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tion in electromagnetic theory, where one can "disguise"
a retarded Lienard-%iechert potential in such a manner
that no one will recognize it by its odd terms; i.e., one
can carry out a gauge transformation that gets rid of
the odd. terms. Nevertheless, this solution leads to a
net loss of energy in the system.

The di6erence between electromagnetic and gravita-
tional theory, however, is that the motion of the sources
of the electromagnetic Geld is completely arbitrary.
Therefore, there is no objection against introducing
singular terms in the Lienard-%iechert solution, so
long as Maxwell's equations are satis6ed. In the gravita-
tional case, however, the motion of the sources is con-
tained in the Geld equations —at least as long as one
deals with a system which is only subject to its own

gravitational Geld. Thus, when talking about possible
solutions of Einstein's Geld equations, one has to
observe the prescriptions of the EIH method as well.
The latter stands or falls with the assumption that
no arbitrary singularities be introduced at higher
stages of the method than the 6rst one. Therefore,
"disguised" retarded potentials have to be excluded.

Thus, it should be kept in mind that neither the
question of the existence of gravitational waves as
possible solutions of Einstein's 6eld equations under
the assumption of weird sources, nor the secular be-
havior of a double star, is discussed here. But we do
state that there are no physically diferent solutions
than the EIH one if a system of masses subject to their
own gravitational 6eld is considered.
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It is pointed out that the distribution of molecular velocities in a strong shock wave in a gas is bimodal.
Assuming the distribution function to consist of a sum of two maxwellian terms with temperatures and mean
velocities corresponding to the subsonic and supersonic streams, it is found that the space distribution, as
determined by the solution of a transport equation, is appropriate to describe a shock wave. Comparison
of the solutions of two different transport equations shows that the assumed distribution changes relatively
slowly with time and so is an approximate stationary solution of the Boltzmann equation for strong shocks.
The shock thickness found is considerably greater than that given by previous theories. The nominal
thermal conduction coefficient is negative in the after part of the shock.

I. INTRODUCTION

HE calculation of the thickness of a shock wave
in a gas, and of the distribution of density and

velocity within it, is an interesting and challenging
problem because of the failure of all standard methods
of attack. In treatments of this problem by the equa-
tions of Quid mechanics, it was early recognized' '
that the eGect of viscosity and of heat conduction must
be taken into account. Solutions of the Navier-Stokes
equation for a special case were obtained by Becker, '
who treated the coefFicients of viscosity and of thermal
conduction as constants. This solution was improved
by Thomas, ' who allowed for the temperature variation
of these quantities. The thickness calculated for strong
shock waves by the Seeker and Thomas theories are
very diBerent, and they show the importance of correct
estimation of the dissipative eHects in a shock wave.
At the same time, the thickness obtained even by the
Thomas theory is of the order of only a few mean free

' VV. V. M. Rankine, Trans. Roy. Soc. (London) 160, 277 (1870).
~ Lord Raleigh, Proc. Roy. Soc. (London) A84, 247 (1910).' G. I. Taylor, Proc. Roy. Soc. (London) A84, 371 (1910).
4 R. Seeker, Z. Physik 8, 321 (1923).
~ L. H. Thomas, J. Chem. Phys. 12, 449 (1944).

paths. This throws doubt on the validity of the Navier-
Stokes equations in a shock wave, for, according to the
kinetic theory, these equations are only valid if the
physical quantities de6ning the state of the gas change
only by a small fractional amount in the distance of a
mean free path.

In the kinetic theory of gases, the equations of Quid
Qow are obtained by solving the Boltzmann equation
for the space and velocity distribution of the molecules
by the Enskog-Chapman (E-C) method. This is a series
solution for the distribution function, in which the
expansion parameter is effectively t/hx, where l is the
mean free path and dx the distance in which the dis-
tribution function changes by an appreciable fraction
of itself. ' The 6rst, or zero-order terms give the equa-
tions of Qow of a frictionless Quid, the 6rst-order terms
give the Navier-Stokes equation, and the second-order
terms the so-called Burnett equation. ' Thomas' made
some estimate of the eBect of the Burnett terms, but
since the value of f/Ax for a shock wave indicated by

6 For an exposition of this theory, see, for instance, Chapman
and Cowling, The Mathematicaj Theory of Non-Uniform Gases
(Cambridge University Press, Teddington, England, 1939).

7 D. Burnett, Proc. Math. Soc. (London) 40, 382 (1935).
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the Thomas theory is not small, it is doubtful whether
the whole E-C theoxy is applicable to a shock wave, as
pointed out by Thomas and by Burnett himself. This
question has apparently been settled by %ang-Chang, '
who made a thoroughoing treatment of the shock-wave
problem on the Enskog-Chapman theory, taking into
account the effect of the third-order terms in the dis-
tribution function. She shows that the E-C theory
yields expressions for the velocity distribution function
in a shock wave and for its reciprocal thickness, which
are series in powers of M—1, where M is the Mach
number, and that these series converge so slowly that
it is doubtful whether they have any validity unless X
is only very slightly greater than 1, perhaps about 1.2.
%e must therefore conclude that the whole E-C theory
is inapplicable to strong shocks.

In the E-C theory, the distribution function is repre-
sented as a "skewed" maxwellian one, the function
having only one strong maximum. Now, in a strong
shock wave, whose thickness is only a few mean free
paths, we can expect that a considerable number of the
maxwellian molecules of the bounding supersonic and
subsonic streams penetrate into the center of the shock.
This suggests that what characterizes the velocity
distribution in a strong shock is the existence of two
maxima of comparable magnitudes, i.e., that the dis-
tribution is bimodal in the sense of the theory of sta-
tistics. To represent such a distribution, a series of
monocentric orthogonal functions such as is used in the
E-C theory is inappropriate, since, for instance, the
series of Sonine polynomials representing a bimodal
sum of two maxwellian terms is only asymptotically
convergent, as can easily be veri6ed. To use orthogonal
function theory, it would seem to be necessary to de6ne
and employ orthogonal functions of a two center variety,
analogous to the molecular orbitals of quantum theory.

Instead of this, an approximate solution of the Boltz-
mann equation for a strong shock is here obtained by a
method which can be regarded as the 6rst step in an
iterative scheme. For the initial solution, the distribu-
tion function is assumed to be the sum of two maxwellian
terms with diferent tempexatures and mean velocities
but with unassigned space densities. The densities are
obtained from the solution of a transport equation for
e", where rs is an integer and I is the component of
molecular velocity in the stream direction. This choice
is made for mathematical convenience. The calculations
are carried out for n=2 and @=3.Comparison of the
results gives some indication of the adequacy of the
assumed distribution function. The agreement is not
too close, the diGerence between shock-wave thickness
calculated from the two cases amounting to 5 percent
to 25 percent, depending on the Mach number. ¹ver-
theless, the discrepancy for strong shocks is far less than
that between the Becker and Thomas formulas. One

' C. S. Wang-Chang, Qe the Theory of Thickness of 8'eek Shock
8'uses, University of Michigan, Dept. of Engineering Report
UMH-3-F (APL/JHU CM-%3), August 29, 2948 (unpublished).

can expect, perhaps, that for M greater than about 2,
the present solution gives a better picture of conditions
in a shock wave than any of the hydrodynamical
theories. On the other hand, while the solution makes
the reciprocal of the shock thickness proportional to
M —1 for M —1 small, as found by existing theories,
the constant of proportionality is wrong. Thus, the
present solution stands in need of correction for weak
shocks.

The thicknesses found are considerably greater than
those predicted by the Thomas theory. The thickness
approaches a limit for in6nite Mach number, but this
limi:t is about twice as great as that given by the
Thomas formula. It is interesting that previous treat-
ments, as they improved their basic assumptions, have
successively given increasing estimates for shock-wave
thickness and so pxobably still err in defect. Probably
the thickness given by the present treatment errs in
excess and so provides an upper limit to the thickness;
for the velocity distribution function used represents
about the maximum in di8exence from "quasi-equi-
librium" types of distribution, such as are assumed in
the E-C theory underlying hydrodynamical treatments.

Since the space density, mean velocity, and all other
macroscopic quantities are obtained directly from the
distribution function, the solution involves only the
Mach number and collision cross sections derivable from
the intermolecular laws of force. It circumvents any
use of Quid Qow equations, or of the concepts of tem-
perature, viscosity, and thermal conduction. It is
evident u priori that these latter quantities here have
only a nominal signihcance, for, because of the bimodal
distribution, averages over the distribution lose their
physical importance as de6ning the Qow. For instance,
very few molecules have the average velocity, few have
a random component of velocity corresponding to the
"temperature, " and so on. Nevertheless, temperature,
coeKcient of heat conduction, etc. are still formally
de6nable, and it is interesting to examine how they
behave in the present model of a shock wave. It turns
out that the heat Qow vector is constant in direction
throughout the shock, being always directed from the
subsonic to the supersonic stream as expected. But for
M greater than about 2, the "temperature" reaches a
maximum within the shock, so that the gradient
changes sign. Thus, the nominal thermal conduction
coefBcient is actually negative in the after part of the
shock. Since the calculated thermal conduction coef-
6cient is a second-order quantity sensitive to small
errors in the assumed velocity distribution, too much
signi6cance cannot be given to the quantitative aspects
of these results. Qualitatively, however, we can give
them some signi6cance, and they illustrate drastically
the reason for failure of treatments of the shock-wave
problem based on concepts of macroscopic Quid Row.

The calculations can be interpreted in a di6erent
way, as determining the time rate of change of an
initially given distribution. From the time-dependent
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transport equations for u' and u', one can calculate the
life (i.e., the time for p-fold change) of the assumed
velocity distribution considered as established initially.
This life turns out to be of the order of ten to a hundred
times the mean free time between molecular collisions,
depending on the Mach number. Since, for an arbitrary
initial distribution, the life, in general, vrould be of the
order of the mean free time itself, the assumed distri-
bution is something of an approximation to a steady-
state solution.

It is to be noted that, for polyatomic gases, the
treatment of the shock-wave problem by the ordinary
Boltzmann equation, as here, is only an approximation
due to relaxation e6'ects. In a strong shock we must
expect lack of equipartition of energy between trans-
lation and vibrational modes. An accurate treatment
of this eGect vrould require, at the same time, the con-
sideration of the effect of the internal degrees of freedom
in modifying the laws of collision. To the extent that
lavrs of collisions betvreen spheres are adequate, a
treatment like the present one takes some account of
relaxation effects by assuming the ratio of speci6c heats

y to have a value greater than the normal one. A com-
parison of the theory vrith experimental results would
determine the effective y and so permit an estimate of
the importance of relaxation eGects. The present theory
is scarcely accurate enough to make such a comparison
very signi6cant, but it does give a dependence of shock-
vrave thickness on y diGerent from that given by the
Thomas theory, and may be closer to the facts for
strong shocks.

Finally, the concept of a double distribution, here
used for a shock wave, may be appropriate in other
cases, such as those of Game fronts, detonation fronts,
and in the analysis of the interaction between a boun-
dary layer and a shock front. Physically, the picture
given is that of a mixture of two gases of diGerent tem-
peratures and mass motions. The Boltzmann equation
describes the interaction between these two components
and plays the role of an equation of chemical reaction.
The reaction is a "bimolecular" one, corresponding to
the fact that linearized solutions of the Boltzmann
equation do not apply here and that its essentially
quadratic character must be taken into account. In
tring to set up such a theory, for instance for the two
dimensional case applicable to analysis of boundary
layer-shock-wave interaction, vre would have eight
variables to deal vrith for each of the two gas com-
ponents; namely, the molecular density, temperature,
and two space components of mass velocity. It would
be natural to assume that in each volume element the
directions of the mass velocities of the two gas corn-
ponents lay in the same line to a irst approximation.
As vrill be seen in the follovring, this provides two
equations of a Rankins-Hugoniot character, relating
the mass velocities and temperatures, and reducing the
number of independent variables to six. The transport
equation for mass, momentum, and energy vrould

f

(C" C)ff~gd—Qdc~dc, (1)

where g is the magnitude of the relative velocity g of a
colliding pair: a

g= Cj —C. (2)

Also, f, means f(c~), and C' means C(c'), where c' is
the velocity of the first molecule after collision; dQ is a
differential cross section. ' We now assume f to be of
the form

with
f=f-+fp (3)

f =e (x)(ta/2skT )&exp}—(m/2kT )(c—il )'I, (4)

and similarly for fp with n replaced by P throughout.
Here i is a unit vector in the x direction; m, the mass of
a molecule; and k, Boltzmann's constant. The param-
eters T, c, Tp, cp are assumed independent of x and t.
Substitution of Eqs. (3) and (4) in Eq. (1) gives an
equation of the form

8 f 8 f 8
I Cfdc+ I NC f dc+— i

tNC fgc
a~ & a*& a*~

vrhere
=I +I p+Ip+Ipp, (5)

If in Kq. (6) we interchange c& and c (which does
not change the value of the integral), and also inter-
change a and P, throughout, the integral is restored to
its original form, except that c~ and c must be inter-
changed in O' —C. Thus vre get Ip by e6'ecting the last
change alone in the integral in Kq. (6). Also, since f
and fp are maxwellian,

fa fai =fafaiy fp an =fpfp1y

~ The notation conforms generally to that of reference 6.

provide four more equations, linear in the space densi-
ties, and there vrould be left tvro more relations to be
obtained from the Boltzmann equation, quadratic in
the space densities, which might be taken to be two
more transport equations for judiciously selected quan-
tities. Such an analysis naturally would be complicated,
but it would be required if the transition from boundary
layer to shock wave is only a few mean free paths in
thickness, vrhich may vrell be the case.

III. THE TRANSPORT EQUATION

If c is the vector velocity of a molecule, u its x-com-
ponent, t the time, and f(x, c) the distribution function,
the one-dimensional transport equation for an arbitrary
C(c) is

8 f~ 8—
~

Cfdc+ — u4fdc
BtJ Bx J
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and from this, it foOows" that

Igggg Ipp Oa

First take 4 in turn equal successively to the col-
lisional invariants 1, u, and c+(2/m)Z;, where E; is
the internal energy of a molecule. For these, the right-
hand side of Eq. (5) vanishes; and for the steady state
Bf/W=O, we obtain the following equations expressing
the conservation of matter, momentum, and energy:

4=5(x-X) (12)

Let b be the usual collision parameter, which for elastic
spheres of diameter a is given by

b=o sing. (13)

where u', N~ are the x-components of c', c~. Also if
g'=c~' —c' and x is the angle between g and g', x is
the angle of deQection in the center-of-gravity system
and is related to f by

Rrxlrx+ Rpgp =E,~

n (u '+c ')+np(up'+cp') =P, (7)
n u (u +ac ')+npup(up'+acp')=Q,

Then, for the dQ in Eq. (1) we can write

(14)
in which R, P, Q are constants of the flow,

c '=kT /m, cp'=kTp/m,

a= %+5=2v/(v —1),

III. THE CASE %=u~

Putting 4=u' in Eq. (6) and using Eqs. (11) and

(9) (14), we find

where E; is the number of internal degrees of freedom,
and y is the ratio of specific heats. The last of Eq. (7)
assumes equipartition of energy between internal and
translational degrees of freedom. In accordance with the
introductory remarks, we can expect u for polyatomic
gases to have an eGective value less than the normal
one because of relaxation effects.

In order that Kq. (7) be consistent when regarded as
determining n, ep, we must have

(u~ +c~ )/u~= (up +cp )/up( u~ +ac~ = up +acp .
These equations, when solved for Np and cp, give

up= f u.2+ac.2]/f (a 1)u.]—, (1 )c 2= Lu 2+ac 2]/L(a 1)2u 2][(a 2)u 2 c 2]

Equations (10), together with the first of Eqs. (7),
are equivalent to the Rankine-Hugoniot equations
giving the density, velocity, and temperature of the
subsonic stream in terms of those of the supersonic
stream. " Thus, only two parameters in Eq. (3) ar' e
independent.

To determine the space densities n (x), n (x), we
need a choice which does not make the right-hand side
of Eq. (5) vanish. The simplest choice is C =u", for
which the integrations can be carried out with relative
ease. Let K be the change in the velocity of the erst
molecule due to the collision, so that

(u"—u') dQ = (u" u') gdbd —pdbj

j22r
'

Lg2 —3(ul —u)'] cos2$ sin2fgbdb

=la "'(g)Lg'-3( —)'], (15)

where g is given by 12 and

4»"'(g)= " (1—o ' )gbdb (16)

is the elementary cross section dehned by Chapman
and Cowling. n Substitution of Eqs. (4) and (15) in Eq.
(6) gives

I p+Ip =n np(m/22rkT &Tp'4)2

=22r t f2u(ul —u) cos2$+(ul —u)'cos4$
0

+ 'fg22(u-l —u) '] cos2lf sin2PI gbdb.

By the rule under Eq. (6), the corresponding expres-
sion in I p+Ip is obtained by interchanging ul and u
in the above and adding the result to the original
expression. Doing this, we get

K= c —c= cy —cy .
Let f be the angle between g and K, 8 the angle between
g and i (the x axis), 2 the angle between the plane of g
and K, and the plane of g and i. Then from the laws of
collision,

Make the transformation

c= iu +F—GT /(T +Tp)

cl ~ lup+8+ GTp/(T~+ Tp)

u —u= E(cos8 coslP+sln8 sing cosp)~
ul —24= g cos8, E=g cosf, (11) alld

f f
X

J JI exp f
—(m/2kT~)(c lue)2 —(m/2k—Tp)(cl lup)2f—

X 22ry41 &"(g) f g' —3(u,—u)'I dc,dc.

"See reference 6, pp. 66, 70."It is to be noted, however, that Eqs. (10) are more general
than the Rankine-Hugoniot equations, since they must be satis6ed
at each point within a shock wave, in case e„, ep, c„,cp are con-
sidered functions of position. Compare remarks in the introduc-
tion.

and express the new coordinate vectors F, 6 in terms
of spherical polar coordinates Ii, 8p, @p, G, 86, pg, so
that dc&dc =F' sin8~d8~d@pdP. G' sin8gd8gdfgdG. The

~ See reference 6, p. 157.
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integrations with respect to Hp, phd, F, pg can then be
carried out, with the result

where S is Sutherland's constant, which has the dimen-
sions of a temperature. This gives

n np[m/2k(T, +Tp)]tx& I

J
exp{ mG—'/2k(T +Tp)}

H=HO+H„

where Ho is given by Eq. (23) and

(24)

&(y„' (IG'+2G(up u—~) cos8g+ (up —u )'}&)

X IG' —2G(u —up) cos8g+(up —u )'
—3(G cos8g+up —u )'}sin8od8oG'dG.

Introduce the dimensionless quantities Go, I p de6ned
by

(25)

r&1
16 S 1= ——0 N~p

2

15 T+Tp r

2 S
H, (Gaul) = —o—u~p'(15—10r'+3r4), r(1

15 T +Tp

Also put

G= L(2k/m)(T +Tp)]&GO,

u up= $—(2k/m)(T +Tp)]&u p.

(17) Substituting from Eqs. (24), (23), (25), (19) in Eq.
(21) and carrying out the integration, we find, for
Sutherland's model,

r= Go/u. p (19)

and replace Hg by a new variable of integration Z given
by

r' —2r cosH6.+1=Z'.

The limits of integration for Z are }1+rl and }1—rl,
corresponding to 8o ——+x and 8o——0, the absolute
values occurring because Z is proportional to the rela-
tive geometry g of a colliding pair, which is always taken
to be a positive quantity. Substitution from Kqs. (17)—
(20), in the integral yields an expression for I p+Ip
of the form

I.p+Ip. n.npD2k/m——)(T.+Tp)]ax'

2kI p+Ip ', m ~(——r'n—n-p (T +T—p)

S
)& A(u p)+ A, (u p), (26)

+Tp

(1 1 3i
A(u) =

l

—+— } exp( —u')
u' 4u'J

3 3 3)
+l 2u+—'

, l erfu, (27)
u 2u' 4u')

Oe (3 9)
g

J
exp( —G0')H(GO, u p)G02dGO, (21) A (u) =

I&
—,

&}
ex'(—u')

where

H(GO, u.p) = L(2kl—m) (T-+ Tp)] '(u-p/4r)
with

9 pi+
l

3u' —3+
I

—erfu, (28)
4u') u

X
l I~I

I3s4+2(1—3r2)s&+3(1 r ) } erfu= JI exp( —s')ds.
0

Xy„&'&Iu p(2k/m)&(T +Tp)~s} «s (22)

&he integrations in Kq. (22) can be carried out for any
of the laws of intermolecular force for which p~~&" has
been evaluated. For instance, for elastic spheres of
diameter 0,

d ii"'(g) = sg~

(see reference 6, p. 197), and we find

H(Gp, u p)=HO(Gp, u, p),
with

Ho(GO, u p) = —(4/105)a u ps(35+35r' —7r'+r ), r& 1
= —(4/105)p u ps(8r '+56r). r) 1

(23)

For Sutherland's model of elastic spheres with an at-
tractive field of force, we have (see reference 6, p. 182)

d'D '(g) =xgp +(+/g) (k~/m)

ln Eq. (5), we put Bf/Bt=0, use Eq. (6a), substitute
from Eq. (26) in the right-hand side, and evaluate the
integrals on the left for f, fp given by Eq. (4). Intro-
ducing the notation (8), the result is

+ala++pN p
=+ONa. (30)

If M is the Mach number of the supersonic stream, then

u (u 2+3c 2)(dn /dx)+up(up~+3cp2)(dnp/dx)
+xrr&rr'(2c. '+2cp') &n.np

X}A(u.p)+S(T.PTp)-'A, (u.p)]=0. (29)

This is a diBerential equation determining the den-
sities n (x), np(x) for the steady state. We assume the
n stream to be the supersonic one and take the direction
of Qow to be positive. Then I, Np, and I p are all
positive. Let no n( ~)——be th—e density of the super-
sonic stream a long way from the shock. The 6rst of
Eqs. (7) can then be written
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Tsar,E I. Values of Bo, B„and B1 as functions of the Mach
number, for y= 5/3 and 7/5.

defining vp=up/uo, we find

vp = (u~/up) (1—v~) = (u /up)/(1+ e 41') (38)
y =5/3

Bp
y =7/5

Bp Here u /up can be expressed in terms of the Mach
number and u. Equations (37) and (38) complete the
solution of the problem. It is seen that s decreases
from 1 at x= —~ to 0 at x=+~, while vp increases
from 0 to u /up. As we proceed from x= —po to
x=+ pp, one density grows at the expense of the other,
and it is apparent that the solution is appropriate to
represent a shock wave in which f is the velocity dis-
tribution in the supersonic stream and fp that in the
subsonic stream. The shock-wave thickness is deter-
mined by the quantity B defined by Eq (34.), in which
the functions A(u, p), A, (u p) are defined by Eqs. (27)
and (28), and u p is defined by Eq. (35), a by Eq. (9).

Br.Bo B1

0 0
0.0171 0.0999
0.0568 0.2122
0.0793 0.3163
0.0943 0.4194
0.1202 0.6184
0.1350 0.8040
0.1417 0.9738
0.1381 1.3262
0.1226 1.5872
0.0652 2.1078
0.0195 2.4009
0 2.5117

0
0.1122
0.2108
0.3169
0.4196
0.6106
0.7825
0.9346
1.2385
1.4561
1.9586
2.1227
2.2147

0 0
0.0214 0.0923
0.0477 0.1872
0.0704 0.2835
0.0901 0.3805
0.1211 0.5688
0.1423 0.7575
0.1556 0.9318
0.1646 1.3092
0.1551 1.6028
0.0928 2.2264
0.0297 2.6016
0 2.7488

0
0.1204
0.2388
0.3648
0.4640
0.6562
0.8202
0.9583
1.2144
1.3824
1.6758
1.8218
1.8740

1.0
1.1
1.2
1.3
1.4
1.6
1.8
2.0
2.5
3.0
5.0

10.0

from Eqs. (8) and (9), the fact that u is the velocity of
the supersonic stream, and the definition of the Mach
number, we 6nd that

IV. THE CASE@'=u'

The calculations for this case will only be sum-
(31) marized briefly. The integration over all types of col-

lisions give for the contribution to
3P= [(u—2)/a] (u.'/c. ').

= 4prfui+u][g' —3(ui —u)']o&»&'&(g).

Using Eqs. (30) and (10) to express up, up, and cp in
terms of e,I, and c, and using the results to eliminate
the first three quantities from Eq. (29), we find that Iap+Ip~

~
(u' —u )gbdodb

everything remaining can be expressed in terms of the
Mach number as given by Eq. (31). Equation (29) is
6nally reduced to the form

where
dv /dx+(B/l)v, (1 v,)=0, —

v.=u./uo, and i=(/vx~upa,

From this point on, only the case of elastic spheres
(32) will be given. Carrying out the integrations by the same

methods as before, we 6nd
(33)

I~+Ip forte'u up——[(2k/o&4)(T +Tp)]'
so that l is the maxwell mean free path in the supersonic
stream.

2 pu —. 2q ~

3(a—3) i 4N&' )

[oM +2o(o—2)M —a+2]O
X

[MP—1][MP+o—1][MP+ —2]

A(u p)+ A, (u p), (34)
5

1+Tp/T

u-p= [M' —1]l ko(a —2)]'
X[aM4+2a(u —2)M' —a+2] ~ (35)

where

X exp( —Go') E(Go, u~) Go'dGo,
aJ 0

4 aM'+a —2
E(Gp, u) = ——

I 35u4+35u'G, '
35 (a—2) (MP —1)

—7G44+Gpou + (2/3a)(105u Go

+21u Gpo+3Go —Golu )I & Go(u

4 uM'+a —2
I gu'Gp '+56uoGo

35 (a—2)(M' —1)

—(8/3u)( —u'Go '+12u'Go+21u'Go')Ii Go&u"

Ultimately, an equation of the same form as Eq. (32)
Tp/T = (M'+a 2)(aMP 1)/(a——1)'M'.—(36) is obtained, with B replaced by Bi given by

The solution of Eq. (32) is

v.= 1/(1+pe"), (37)

81=
35m& M'+a —2

4 44(u —2)(uM'+ u —2)

where the constant of integration is determined by
choosing the origin x=0 as the point where u =-,'.
Solving Eq. (30) for up, substituting from Eq. (38), and

(1C)[uM4+2u(a —2)M' —a+2+ i(u~), (39)

C=a'(a' —4c+ 1)M4+ 2e(a- 2) (2uo —7a+ 3)M'
+ (u —2)'(a' —6a+3), (40)



SOLUTION OF BOLTZMANN EQUATION

35 3 3
Ag(N)=~o 1+

2 2u' 4u4

3~ 1 1 3q-
erfg

a ( 2N, ' 4u4 8N'J

1 21 105 1 t 105 315 q-+I'-+ = + —-i +
2 2N' 8N' a (4N' 16oo')

Xexp( —I'). (40)

V. RESULTS

The molecular density n at any point in space is
given by oo=l +ooe= (v +vs)ooo. Substituting from
Eqs. (37) and (38), and expressing I /Ne in terms of the
Mach number by the use of Eqs. (31) and (10), we find

n M'+a —2+M'(a —1)es*"
(41)

too (M'+ a—2) (1+e~~")

The stream velocity N is found by averaging u over the
distribution, or more directly from the equation of con-
tinuity nN= nol . Following the usual practice, we can
define the density thickness of the shock wave as equal
to [e(+~)—oo( —oo)j/~doo/dx~, and the velocity
thickness as [u(—oo )—u(+ oo )j/ ~

dl/dx
~

~. Here

( doo/dx (
and ) du/dx

~
are, respectively, the maxi-

mum absolute value of the density gradient and of the
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TABLE II. Half-life of the distribution for various Mach numbers.

M
Half-life

1.1
69

2
144

3
37

5
26

10
17 16

velocity gradient. It turns out that here the two thick-
nesses are the same and are given by

X=4//B. (42)

The reciprocal thickness 1/X is therefore, proportional
to the quantity B given by Eq. (34) or Eq. (39), ac-
cording to whether zP or u' is used in the transport
equation.

If we write Eq. (34) in the form

B=Bo+B.(S/T ), (43)

t, a~~ ~5~& M'(5M+3)

(t., a..& ~o (2m i 25M'+90M'+3

80 determines the shock-wave thickness for the elastic
sphere model and 8, the correction to this to account
for the attractive forces of the Sutherland model. Table
I gives J30, B„and 8& as a function of the Mach number
M, where B~ is defined by Eq. (39), for y=5/3 and
y=7/5. Figure 1 shows a plot of l/x for air and for
helium, where x is the calculated shock-wave thickness
and l the mean free path in the gas before the shock.
The thicknesses calculated by using B of Eq. (34) and
B& of Eq (39) a.re both shown, and for comparison, the
thickness given by the Thorpas theory. For air, p has
been assumed to be 1.4, although a larger value should
probably be used to allow for relaxation eGects. It is
seen that the thicknesses calculated from the I' and the
u' transport equations are in good agreement for inter-
mediate Mach numbers, but there is some discrepancy
for the higher Mach numbers, particularly for mona-
tomic gases.

In the time-dependent transport equation, (5), let us
assume that fhas the form (3) at t =0, where n (x), ooe(x)
are chosen to make (8/Bt) J'f4dc=0 for C =oo'. Then
oo, (x), ne(x) are given by Eqs. (37) and (38). Putting
now @=I', we get an equation for Bf/Bt at time t=0,
from which we can get an equation for say Be /oo, 8$ at
time )=0, measuring the fractional change with time of
the supersonic component. It turns out that, if we
express time in terms of the mean free time I p between
collisions of a- and P-molecules, this quantity is inde-
pendent of position and is given, for y= 7/5, by

where

4M' ) 30 3~& 1

( 5+ ——
i
D(u.e)

M'+3 ( Mo M4) Bo B, —

FIG. i. Ratio of mean free path / to shock-wave thickness X as
function of Mach number M. (1) Air at 300'K intake temperature,
using u~ transport equation with Sutherland model. (2) Air at
300'K using I' transport equation with elastic sphere model.
(3) Helium at 300'K from u~ equation with Sutherland model.
(4) Helium at 300'K from u' equation with elastic sphere model.
(5}Thomas curve for air.

D(N) = (I+1/2u)J exp( —G')dG+-,'exp( —oo').
0

The half-life of the v component, equal to ln2 times
the above quantity, measures the half-life of the dis-
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TABLE III. Distribution of nominal temperature T and nominal
thermal conduction coeScient in the shock vrave, for y =7/5.

M~2
T/Tp P/Xp T/Tp ) fop

~~oo
T/Tp ) /Xp

0
0.05
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60

1.000 48.20
0.998 42.20
0.995 37.40
0.992 33.23
0.988 29.57
0.984 26.31
0.979 23.48
0.968 18.62
0.953 14.76
0.935 11.42

1.0000
1.0002
1.0002
0.9997
0.9990
0.9974
0.9956
0.9876
0.9650
0.9526

—155—459
+354

115.5
64.2
42.2
29 9
16.94
10.26
8.31

1.0000
1.0058
1.0112
1.0178
1.0240
1.0305
1.0380
1.0500
1.0612
1.0667

—92.8—92.3—92.2—92.5—93.5—95.3—98.5—113.5—163.2
~ 00

0.70 0.910 9.08 0.9394 5.09 1.0560
0.75 0.897 7.99 0.9172 4.05 1.0370
0.80 0.880 6.99 0.8585 2.42 1.0000
0.85 0.862 6.11 0.8183 1.834 0.9305
0.90 0.842 5.31 0.7608 1.350 0.8000
0.95 0.818 4.06 0.6892 0.958 0.5465
1.00 0.792 3.89 0.5928 0.658 0

74.1
46.6
20.6
11.28
5.80
2.53
0.664

tribution in terms of t p and is shown in Table II for
various Mach numbers. This indicates the degree to
which the solution obtained from the transport equation
for I' is a steady-state solution.

If u is the mass velocity, T the temperature defined
in terms of the translational energy of the molecules,
and q the heat transport vector, the standard formulas
of the kinetic theory give nu=n u +npup, 3nkT/m
=n ((c iu)')—»„+np((c iu)')p—A„andI7=n ((u—u)E) A,

+np((u u)E,)pA„—where ( ) A„ indicates an average over
the a distribution, ( )pA, one over the P-distribution, and
E,= (m/2)(c —iu)'+E; is the sum of the kinetic energy
relative to the mass motion and the internal energy for
a molecule. Evaluating the averages we 6nd

kT/m= (1/n)(n. c.' npcp')+—,'(n.np/n-')(u up)', —
2nq/m=n np[u up]—

&([a(c,'—cp')+ (u.—up)'(n —np)/n],

where c, cp are given by Eqs. (8). We can go on to
de6ne a thermal conduction coeKcient X by the usual
formula q= XBT/Bx. The —resulting formulas for T
and X can be expressed in terms of the Mach number
of the use of Eq. (31), and the values of n, np are given

by Eqs. (37) and (38). In this way we get formulas
showing the values of T and of X as functions of position
in the shock wave. The results are shown in Table III,
where the ratios T/Tp, X/Xp are shown as functions of
v for M'=V2, 2 and ~, and for y= 7/5. Here Tp is the
temperature in the subsonic stream, Xp the thermal con-
duction coeKcient calculated for the conditions in the
subsonic stream by the standard kinetic theory for-
mulas for the elastic sphere model, and v„ is given by
Eq. (37). v =1 corresponds to the supersonic edge of
the shock wave, v =0 to the subsonic edge.

As the table illustrates, for Mach numbers of 2 and
greater, the temperature T reaches a maximum within
the shock wave; and between this point of maximum T
and the subsonic edge of the shock, X is negative. This
nominal X is seen to di6er by orders of magnitude from
the ordinary kinetic theory value. Of course we cannot
expect the present crude approximation to the dis-
tribution function to give correct results for X, and,
in any case, the simple formula q= M—T/8x should be
corrected, as for instance in the Burnett theory; but
the anomalous values of X give some indication of how
far the flow in a shock wave divers from that described
by equations of the Navier-Stokes type, if the dis-
tribution function here used is any approximation to the
actual distribution.

In seeking to improve the present theory, it is natural
to attempt an iterative solution of the Boltzmann equa-
tion itself, taking as initial solution the f given by Eqs.
(3) and (4). The collision integral can be evaluated, at
least in powers of M —1, and this has been done; but the
results suGer from the defect that they do not vanish
identically for I=0, as the Boltzmann equation requires.
This makes carrying out of the next step dificult
because of the occurrence of a 1/u singularity, although
the integrals of the second step are hnite in spite of
this. But more appropriate would be the introduction,
in the initial function, of "skew" terms of the
type f &'&[(c—iu )'—SkT /m][u —u ], f "'[(u—u )'
—-', (c—iu )'], where f &0& is given by Eq. (4), and
similar P terms. Such terms occur in the first-order
solution of the E-C theory. The coeKcients of the
various terms could be adjusted in such a way as to
give, in the limit M-+1, the form of f required by the
E-C theory and, at the same time, to give the vanishing
of the collision integral for N=o.

Recent measurements of shock wave thickness by
Cowan and Hornig" and by Greene, Cowan, and
Hornig" using the optical reflectivity method, show
thicknesses signi6cantly greater than those predicted by
the Thomas theory, -in accordance with the results
found here.
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out a numerical error in the original formulation of the
theory. I wish to thank Drs. E. F. Greene, G. R. Cowan,
and D. F. Hornig for sending me a copy of their manu-
script in advance of publication, and Dr. Greene for
keeping me informed of the progress of experimental
measurements in Brown University.
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