphasized again that these operator
expressions are symbolic in the sense that the actual
positions in which bp and bII appear depend upon
the structure of the lagrange function.

that only the canonical variables are dynamically
independent on 0.. Accordingly, F» is to be interpreted
as the generator of that infinitesimal transformation of
the commuting operator set g on o. which is produced
by changing @ into p —5p . Similarly, F&& is regarded
as generating the infinitesimal transformation of f in
which II is replaced by II —bII . Thus, P~ and II are
special examples of a set of independent Geld coordi-
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nates, and the most general possibility is implicit in the
transformation (2.53). Associated with any such set of
operators is the conjugate set appearing in F, as II is

conjugate to P, and —P to II .
Ke shall now examine the change in the matrix of G,

an arbitrary function of 6eM variables on 0., which is
produced by the infinitesimal transformation generated

by Ji&q, say. Thus, we have

b(f', IGI&",.)=(+(f', ), Gb+(f.", ))
+(b+(f', ), G+(1", ))

= —(i/h)(f', I[G, F~o]lt", ) (272)

On the other hand, we have

become

do'[y. (x), II~(x')]~byb(x') =ihby. (x),

d '[II (x), 11~(x')] by (x') =0,

"d 'bll'( ')[y (*'), ll-( )],= hbll ( ),

t do'bli '(x') [P'(x'), P'(x) ]~=0,

(2.78)

b(f', .IGlf", o) =(|',.IboGlf", .), (2 73)
where

where b~G means the change in G produced on increasing

@ by 8p . This simply expresses the fact that replacing

by P —bp in both G and f leaves the relation
between them, and therefore the matrix, unaltered.
Ke thereby infer the commutation relation,

[G, F go] = ihboG, (2.74)

with its evident generalization in regard to the field
coordinates, including, in particular,

[G, Fgu] = ihb uG

and
[A, B] =AB BA— (2.79)

[A, B]+=AB+BA. (2.80)

Since the 8P and bII are quite arbitrary, we have
derived the fundamental commutation relations,

[y (x), II'(x')]~= ihb. gb. (x—x'),
[4 (x), y'(x')]~= [II (x), II'(x')]~=0. (2.81)

Here b, (x—x') denotes the three-dimensional delta-
function, which is defined by

Of special importance are the results obtained from
Kqs. (2.74) and (2.75) with G=y and II:

f
do'b, (x x')f(x') =—f(x), (2.82)

y'(x), do'll'(x') b&'(x') =ihby'(x),

II'(x), )I do'll'(x')bg'(x') =0,

(2.76)

where f(x) is an arbitrary function. The commutation
properties of the p" can then be obtained from their
explicit expression in terms of the canonical variables.
Thus, according to Eq. (2.70),

(1/c)[BZ/8&"(x) @'(x')]~=8„b.(x x')5 "—n„, (2.83)

and
[BZ/By"(x) 11.(x'))~=0. (2.84)

I do'blI~(x')@'(x') II.(*) =ihbli (x)

~
do'bII'(x')y'(x'), 4 (x) =0,

a

(2.77)

in which we have invoked the dynamical independence
of the ft and the II .

To extract explicit commutation relations among the
@' and II' we must know the operator properties of 5@
and 8II . The requirement that the formalism be
invariant with respect to time reaction supplies the
desired information. It will be shown in Sec. III that
b&~(x') and bli~(x') commute with all field quantities

d (x) and II'(x), on o, except when both a and b

designate components of 6elds that possess half-integral

spin, in which event they anti-commute. Accordingly,
the commutation relations of Eqs. (2.76) and (2.77)

In the requirement that commutators be employed,
for components of an integral spin 6eld, and anti-
commutators for components of a half-integral spin
field, we have the connection between the spin and
statistics of particles. We shall note here that the
commutation properties of a Bose-Einstein system,
that is, an integral spin 6eld, can be represented by
means of differential operators. According to Kq. (1.13),
a suitable representative of an arbitrary state obeys

b(i', I)=( i/)h( 'f, IF»l)

=(i/h)l f', o
~

doII bg I, (2.85)
t', f'

in which 0- is not altered. Now the characteristic
property of an integral spin 6eld is that 5@ commutes
with all dynamical variables and can therefore be
treated as a number. The representation involved in
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Eq. (2.85) is evidently that which is labeled by the The contribution of the second term to bJ„.is evaluated
continuous eigenvalues of the y'(x) at all points of o. as follows,
In terms of the notation

b(y', ~l) = deby"(x)(blby"(*))(y', ~l), (2.86)

we obtain

(&/i)(blby"(x))(y', el) =(y', el 11 (*)I), (2 87)

and similarly,

ih(b/b11 '(x))(II', e~) = (11', e~ y'(x) ~). (2.88)

We shall make further application of the general
commutation relations (2.74) and (2.75) by successively
placing G=P„,J„„,and Q. According to Eq. (2.30),
the last term of Eq. (2.32) makes no contribution to
P'„,so that

b(1/c))l (do,x„g de—„x„g)

= ~fd ,*„a(II .by-)- d
„

,a,(ii„-by-)]

= fde), (x„a„x„—a„)(II),by )

+
~f(de„ii„-—d~„ii„™)by-

= I do[(x„a„—x„a„)(II»by)

p, = —JfdaII'a. y'+ (1/c))fdo, Z. (2.89)
Therefore,

+(n II n I—I )by ]. (2.94)

In the evaluation of 8P, we encounter

(1/ )) d „bz=)Id „a„(n„-by)=)fd „a„(n„-by)

bJ„,= —Jfdebll [(x„a„—x„a„)y+(i/h)s„„eye]

whence

=)fdoa„(IIby' ) (2.90)

+~ de[(x„a„—x„a„)11-—('/h)11&S ~-

+n„ii„»n„II»]—by». (2 95)

bP„=&fde(a„iiby. —brr a„y).
We have thus derived the commutation relations

(2.91)
[y., J„„]=((hx/i)a. x.(h/i—)a„)y.+.S„„eye,

The rearrangements of Eq. (2.90) have involved Eq.
(2.17), as simplified by the equations of motion, and
the assumption that the system is spatially closed. We
thereby obtain

[y (x), P.]=(a/i)a„y (x),
[II'(x), P,]=(k/i)B„II (x), (2.92)

in virtue of the commutativity of P„with bp and 8II,
which is a consequence of the fact that half-integral
spin field components must appear paired in the vector
P„.Incidentally, a commutator [F+,P&'&], which has
been evaluated by considering the eGect on P(@ of the
transformation generated by F"&, can equally well be
viewed from the reverse standpoint. Thus, the relations
(2.92) also exhibit P, in the role of the translation
generator.

The angular momentum tensor J„„is easily brought
into a form analogous to (2.89),

J = JfdelI'[—(x a —x a )y'+(i/k)s „'eye]

Q = —(ie/h) de II»,»y» (2.97)

Therefore, we have

bQ= —(ie/h)) "do(bII e»y»+II'e by' ), (2.98)

[11,J„„]= (x„(a/i)a„—x„(h/i)a„)11.—II~S„„~.
(2.96)

+ (h/i)(n„II, —n„II„),
0= II»s„.»"+—(5/i)(n„li "—n„II")

which exhibit J„„in the role of the rotation generator
and illustrate the formation of J„„asthe superposition
of orbital and spin angular momenta. The third equa-
tion of Eq. (2.96), the statement that II"—=0 is a
property independent of the coordinate system, has
already been employed in Eq. (2.68).

According to Eqs. (2.47) and (2.48), the charge
operator is given by

from which we obtain the commutation relations
+(1/c) i (do„x„Zd~„x„Z).(2.93)—~ ~

[y' Q]=ee'y [II Q]= —ee'lI». (2.99)
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These indicate the significance of e as the elementary
charge, and exhibit Q in the role of the phase transfor-
mation generator. Note, however, that the derivation
of Eq. (2.99) from the latter viewpoint is not restricted
to the canonical variables, although nothing new is
obtained thereby.

The general in6nitesimal operator (2.31) describes
the transformation from the commuting operator set
i, &r to f f&

—f, 0+ho, as indicated by

independent of o, since the relation between G(&r) and
the i on 0 is unchanged by an alteration of the surface.
The components of P„(0)referred to axes based on 0

are of this nature; and, consequently, the matrix of
P„(0)in Eq. (2.107) involves the orientation of 0

relative to the coordinate system, but is otherwise
independent of 0. Commutation relations between I'„,
J'„„andG(0) follow from this property of the G(0)
matrix. Thus, we have

e((i' —l&f')', 0+ l'&0) = [1 (i/—h) F]e(f', r) (2..100)

The operator Ii is additively composed of two parts,

0= b&(o) (i/—h) [G(&r), F&&,],

[G(&r) P&*]=(hli) && G(&r)

[G(~), ~"]= (h/i) 4.G(~)

(2.109)

(2.110)

(2.111)

whence

(2.101) and

where Ii q& induces, via 8p, a change in the commuting
operator set defined in relation to the local coordinate
system provided by a fixed 0,

4((f—bi)', 0)= [1—(i/h)F&&~]+(f', 0), (2.102)

As the first of several illustrations of these commu-
tation relations, we choose G(a)=p (x). According to
Eq. (2.25), we have

F&;. (1/c) ——d~„r„.bx. (2.103)
and

[4 (*),P.]=(h/i)~. e (~), (2.112)

generates the change in o- described by 8x„,for a fixed
set of commuting operators defined relative to a,

%(f', 0+b&r) = [1 (i/h)Fs, )+—(i', &r). (2.104)

Consistent with our restriction to plane surfaces, we
consider only rigid displacements of 0, for which the
generating operator has already been given ip Eq.
(2.36).

Differential equations that describe the change in
the representative of an arbitrary state, as produced
by rigid displacements, are inferred from

S.(f', ~l) = (S.e(f', ~), e) = (i/h)(i',

~IF�„I).

(2.105)

In terms of the notation

*(f', I)=".(i', I)+2 "~"(i' ~l),

we obtain generalized Schrodinger equations4 for
translations,

(hli)4(f' ~l) =(i', ~IP.(~) I)

and rotations,

(h/i)4. (f' ~l) =(1' ~l~..(~) I)

=~"(&' ~l~"(~) I
i" ~)df "(i" ~l) (2.108)

An operator G(&r), which is constructed from field
quantities on 0, has a matrix (g', 0

I G(&r) I
f'", &r) that is

4 Note that these Schrodinger equations have been obtained
from the Heisenberg picture, in which the arbitrary state vector
is 6xed. P. A. M. Dirac, The Priecip/es of Queetlm, Mechagks
(The Clarendon Press, Oxford, 1947), third edition, Sec, 32.

and

&*(P~~& (~))= —~..P.~.(~)

[P„,P,]=0,

(2.115)

(2.116)

[P&„J„„]=ih(f'&„&,P„ f'&„&,P.). (2—.117)

Our last example, G(0) =J&,„eq&'~(o)&'„&2&(o), where
both ez&"(0) and e„&2&(a) are arbitrary vectors rigidly
attached to r, is actually an extension of the type of
operator under consideration, since

J&„e&&'&e,&'& = (1/c))~do„(x&e&«&T e &'&

—x„e„'T&„&&,eg&'~] (2.118)

involves space-time coordinates, in addition to 6eld
variables. The necessary revision of Eq. (2.109) is

lI,G(o) = (i/h)[G(&r), F&&,]+8+(o), (2.119)

where B&(o) denotes the displacement induced change
in G(&r), associated with the explicit appearance of
space-time coordinates. In the example provided by

which is in agreement with Eqs. (2.92) and (2.96), but
without the restriction of the latter to the components

A particularly simple example is provided by
G(&r) =Q, the total charge. Since this operator is
independent of 0., we have

LQ, P.)= LQ, ~"]=0, (2 114)

which state, inversely, that P„and J„„areunaffected
by phase transformations. The eGect of a displacement
of 0 on the quantity G(0) =P&,e&, (o), where ez(&r) is an
arbitrary vector that is rigidly attached to 0., comes
entirely from the rotation of the vector e&,(o),
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Eq. (2.118), 8+(&r) arises from the translation (but
not rotation) of a,

8,(J),„e),&"e &») = (p&,P„p—„P),)eq&'&e„&». (2.120)

On combining this with

b (J e "&e„"')= —p„„J„„e„&'&e„&»—p„„Jg„e),o)e„"' (2.121)

we again obtain Eq. (2.117), and

[J),„J„„]=ih(b),„J„„+b&,„J„„+b„J),„+b,„J„)) (2..122)

%e may remark, as an example of a general procedure
for constructing representations of operator commuta-
tion properties, that the identity

[[&t,J'],J"]-[[d,J"],J']
= [&b, [Jg., J„,]] (2.123)

leads to analogous commutation relations for the
representatives of orbital and spin angular momentum
in Eq. (2.113).

In a 6nal comment concerning commutation rela-
tions, we observe that the commutators of generating
operators are of significance in connection with integra-
bility conditions for the infinitesimal transformations
generated by these operators. ' If F(') and F(2) are two
such generators of ininitesimal transformations, we
have

b"'+(P' ~)=+((P b"'f')—' e+b'"e) —+(1' ~)
= —(i/h)F")+(t' e)

(2.124)
b('&e(f', (T)=e((f'—b"&f)', r+b&»«) —e(f', 0)

(i/h)F(»—e(f' e)

Now, the difference between the results of the two ways
in which these transformations can be successively
applied may be regarded as the e8ect of a third, related
transformation,

(bo&b(» b(»b&0)@(f' e)—Q((f'+ (b(1)$(» b(2)b(1))f )~ e+ (b(1)b(2) b(2)b(1))e)

-~0', .)
(2.125)= —(i/h)F("-) +(f' o).

Therefore,
[FN F&»]=phF (2.126)

is a condition necessary to the integrability of Eq.
(2.124). A simple illustration of this viewpoint is
provided by rigid displacements:

g(1,2)X = 6 (1,2) 6 (1,2)g
Vy

since
P (1,2) ~ (1,2)P +1~ (1,2)J (2.127)

($(1)b(2) b(2)b(1))x p (&) p (2)+ p (2) (1)

( p (1)p~ (2)+ p (2}p) (1))x

[12l 6 [12lg (2.128)

is another rigid displacement. The ensuing commutation
relations are just Eqs. (2.116), (2.117), and (2.122).

In our discussions of the variational principle (2.14),
we have dealt with the properties of a given dynamical
system. The principle is also applicable, however, to
variations in which the system is altered, as character-
ized by a change in the structure of the lagrange
function. For a variation of this type, we have

ol

(r 1

b(f ', .
l f",.)=( plh)e(dx)(f, Ib~[x]l f.","),J.2

(r 1

b(f)', .&ll p", ep)=('/he))I (dx)J (f)', ~)li...)df (f...ib~[x]lf', .)df'(f', .Ifp", "),
~'2

(2.129)

(2.130)

where the surface 0. contains the point x. If two independent variations of this nature are applied successively
we obtain

p (r1

)=(i/he) I (d*) I b'»(1)', e, lf', e)df' 0',

kalb'"&[x]lf

p", ep)
~2

+~"(f &', e) I
b "~[x]If', .)dt'b&' (1',.

I
b,"...)

= (1/he) (dx) (dx )(f, I
b 2[x ]b 2[x] I f, )

(r2 &a( 0

+ I (dx')(i)', o)lb&"2[x]b&"2[x']ll p", &rp) . (2.131)
(r2

%e shall introduce here a notation for chronologically ordered operators,

A(x)B(x'), xp&xp'
(A(x)B(x')) I

——

B(x')A(x), xp'&xp,
(2.132)

' See, for example, H. Weyl, The Theory of GrouP and Quantum Mechanics (E.P. Dutton and Company, Inc. , New York, 1931),p. 177.
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which is an invariant concept provided that the operators involved commute when x—x is a spacelike interval
and that the positive sense of time is preserved. Thus we may write Eq. (2.131) more compactly as

b(1)b(&)(f I ~, ll2 02) —b(2)b(u(g ~
&~it 2" ~.,)

&'1 &1

= (i/hc)' ' (dx) (dx')(1 g', op l
(b'"Z[x7b"'2[x'7)+

l
f'2", sg). (2.133)

These results will 6nd frequent application in later
work.

We shall conclude this section by indicating, in

connection with a Bose-Einstein field, a method for con-
structing the transformation function (l~', O~ll2", o2),
which has as its classical analog the Hamilton-Jacobi
theory of field mechanics. The actual motion of the
system is implicit in the form assumed by the variation
of the action integral,

quence of the noncommutativity of the p on a& and on
cr2 in a manner which depends upon the location of
these surfaces. Thus, if the operator H/'I2 is first ordered
and then varied, the result will differ from what is
obtained by ordering 8W». We now turn to the differ-
ential characterization of the transformation function
labelled by eigenvalues of P on 0& and cr2,

&1

bWg2 ——
i dail'b@~+ e„P„(0)+-',~„J„„(o),(2.134)

in which we continue the restriction to plane spacelike
surfaces. It is implied by Eq. (2.134) that W» can be
exhibited as a function of 0~, cr2, and of the p on these
surfaces, and therefore that the II, P„and J„„associ-
ated with each surface can also be so exhibited. With
the aid of commutation relations between the p on
OI and on 02, it will be possible to order the operators
in Eq. (2.134) so that the p' on ~& everywhere stand to
the left of the p on 0.2. The differential expression, thus
ordered, shall be denoted by b'%(P~, 0~, dm, 02), from
which we obtain differential equations connecting the
various ordered operators,

(b/be@(x, ))m =11.(x,), (b/b4. (x,))W = —11~(x,),

b„&"'N=P„(og), b„&"'N= —P„(02), (2.135)

b„,~'~m= J„,(~,), b„,&'&W= —J„,(~,),

where xi and x2 are arbitrary points on oi and 02,
respectively. In conjunction with the commutation
relations (2.81), these Hamilton-Jacobi operator equa-
tions serve to determine the ordered operator
% (4 ~, 0~, @g, o2), to within an additive constant.

It is important to recognize that%'W 8'i2, and indeed,
that %' is a non-hermitian operator. ' This is a conse-

'The elementary example of a one-dimensional free particle
will sufBce to illustrate this. The Hamilton-Jacobi equations for
the construction of VP'(x(t1), x(t2), t), t=tI —t2, are

(8/Bx(tI)) W'= —(8/Bx(t2))Vv =p, —(8/at) VP =p'/2m.

According to the solution of the equations of motion,

x(t,}—x(t,) = (t/~)P,
we have

Lx(t,), x(t,)j=—z,ht/m,
whence

—(a/at)'N = (m/2t }(x(t,}—x(t,))&
= (m/2t )LH(t, )-2x(t,)x{t,)+H(t, ))—ik/2t.

The solution of the Hamilton-Jacobi operator equations is
VP' = (m/2t) px (tI) —2x(t~) x(t~)1x'(t~) j+)ik log(A t),

and observe that, in virtue of the ordering in AP, the
operators p on O.j and on 0.2 act directly on their respec-
tive eigenvectors and can be replaced by the associated
eigenvalue s:

b(y', 0,
l
y", 0,)

=(i/I)bm(y', ~„y",~,)(4', ~, ld", ~,). (2.137)

The transformation function is thereby obtained as'

(p', 0 ~ l
$", 02) =exp[(i/h)% ($', &r~, $", 02)7, (2.138)

where the constant of integration, which is additively
contained in%', can be determined from the condition

(2.139)

III. TIME REFLECTION

The general physical requirement of invariance with
respect to coordinate transformations applies not only
to translations and rotations of the coordinate system,
but also to reflections of the coordinate axes. Among

which should be compared with the hermitian action integral

8'„=)mal= (m/2t) (x(t,)—x(t,))~
= (~/2t) fx~(t,}—2x(t,}x{t,)+H(t,}j—)sk.

Incidentally, the analog of Eq. (2.138) is

(x', t1 }x",t2) =expt (i/k)VP(x', x", t) j= (At) & expL(im/2kt)(x' —x"}'),
where the constant A is determined to be

A=2 ih/m

from the analog of Eq. (2.139),
llm(x', t ~x", t2}= b(x' —x").

' The exponential form of Eq. (2.138) is familiar as a basis for
establishing a correspondence connection with classical Hamilton-
Jacobi particle mechanics. Dirac employed this form in a discus-
sion of unitary transformations and recognized, in part, that the
Hamilton-Jacobi equations are rigorous as relations among
ordered operators (see the end of the section quoted in reference
4). In Feynman's version of quantum mechanics I R. P. Feynman,
Revs. Modern Phys. 20, 367 (1%48}j, the exponential form is
employed for infinitesimal time intervals, with the real part of %
defined as the classical action integral.
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(3.1)

is actually a pseudovector with respect to time reQec-
tion. Kith the plane surface 0 chosen perpendicular to
the time axis, the components of (P„)are obtained as
three-dimensional volume integrals,

(Ps) = (1/c) ldrr(Tss),

(Ps)= (1/c) I do'(Tss), k= 1, 2, 3,

(3.2)

and the time reQection xo~—xo, xj„=+xj, induces
(Ps)—&(Ps), (Ps)~—(Ps), according to the transforma-
tion properties of tensors. This difI'ers in sign from a
proper vector transformation. In particular, the energy
does not reverse sign under time reQection. More
generally, this property of (P„)is obtained from the
pseudovector character of do.„,which expresses the
pseudoscalar nature of a four-dimensional volume
element with respect to time reQection. Similarly, the
expectation value of the charge

the latter transformations, time reQection has a singular
position. Its special nature can be indicated by the
transformation properties of some integrated physical
quantities. Thus, the expectation value of the energy-
momentum vector,

thereby being regarded as the invariant combination of
a vector 4~ with the dual, complex conjugate vector
O', * We allow operators to act both on the left and on
the right of vectors, 4' and +'. Thus, an operator
associated ~ith A, the transposed operator A~, is
defined by'

or by
(trI A

I
b)= 4 'A+b=%'sAr+:

(3.5)

(3.6)

We also define the associated complex conjugate
operator A',

with respect to time reQection. If we were to consider
only such a half-integral spin field, the basic dynamical
equation would preserve its structure under time
reversal, but at the expense of violating the general
transformation properties of all physical quantities;
charge would remain unaltered, and energy would
reverse sign under time reQection. The latter difhculty
simply indicates that, on inclusion of the contributions
of integral spin fields, the various parts of 2 would
transform difI'erently, thus emphasizing again the
general failure of Eq. (2.14) to admit time reflection as
a unitary transformation.

To aid in investigating the extended class of transfor-
mations that is required to include tirhe reQection we
shall introduce some notational developments. The
scalar product of two vectors, +, and +~, can be written

(3.4)

(0)= (1/c) JI d&rs(j»)= (1/c) JI d&r(js) (3.3) (A4')*= A'4". (3.&)

behaves as a pseudoscalar under time reQection. Hence,
this transformation interchanges positive and negative
charge, and both signs must occur symmetrically in a
covariant theory. Indeed, for some purposes the re-
quirement of charge symmetry can be substituted for
the more incisive demand of invariance under time
reQection.

The significant implication of these properties is that
time reQection cannot be included within the general
framework of unitary transformations. Thus, on re-
ferring to the Schrodinger equation for translations
(2.107), or the analogous operator equation (2.110), we
encounter a contradiction between the transformation
properties of the proper vector translation operator 6„
and of the pseudovector P„.This difhculty appears
most fundamentally in our basic variational principle
(2.14). With 2 behaving as a scalar and (dx) as a
pseudoscalar, reQection of the time axis introduces a
minus sign on the right side of this equation. However,
it is important to notice that the scalar nature of 2
cannot be maintained for that part of the lagrange
function which describes half-integral spin fields. In-
deed, such contributions to Z. behave like pseudoscalars

The connection with the hermitian conjugate operator
At is obtained from the deanition of the latter,

(AO)'= +"A', (3.8)

» The fundamental invariant of a spin —,
' 6eld is ~=Ptp»f

The transformation that represents time reflection, p'=Rid&, can
be obtained from its equivalence with a rotation through the
angle ~ in the (45} plane; R=expfix)045]=icr45. Accordingly,

4V'=4tR 'VoR4= A, —
which indicates the pseudoscalar character of the spin $ field
lagrange function, with respect to time reaction. The corre-
sponding behavior of fields with other spin values can be obtained
from the observation that a spinor of rank n contains fields of
spin $n, $e—1, . The basi invariant and time reQection
operator for a spinor of rank n are

A =4 t 11v""4,
&fs-1

and
n n

R=exp Arg r 045(") = II ia45(").
fc 1 1

Therefore,

P'f'=PtR ' ll y»& "&~= (—1)"&f»&f,
k 1

which shows the pseudoscalar nature of the lagrange function for
all half-integral spin fields.

9 Note how the familiar property of transposition, (AB)~
=BTAT follows from this definition: AB+= A{%B~'i=NB~A~.
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namely,
At=A'~. (3.9)

E will now be chosen to produce that linear transfor-
mation of the P,

Conventional quantum mechanics contemplates
transformations only within the 0 vector space, and
contragradient transformations within the dual
space. We shall now consider transforrnations that
interchange the two spaces, as in

E@~E '=R~&@& (3.22)

(~)gr(par g 4 aT) (3.23)

which compensates the e6'ect of the gradient vector
transformation. Thus. we have

The effect of Eq. (3.10) is indicated by

(u~b)=+.'+~=+.M~' -(5~a——),

(3.10)

(3.11)

where the (&) sign here refers to the fact that the
structure of the lagrange function, for half-integral
spin 6elds, can be maintained only at the expense of a
change in sign. We now see that if

(ol A
I &) =+.'A+~= +-.A+~'=(5I A'I o) (3 12)

g(@uT d yaT) (3.24)

More generally, if

where R is a unitary operator, we have

(3.13)

in which

(half)=(&la), (GAIA lf)=(5IAla), (3 14)

A=(RAR ')r. (3.15)

g '(f', 0) =R%'(i', 0), (3.19)

the fundamental dynamical equation (2.14) becomes

~(f2, 0'2
~ fi, 0'i)

where

2= (RZR-')'= Z'((R4.R-')' Wa ( yR. R')'). (3.21)

In the last statement, the & sign indicates the eGect of
the coordinate transformation (3.18) on the components
of the gradient vector, while the notation Zr( )
symbolizes the reversal in the order of all factors
induced by the operation of transposition. The operator

Now, we have

AB=(RABR ')r=(RBR ')r(RAR ')—r=BA, (3.16)

and therefore

(o
I
CA, K I b) = —(5( CA, Bjl o) (3 17)

Ke have here precisely the sign change that is required
to preserve the structure of equations like Eq. (2.110)
under time reflection.

We now examine whether it is possible to satisfy the
requirement of invariance under time reflection by
means of transformations of the type (3.13). When we
introduce the coordinate transformation

(3.18)

in conjunction with the eigenvector transformation

the form of our fundamental dynamical equation will
have been preserved under time reflection, since Eq.
(3.20) will then differ from Eq. (2.14) only in the
substitution of p ~ for P as the appropriate field
variable, and in the interchange of O.i and 02, which
simply reflects the reversed temporal sense in which
the dynamical development of the system is to be
traced.

Invariance under time reflection thus requires that
inverting the order of all factors in the lagrange function
leave a scalar term unchanged, and reverse the sign of
a pseudoscalar term. This can be satis6ed, of course,
by an explicit symmetrization or antisymmetrization of
the various terms in Z. When the lagrange function,
thus arranged, is employed in the principle of stationary
action, the variations 80& will likewise be disposed in a
symmetrical or antisymmetrical manner. We must now
recall that the equations of motion (2.18), which do
not depend explicitly on the nature of the field commu-
tation properties, have been obtained by postulating
the equality of terms in 80/ that di8er basically only
in the location of ho@ . Since such terms appear with
the same sign in scalar components of 2, and with
opposite signs in pseudoscalar components, we deduce
a corresponding commutativity, or anticommutativity,
between bog and the other operators in the individual
terms of boZ.

The information concerning commutation properties
that has thus been obtained is restricted to operators at
common space-time points, since this is the nature of
the terms in Z. Commutation relations between 6eld
quantities located at distinct points of a space-like
surface are implied by the general compatibility re-
quirement for physical quantities attached to points
with a spacelike interval. Components of integral spin
fields, and bilinear combinations of the components of
half-integral spin fields, are the basic physicial quan-
tities to which this compatibility condition applies. By
considering the general. possibilities of coupling between
the various fields, we may draw from these two expres-
sions of relativistic invariance the consequence that the
variations b4'(x'), and therefore the conjugate varia-
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tions 811b(x'), commute or anticommute with qP(x),
II (x) for all x and x' on a given 0., where the relation
of anticommutativity holds when both u and b refer to
components of half-integral spin Gelds. The consistency
of this statement with the general commutation rela-
tions that have already been deduced from it is easily
verified. By subjecting the canonical variables in Eq.
(2.81) to independent variations, we obtain

L~.(x), &e'(x') &+=f11'(x), be'(x') j+=o,
L@'(x), bIIb(x') j+=LII (x), hlIb(x') j~——0, (3.25)

which is valid for all x, x' on 0. In addition, Kq. (2.81)
properly states that all physical quantities commute at
distinct points of o.

%e conclude that the connection between the spin

and statistics of particles is implicit in the requirement
of invariance under coordinate transformations. "

'o The discussion of the spin and statistics connection by W.
Pauli I Phys. Rev. 58, 716 (1940)) is somewhat more negative in
character, although based on closely related physical requirements.
Thus, Pauli remarks that Bose-Einstein quantization of a half-
integral spin Geld implies an energy that possesses no lower bound,
and that Fermi-Dirac quantization of an integral spin 6eld leads
to an algebraic contradiction with the commutativity of physical
quantities located at points with a spacelike interval. Another
postulate which has been employed, that of charge s mmetry
W. Pauli and F. J. Belinfante, Physica 7, 177 (1940), suffices

to determine the nature of the commutation relations for suflici-
ently simple systems. As we have noticed, it is a consequence of
time re6ection invariance. The comments of Feynman on vacuum
polarization and statistics fPhys. Rev. 76, 749 (1949)j appear to
be an illustration of the charge symmetry requirement, since a
contradiction is established when the charge symmetrical concept
of the vacuum is applied to a Bose-Einstein spin $ 6eld, or to a
Fermi-Dirac spin 0 6eld.
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Diffusion of High Energy Gamma-Rays through Matter. III. Re6nernent of the
Solution of the Diffusion Equation*

L. L. Foxav
Case Institute of Technology, Cleveland, Ohio
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In Part I of the present series of papers an approximate equation was derived governing the diffusion of
high energy gamma-rays through matter. In Part II an approximate solution of this diffusion equation was
obtained in the energy region where the total gamma-ray cross section was substantially independent of
energy. In the present paper, by consideration of the methods employed in obtaining the solution in II,
a refinement of the solution is carried out which reduces the errors introduced by the approximations made
both in the energy distribution and the angular distribution of the multiply-scattered gamma-rays. The
solution is also modi6ed to take into partial account the effect of small variations of the total gamma-ray
cross section with energy. An upper and lower bound on the solution is obtained when the cross section is
independent of energy.

I. INTRODUCTION
'

N the 6rst (I) of the present series of papers, ' an
& ~ approximate equation governing the diffusion of
gamma-rays through matter was derived. The gamma-
ray energies for which the equation is valid extends
from a few Mev up to energies (depending on the
material) where the radiation of gamma-rays by the
secondary electrons (photoelectrons, Compton recoils,
and pairs) produced by the primary gamma-rays be-
comes important. In the second (II) paper of the series,
the solution of the diffusion equation was considered
in the energy range where the total cross section for
gamma-rays was practically independent of energy. In
all materials this latter energy range coincides prac-
tically with the energy range over which the diffusion
equation itself is valid. However, in order to obtain a
solution to the equation, even with this restriction, it

~ Supported by the AKC and by a grant-in-aid from the Scien-
tific Research Society of America.

'L. L. Foldy, Phys. Rev. 81, 395 (1951), hereinafter referred
to as I, and L. L. Foldy and R. K. Osborn, Phys. Rev. 81, 400
(1951),hereinafter referred to as II.

~f(~, 5, n, 0)l~f+4rf(~, 6 n, f)

=(1/s) '

4~4 ~&(~'l~)f(~' 5' n' t')d&n' (1)

was necessary to make a rather poor approximation to
the Klein-Nishina formula; and this last approximation
leads to rather large errors, especially for gamma-rays
whose energy lies far below the energy of the incident
gamma-rays. The present paper is directed towards
refining the approximation somewhat, making certain
corrections to the solution to improve its accuracy, and
studying the magnitudes of the remaining errors. The
notation used is the same as in I and II, and reference
should be made to these papers for the meaning of
symbols not sufficiently defined below.

II. APPROXIMATIONS TO THE KLEIN-NISHINA
FORMULA FOR WHICH THE DIFFUSION

EQUATION CAN BE SOLVED

The equation governing the diffusion of gamma-rays
derived in I is


