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Equations (42) and (43) may both be shown to
satisfy (11) and (23); they may also be derived directly
from physical considerations.

The second approach lies in the use of the "extra"
boundary condition (28c) or (40c). In Eq. (35), for
instance, if we consider the region in the Eo—t plane
determined by Pt(EO(2Pt, then not more than one of
the two factors g in the integral can di6er from 0 for
any ~. We thus have a homogeneous, linear equation,
which may be solved by using the Green's function Ii.
We may then use this solution to study the region
2Pt&EO&3Pt, obtaining an inhomogeneous equation
involving the previous solution, and so forth. The

boundary condition (28b) must be introduced by letting
Eo~ and f~ with Eo/Pt between 1 and 2, or 2 and 3,
etc. Successive applications of this method are quite
cumbersome, and of course an infinite series is needed
for a complete solution.

It may be, however, that a numerical integration
procedure can be started satisfactorily with this
approach.

Finally, it should be remarked that Friedman' has
developed variational-iterational methods for F which,
however, we have been unable to apply to the nonlinear

equations for G.
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The problem treated is the effect of lattice vibrations in producing a shift of the energy levels which results
in a temperature dependent variation of the energy gap in semiconductors. Calculations for silicon and
germanium give results of the same order of magnitude as the observed temperature dependent shift of the
absorption band edge. The effect of lattice vibrations on the energy gap has been treated previously on the
basis of broadening rather than shifting of the energy levels. The effect was found to be negligible for non-
polar crystals, whereas according to our treatment it should be much larger. For polar crystals our result
turns out to be essentially the same as was given by the previous treatment.

I. INTRODUCTION

KCENT measurements on germanium and silicon
show that the long wavelength limit of the optical

absorption band shifts toward shorter wavelength with
decreasing temperature. ' The steeply rising edge of the
absorption band shifts without changing its shape. The
position of the band edge corresponds approximately to
the width of the forbidden energy gap determined from
resistivity and Hall coe&cient measurements. The shift
thus indicates a variation of the energy gap with tem-
perature. An alternative explanation is that the absorp-
tion edge should actually be at a higher energy, the
close agreement with the energy gap being due to
deviations in the crystal from perfect periodicity which
allow the violation of selection rules for optical transi-
tions. The shift in absorption could then be attributed
to the change in the degree of deviation from periodicity
due to the temperature variation of the lattice vibra-
tions. ' However, this does not seem to be the explana-
tion for our case, since the band edge is very sharp and

* Supported by a Signal Corps contract.
' M. Seeker and H. Y. Fan, Phys. Rev. 76, 1531 {1949);H. Y.

Fan, Phys. Rev. 78, 808 (1950); H. Y. Fan and M. Becker,
report at Conference of Semiconducting Materials, July, 1950,
to be published soon; unpublished work of H. B. Briggs, see
reference 9.

'The author is indebted to Professor F. Seitz for raising this
point in a private discussion.

shifts without changing shape. Moreover, for a given
temperature samples difI'ering in resistivity by several
orders of magnitude, thus having difI'erent concentra-
tions of impurity and different degrees of deviation from
periodicity, show no appreciable difference in the posi-
tion and the shape of the absorption edge. Thus, tem-
perature variation of the energy gap is the more likely
explanation. Temperature variation of the photoelectric
threshold for germanium and silicon p—n junctions have
also been observed. ' Furthermore, analysis of the tem-
perature variation of carrier concentrations determined
by Hall and resistivity measurements also indicate such
a dependence of the energy gap in these materials. 4

The shift of absorption limit with temperature has
been known for polar crystal insulators. Moglich and
Rompe' pointed out the eGect of lattice expansion on
the energy gap and made rough estimations showing
that it could account for only a small part of the ob-
served temperature shift, although their work cannot
be regarded as quantitative. Recently, Hohler measured
the shift of absorption edge in CdS with pressure.
Using his result, Seiwert6 found that thermal expansion

3 Unpublished work by F. S. Goucher and H. B. Briggs, see
reference 9.

4 G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949);
V. Johnson and H. Y. Fan, Phys. Rev. 79, 899 (1950).' F. Moglich and R. Rompe, Z. tech. Physik 119, 472 (1942).

6 R, Seiwert, ~n. Physik 6, 241 {1949).
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effect accounts for only one-sixth of the observed tem-
perature shift.

Moglich, Riehl, and Rompe have also considered the
effect of lattice vibrations as a cause for broadening the
energy levels and thereby changing the energy gap.
This approach was followed later by Radkowsky, ' who
showed that the effect is large for polar crystals, the
result agreeing quite well with experimental data. For
nonpolar crystals, of which germanium was chosen for
consideration, the effect was found to be negligible.

Bardeen and Shockley' have recently treated the
effect of lattice expansion on the energy gap for non-
polar crystals. %e shall reexamine the effect of lattice
vibrations, all evidence indicating that thermal expan-
sion cannot fully account for the observed shift of
absorption edge in silicon and germanium. Rather than
treat the lattice vibrations as producing a broadening
of the energy levels, we consider them as causing a shift
of the energy levels. A crystal with vibrating lattice not
only has an additional vibrational energy of the ions,
but also has a different electron-lattice interaction
energy as compared with a stationary lattice. Two states
of different electron distributions in a vibrating crystal
will not, therefore, necessarily differ by the same
amount of energy as the corresponding states in the
stationary lattice, since the difference in electron-lattice
interaction energy for the two states may not be the
same in both cases. The energy gap is the difference in
the energy of the crystal when an electron is excited
from the top of the valence band up to the bottom of
the conduction band. Our problem is to determine the
change in the electron-lattice interaction energy of the
crystal which accompanies such excitation. This change
depends upon the lattice vibrations and therefore on the
temperature.

The difference between our approach and the energy
level broadening concept will be clear from the following
discussion. The vibrating crystal in the absence of
external perturbations has stationary states corre-
sponding to various energy levels as does a vibrating
molecule. As in the treatment of molecular absorption,
we consider an external perturbation to produce transi-
tions between various energy levels of the vibrating
crystal. If we have only solutions for the lattice 6xed,
then the problem is to obtain the energy levels of the
vibrating crystal by approximation methods. On the
other hand, if it is specifically given that the vibrating
crystal is not in one of its stationary states but is in a
state which would be stationary had the lattice been
6xed, then the state of the crystal will change with time.
Under such conditions the crystal can be regarded as
having approximately the energy computed for the
6xed lattice, with an uncertainty proportional to the
rate of transition of the state to other states. This is the
basis of the energy level broadening treatment. Since

' Moglich, Riehl, and Rompe, Z. tech. Physik 21, 6, 128 {1940).
s A Radkowsky Phys. Re&. 73, 749 {1948).
9 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 {1950}.

we have no reason to deal with such nonstationary
states, our approach seems to be more reasonable.

%e wish to mention still another way of treating the
effect of lattice vibrations on absorption, used by
Muto" for metals. This method is based on the idea of
simultaneous photon absorption and the absorption or
emission of a lattice vibrational quantum. As in the
energy level broadening treatment, it also starts with
the crystal in a state which would be stationary if the
lattice were axed; but it deals with the change of this
state due to the simultaneous actions of the lattice
vibrations and the radiation held, instead of considering
6rst the effect of lattice vibrations separately. In the
case of semiconductors this treatment will give a small
absorption extending beyond the direct absorption
limit by a frequency range corresponding to the maxi-
mum energy of a phonon, unless simultaneous absorp-
tion of several phonons is considered. According to the
point of view of dealing with stationary states of the
vibrating crystal, such an effect is analogous to a change
of the vibrational state of a molecule which accompanies
an electron transition and should be treated along the
same line. In the treatment given below this effect is not
taken into account.

The results of the following treatment show that the
lattice vibrations give a much larger temperature de-
pendence of the energy gap in nonpolar crystals than
that obtained by Radkowsky. The effect is comparable
with the effect of thermal expansion and should help to
explain the observed shift of absorption edge for silicon
and germanium. These results have been discussed
previously without the details of the treatment. "In the
case of polar crystals our results turn out to be essen-
tially the same as those obtained by Radkowsky.

II. ELECTRON-LATTICE INTERACTION ENERGY

The change in electron-lattice interaction energy due
to a lattice distortion is to the Grst approximation pro-
portional to the displacement of the ions. The vibrations
of the ions can be analyzed into normal modes, and the
change in the interaction energy for an electron can
usually be written in the following form:

&~=Z~[o(e) exp(e r)+a*(e) ex@(—e r)75(e) (&)

where r represents the coordinates of the electron and
a(q) is the time dependent amplitude of the normal
mode having wave-number vector q. Although there is
more than one mode having the same q, we will be
interested in only one of them. For nonpolar crystals
f(g) is a periodic function of r with the periodicity of
the lattice. For polar crystals it is independent of r. The
Bloch wave function for electrons in a periodic lattice

' T. Muto, Sci. Papers Inst. Phys. Chem. Research 27, 179
{1935).

"The second and third works mentioned in reference 1. 1V'ote

added in proof: —A similar treatment has since been reported by
T. Muto and S. Oyama independently, Prog. Theor. Phys. 5, 833
(1950).
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f can be characterised by a reduced wave number
vector h and an index 0 indicating the energy band to
which the wave function belongs. The wave function of
the ions y is a product of harmonic oscillator wave
functions, one for each normal mode. It can be speci6ed
by a set of quantum numbers n for the various modes.
It is well known that with such hU, P, and x the matrix
components of hU in the representation of fx vanish
except when

k'=k+q, and e'=n except n, '=n, &1.

Thus, the nonvanishing elements are

[4(k~q; ~)x(~,+~)
I ~UI P(k, ~)x(&»)j (3)

It is understood that the two f's have the same spin.
Treating hU as a perturbation, the interaction energy

is zero in the 6rst order of approximation, since the
diagonal elements of AU vanish. In the second-order
approximation the interaction energy for the whole
crystal is"

1[0(k~q, v') x(~,+&)
I
~UI 4 (k, ~)x(~.)3 I

'

k, a q, a(k», c') —[6(k&q, »'')+h(d, ]
(4)

where e is the electron energy in the undistorted lattice
and co, is the angular frequency of the normal mode q.
The summation over k and» (spin) covers all the oc-
cupied states, whereas the summation over q and 0' is
limited by the requirement that (k&q, »') must be an
unoccupied state. This limitation is imposed by the
Pauli principle. If we apply the perturbation theory to
the crystal as a whole, using P, hU, summed over all
the electrons as the perturbation, and assume the elec-
tronic part of the crystal wave function to be a deter-
minant of single electron wave functions, then we get
just Eq. (4), with the limitation in summation following
from the antisymmetrical nature of the crystal wave
function. However, the validity of the perturbation
method when applied to the crystal as a whole is ques-
tionable. Equation (4) is to be preferably regarded as
approximating the interaction energy of the crystal by
summing the interaction energy of individual electrons.

In Eq. (4) the difference between two»'s in the de-
nominator is large if r is di6erent from 0, that is, if the
two states belong to diferent energy bands. %e shall
therefore take only 0' identical with o.. %e shall see
later that in the usual approximation the matrix ele-
ments of AU are independent of h. Thus, we can write

I~U(, ~q) I'»=Z Z . (5)
k, a s c(k) 0') —(k&q», 0')&k»»»

When an electron is shifted from a state near the top of
the valence band (k~, v) to a state near the bottom of the
conduction band (g, c), the change in the interaction

"H. Frohlich, Phys. Rev. 79, 845 (1950).

energy is

I~U(c, ~q) I'
»g=p

g»(ks, c)—»(kwq, c)ahc»,

I~U(, ~q) I

~ e(k, c)—»(k+q=hp, c)wh»»,

I AU(v, aq) I'

g»(kg, v) —»(k,aq, v)ah(o,

IaU(v, aq) I'
+2 (6)

~ »(k, v) —»(kwq=kg, v)ah»»,

The erst two terms are due to the introduction of an
extra electron into the state (k»„c),and the last two
terms are due to the removal of an electron from the
state (k&, v). In a semiconductor only a few of the states
in the conduction band are occupied, and we can let q
take all values in the first summation. For the same
reason there are few terms in the second summation
over the occupied h, which can therefore be neglected.
The valence band on the other hand is practically 611ed.
The third summation, connecting (k&, v) with the unoc-
cupied states, will thus have few terms and will there-
fore be negligible, whereas in the fourth summation k
can take practically all possible values.

For the lattice undistorted by the vibrations the
change in crystal energy due to shifting an electron
from state (k&, v) to state (iu„c)is

Ee» »(kb, c)—e(k„v).——

The energy gap in a vibrating lattice is thus

Eg =E(.p+ AEg

ILU(c, wq) I'
= e(Q, c)—»(kg, v)+Q

g»Q) —»(k|,aq)whar,

I~U(v ~v)l'
+2 (g)

»»(kgwg) —a(kg)aha),

The last term on the right is the last term in Eq. (6),
where the summation over k has been changed to the
summation over q which can take all possible values.
The 6rst and third terms correspond to the energy
required to introduce an electron into state (kt„c).The
second and fourth terms give the energy required to
remove an electron or to introduce a hole into the state
(k,, v). Thermal expansion affects the energy gap
through Eg„which depends on the equilibrium distance
between the ions. %e are concerned with the tem-
perature dependence of the last two terms.

Equation (8) applies only when the two states, the
energy di6erence of which defines the energy gap, have
lifetimes long compared with the periods of lattice
vibrations. In optical absorption the lifetime of the
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excited state is of the order IO—8 sec. Actually, the
lifetime of the states may be shorter than this, since the
crystal is also perturbed by the thermal radiation.
However, the maximum frequency of the acoustic
vibrations is of the order 3.0"sec '. It should be possible
to take into account the effect of most of the vibrational
modes by Eq. (8). Acoustic vibrations of very long
wavelengths with periods longer than the lifetimes
should not be included in Eq. (8). The proper way to
calculate the eGect of these is to determine the energy
levels for each instantaneous pattern of the lattice dis-
torted by these slow vibrations. This should result in a
broadening of the absorption band edge. The eGect
being limited to very long waves should be negligible.
It is unnecessary to determine accurately the low fre-
quency limit for the applicability of Eq. (8). In the
result obtained for nonpolar crystals, Eq (22.), cutting
o6 at any frequency makes a negligible difference so
long as the frequency is much l.ower than the maximum.
The question does not arise in the case of polar crystals,
since there only the optical modes are of consequence.

III. NONPOLAR CRYSTALS

There are various assumptions used in estimating the
electron-lattice interaction potential for nonpolar
crystals. The frequently used deformable-atom idea of
Bloch assumes that the electronic potential in a vi-
brating crystal is

V(r+R) = Vo(r),

longitudinal and two transverse vibrations. The matrix
elements (3) of

hU= V(r) —V,(r) = —R grad VO (13)

are well known in the theory of conductivity. Only the
displacement due to longitudinal vibrations gives non-
vanishing matrix elements. These are given by'4

Cf(k~q, a)x(~,~1)l~Ul4(k, a)x(&,)]
2i (5)& (I,)&

=w(MS) &—qC l l, (14)
3 (2(os) (I,+1)&

where C, is an interaction parameter independent of k.
In the theory of metallic conduction only electrons in
one energy band have to be considered. Since we have
to deal with both valence and conduction bands, we
have to use two diferent C's, one for each band 0.

When there are two atoms per unit cell, the displace-
ments of which are given by di8erent expressions the
question arises what expression to take for R(r). If we
limit the values of q to the 6rst Brillouin zone, then
there will be six modes for each q; three of which,
having relatively low frequencies, form the acoustic
branch, the other three constitute the optical branch.
In the acoustic vibrations of long wavelength (small q)
the two atoms in a unit cell move approximately in the
same directions with equal amplitudes. For such modes"

(,(q, t)/M, ~ =g, (q, t)Mmt.

where Vo(r) is the potential at point r if the lattice is
at rest and R is the "displacement" of the point r due
to the vibrations. The displacement of the Ofth ion in the
pth unit celt. can be written"

In view of the normalization condition we have

4(q, t) = i(q, t) (Mg/My+ M2) &,
'

(2(q, t) = i(q, t)(M2/Mp+M2) &.
(16)

R. ,= (M.S)-&P,, &Ca(q, t)g(q, t) exp(iq r.,)
+a*(q, t)P(q, t) exp( iq r,—)], (10)

where 3f is the mass of the ion, X is the total number
of unit cells in the lattice, a(q, t) is the time-dependent
amplitude of the tth normal mode having wave number
vector q, and ( is the polarization vector normalized
according to

Z- 4-(q, t)(-*(q, t') = b, ,

( is real if the waves are plane polarized. In the case of
one atom per unit cell, there is just one Of and we have a
single expression for the displacement of all the ions.
We can then take R to be given by Eq. (10) with the
variable r in place of the ion coordinates

R(r) =(MS) &g~, ~ i(q, t)Ca(q, t) exp(iq r)
+a~(q, t) exp( —iq r)], (12)

where i is a unit vector, since according to Eq. (11) (
is a unit vector when there is only one 0.. For every q
there are in this case three modes (t=1, 2, 3), one

"F.Seitz, The Modern Theory of Solids (McGraw-Hill Book
Company, Inc., ¹w York, 1940}.His Eq. (23), p. 131, omits the
second term on the right-hand side of Kq. (12). For the case of
one atom per unit cell see reference 14, p. 503.

The displacements of all ions caused by such a mode of
vibration are given then by one expression

C(Mg+M2)S] —
&i(q, t)Ca(q, t) exp(iq r,)

+a*(q, t) exp( —iq r,)],
and we can again take the displacement of any point r
to be given by this expression with r replacing r ~. We
shall assume that It.(r) due to all the acoustic modes is
given by Eq. (12) with (M&+M&) replacing M. Thus,
for germanium and silicon we use twice the atomic
mass for M. For these substances the optical modes do
not seem to play a signi6cant part in determining the
electron scattering in conduction problems. It might
be inferred that the interaction with these modes is
small compared with that with acoustic modes. "We
shall not consider the e6'ect of these modes.

To use Eq. (8) we have to know the difference between
any energy level (k, c) of the conduction band and the
bottom level (kq, c) of the band, and the difference

"A. Sommerfeld and H. Bethe, Puedbuch der Physik 24/2
{1933).

+ L. Brillouin, 8'tJee Propagation iw Periodic Structures (Mc-
Graw-Hill Book Company, Inc., New York and London, 1946),
p. 52."F.Seitz, Phys. Rev. 73, 549 (1948).
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TAsr.E I. Temperature coefBcient of the energy gap in silicon and germanium.

( Co/ev fC jev P degree 1
aEg/8T (10 4ev/ K)

i,24) (23) (23+24}
8Eg/8T (10 4 ev/'K)

experimental

Si
Ge

975
2 55a

10X10-s b

23X10 6b
—1.78—0.95

1 8c
—0 11'

—3.58—1.06
—3 to —5d

a Value given by Bardeen and Shockley (reference 9).
b Slightly different values were used by Bardeen and Shockley: 9 &(10 ~ for Si and 19)&10 e for Ge.
& The values given in the first work of reference 11 were in error by a factor 2.
"Absorption measurements by M. Becker. These measurements are being repeated with greater accuracy.

between any energy level (k, s) and the top level (k&, e)
of the valence band. %e shall assume that in both cases
the diGerence is equal in magnitude to

h'
I
6~

I
'/2m*, (17)

where m* is the absolute value of the eGective mass.
The summations in Eq. (8) will as usual be replaced by
integrations

n2%

P,=LEQ/(2 )'j q' i adqdadq (18)
~o o "o

where Q is the volume of the unit cell and q, /2x is
the radius of a sphere with volume equal to a unit cell
in the reciprocal lattice

q, since E is of the order 10' cm ', whereas q is of
the order 10 cm '. In view of Eq. (19) we get

ahEg/aT= —(8/9n) (3/4s)~(k Q/ihM u)

X (m *C '+m *C„'). (23)

To check this equation with the experimentally ob-
served temperature dependence of Eg, the variation of
Ego with temperature has to be taken into account.
According to Bardeen and Shockley'

I
aE„/a~

I
=-;(Ic, I

~
I c„l),

where 6 is the dilation of the lattice. They conclude on
the basis of experimental evidence that for germanium
and silicon aE00/a6 is negative and that on the right
hand side the positive sign should be taken. Thus,

q = 2+Q—
&(3/4n) &.

aEgo/aT= —l(I c.I+ I c.I)P, (24)
Substituting Eqs. (14), (1'I), and (18) into Eq. (8) we
get with

1 4kQ
AEg ———

(2x) ' 9 2Mu

2m, * I
I ( n, n+1)

+ Iq' sfnadqdadvp
&q—Z, q+Z, i

2m„* ( t t- tt' nq n+1 )+ c.' ~I I ) I + Iq'»»dqdady
h' & J Eq E. q+ E„)—

(20)

where the subscripts c and e refer to the conduction and
valence bands, respectively, u is the sound velocity in
the crystal, and X=2m*/h'. If the temperature is high
enough so that kT) (hem,),„wecan use the approxi-
mation,

nq 1/t'exp(——h(a, /kT) 1j kT/hco, . —(21)

The 6rst term in each integrand has a denominator that
goes through zero at q=E. Taking the principal value
for the integrals of these, we get

4 0
AEg= — — (m,*C,'+m.~c,')

(2m)' 9 h3fu

(kT
&(I —8 q +2nq I. (22)

&hu )

In this equation we have neglected E compared with

P being the volume coeKcient of expansion. The param-
eters C, and C, can be estimated from the mobilities of
conduction electrons and holes, using the well-known

equation of mobility due to lattice scattering"

/=3(1r/2)"'eh'3l /uQ(kT)'"m*'"C' (25)

Although the mobilities have been accurately measured,
the eGective masses have not been reliably determined.
The smaller the eGective masses the larger will be both
Eqs. (23) and (24). Table I gives the results of nu-

merical calculations for silicon and germanium using
the free electron mass for the eGective masses. " Fair
agreement with the experimental data is obtained for
silicon. For germanium the calculated value is too
small; however, if the eGective masses were about
one-third of the free electron mass, good agreement
would have been. obtained. " Only experimental data
of the optical measurements are given in the table.
There are other measurements giving information on
aEG/aT as we have mentioned at the beginning. A
detailed discussion of these results has been presented
elsewhere "

Strictly speaking, each effective mass in Eq. (23)

"NDRC Report 14-585, Purdue University, 1945 (unpub-
lished}."Recently, J.H. Taylor reported measurements on the pressure
dependence of the resistance of germanium, Phys. Rev. 80, 919
(1950).Attributing the efFect entirely to a variation of the energy
gap, it was found that the results agree with Eq. (24) if free elec-
tron mass are used for the efFective masses. The interpretation of
the effect could, however, be more complicated. The author is
indebted to Professor P. H. Miller, Jr. for seeing the manuscript
before publication.
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should be a suitable average for the band with which
it is associated and will not be the same as the effective
mass in Eq. (25) which applies near the band edge. In
fact our assumption (17) is a good approximation only
near the band edges. However, the order of magnitude
of the result should not depend on the form of Eq.
(17), and the brief discussion shows that the lattice
vibration efI'ect is not negligible and that its order of
magnitude is compatible with experimental results.
According to Radkowsky's treatment this eGect would
be about 10' times smaller.

e*(R~—R2), (26)

where R~ and R2 are the displacements of the positive
and negative ions, respectively, and e~ is the effective
charge of the ions, which diGers from the true charge
by the eGect of the polarization of the ions as a result
of their displacements. For optical modes of small q"

R1/R2 M2/ML.

The normalization condition (11) gives in conjunction
with Eq. (27)

IV. POLAR CRYSTALS

In polar crystals strong electron-lattice interaction
results from the polarization of the lattice which is
produced mainly by the longitudinal optical modes.
The polarization in a unit cell is

approximately constant and are related to the co& of
the transverse optical modes (Reststrahl frequency) by"

CO =07) 6g Cp (31)

4~e1 ha& t'1 1 ) & (m, )&

V& q gs. &c, epJ . (e,+1)&
(33)

where V= 2%a' is the volume of the crystal. This is the
same expression derived by Frohlich, Pelzer, and
Zienau "

Using Eq. (30) we get from Eq. (8)

(2s-ee*)' h 2$a'
BEg———

a' 2MSco (2s.) '

where e, is the static dielectric constant and ep is the
contribution to the dielectric constant from the polariza-
bility of the ions, i.e. the dielectric constant at fre-
quencies too high for ion displacements to follow. The
frequency co& itself is related to e, and ~p by

(oP =2s e*'eo/Ma'(e, eo)—& (32)

from which the effective charge e* can be determined.
In view of Eqs. (31) and (32) the matrix elements of
interaction potential (30) can also be written

(p(q) = i(q)(M2/M~+M2)&,

)2(q) = —i(q) (M g/Mx+M2) &.

Thus, for small q the polarization of a cell with center
at r~ is, according to Eqs. (10) and (26), where J2= 2m*ha&/h2. Since co is approximately constant,

n, is independent of q according to Eq. (21). Taking
principal values for the integrals of the erst term in
each integrand, we get

e"(MÃ) ~i(q)[a(q) exp(iq r„)+a*(q)exp( —iq r„)],
where M= M qM /(M2&+M~') is the reduced mass.
Assuming that the optical modes give a combined
polarization (per unit volume) wave n(ee')'h& (2',*) & (2m„*)&

I+I I (~+»
a3M(g& 0 k' ) E O' Je 1

E.i(q) [a(q) exp(iq r)
2a' (M/V) &

+a*(q) exp( —iq r) j, (29)
where we have neglected J compared with g, since
h'q '/2m* is of the order of several electron-volts,
whereas kco is of the order 10 ' to 10 ' ev. This equation
gives the same dependence of AEa on n (or temperature)
as obtained by Radkowsky. Because of this coincidence
we can refer to his discussion of the result, which shows
that it is in general agreement with the experimental
data on the shift of absorption edge in polar crystals.

The author wishes to express his indebtedness to
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where a is the interionic distance, Frohlich" has shown
that the matrix elements of the interaction potential
are given by

2 ee* f a q
~ (~,)»

(MX)& a'q E2cuq& (m, +1)&
(30)

The frequencies of the longitudinal optical modes are

(2g) 2~v t' f t' f Nq +q+ 1
+ I

~
~

I
+ —

I
»nedq&edp, (34)

$2 J J (q2 J 2 q2+J2)

'~H. Frohlich, Proc. Roy. Soc. (London) 160, 230 (1937). In
this paper e was used instead of e~ and 2X was used instead of¹
See H. B. Callen, Phys. Rev. 76, 1394 (1949).

~ Lyddane, Sachs, and Teller, Phys. Rev. 59, 673 (1950).
"Frohlich, Pelzer, and Zienau, Phil. Nag. 41, 221 (1950).


