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Although the interpretation of experiments in such fields as the
shapes of small particles and the thermal etching of surfaces
usually involves problems of kinetics rather than mere equilibrium
considerations, it is suggested that a knowledge of the relative
free energies of different shapes or surface con6gurations may
provide a useful perspective. This paper presents some theorems
on these relative free energies which follow from the %ulff con-
struction for the equilibrium shape of a small particle, and some
relations between atomic models of crystal surfaces and the surface
free energy function used in this construction. Equilibrium shapes

of crystals and of noncrystalline anisotropic media are dassified,
and it is pointed out that the possibilities for crystals include
smoothly rounded as well as sharp-cornered forms. The condition
is formulated for thermodynamic stability of a Qat crystal face
with respect to formation of a hill-and-valley structure. A dis-
cussion is presented of the limitations on the applicability of the
results imposed by the dependence of surface free energy on cur-
vature; and it is concluded that these limitations are not likely to
be serious for most real substances, though they are serious for
certain idealized theoretical models.

I. INTRODUCTIOÃ

ANY fields of physics, chemistry, and metallurgy
- ~ encounter the need for an understanding of the

surface structures of crystals which have been subjected
to various kinds of heat treatment. Examples of such
fieMs include thermionic emission, sintering, and many
problems in adsorption and catalysis. A complete under-
standing of surface structures will not be easy to
achieve, however; the many experimental studies which
have been conducted on "thermal etching" and related
phenomena indicate that the processes involved are
quite varied and complex. "In fact, it has long been
recognized that the shapes of growing crystals, the
structures of heated surfaces, etc., are in most cases
determined by a competition between the rates of
various mechanisms of transport, such as condensation,
diBusion, chemical reaction rates, and that a complete
understanding of such structures usually requires a
detailed knowledge of these kinetic factors. ' Neverthe-
less, one can expect in many cases to gain a valuable
perspective on problems of crystal form and surface
structure by investigating the surface free energies of
the various possible con6gurations of the surface of a
crystal. The cases in which surface free energy is irn-

portant are, of course, those in which the dimensions of
the crystal grains, or of the surface irregularities, are
suf5ciently small. In such cases the tendency of the
crystal to lower its surface free energy is often the
principal motivation for changes in surface structure
which take place —as seems to be the case in sintering,
for example —and under proper conditions one may
even approach an equilibrium configuration of minimum
free energy. The present paper will be concerned merely

'For a brief survey of the problem of surface structure of
metals with special emphasis on topics important to the Geld of
thermionic emission, see C. Herring and M. H. Nichols, Revs.
Modern Phys. 21, 185 (1949), Sect. II, 1 and II, 2 and especially
Appendix III.

'A brief review of experimental work in this 6eld has been
given by R. Shuttleworth, Metallurgia 38, 125 (194S).' See, for example, K. Spangenberg, "Kachstum und Au6osung
der Kristalle, " in Pagdzodrferblch der Eatunnissesschaftee (Verlag
Gustav Fischer, Jena, 1934},second edition, VoL X.

with this rather limited problem of the relative free
energies of various shapes and surface structures of a
crystal, with inclusion of a few results applicable to
noncrystalline anisotropic phases, such as liquid crystals
and tactoids.

The most obvious problem in this 6eld is that of

determining what shape a small crystal must assume if
its surface free energy is to be a minimum for a given
volume. The solution to this problem was stated by
%ulff4 almost half a century ago; and as WulG's
theorem will serve as a foundation for some of the
arguments to be presented here, a brief description of
it is in order. The surface free energy of any body is an
integral of the form

y(n)d5

extended over the surface of the body, where the
specific surface free energy y is, for anisotropic bodies,
a function of the orientation of the unit outward normal
n at each surface point. I.et & be plotted radially as a
function of the direction of n; for a crystalline body a
two-dimensional cross section of this plot will look
something like the outer curve in I'ig. 1, with cusped
minima in certain directions corresponding to surfaces
of particularly simple structure. At each point of this
polar plot construct a plane perpendicular to the radius
vector at that point. Then the volume which can be
reached from the origin without crossing any of the

' O. Kulff, Z. Krist. 34, 449 (1901).The Grst rigorous proof of
Wulff's result seems to have been given by H. Liebmann, Z. Krist.
53, 171 (1914); see also M. v. Laue, Z. Krist. 105, 124 (1943).
These proofs, although they leave no doubt that the result is
true in general, are a little unsatisfying logically in that they
prove merely that no polyhedron can be an equilibrium shape
unless it is geometrically similar to the polyhedron obtained from
application of the %'ulff construction to the set of normal direc-
tions occurring for the sides of the polyhedron. However, A.
Dinghas, Z. Krist. 105, 304 (1944},has shown how an inequality
due to Brunn and Minkowski can be used to prove directly that
any shape diBering from that given by the KulB construction has
a higher surface free energy than the latter. Although Dinghas
considers only a special class of polyhedral shapes, his method is
easily extended to arbitrary shapes, since the Srunn-Minkowski
inequality is true for convex bodies in general.
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sumption that the atoms of a crystal interact attrac-
tively in pairs leads to a Iud construction which has
certain degenerate properties, so that conclusions based
on this assumption may be qualitatively as well as
quantitatively altered by slightly modifying the
assumption. This will be illustrated in Sec. V by a dis-
cussion of the amount of rounding of edges and corners
which is to be expected f'or surface structures in local
thermodynamic equilibrium.

POLAR PLOT OF SURFACE FREE ENERGY----- SAMPLES OF PLANES NORMAL TO RADIUS VECTORS QF THIS PLOT——EQUILISRIUM POLYHEDRON

Fn. 1. Typical polar plot of surface free energy for a crystal and
the WulB construction based on it.

planes is, according to WulG, geometrically similar to
the ultimate equilibrium shape for the crystal; i.e., the
shape which minimizes Eq. (1) for fixed volume. This
construction is shown by the dashed line in the figure.
The proofs of this theorem which have been given4 have
been formulated only for the case in which the equi-
librium shape is a polyhedron, but they are easily
generalized to apply to cases in which part or all of the
equilibrium shape is bounded by smoothly curved
surfaces.

This equilibrium shape is of direct practical interest
only for very small crystals, since for a large crystal a
signi6cant alteration in shape can be achieved only by
transporting a large number of atoms through a 1arge
distance, and the eGort involved in doing this becomes
very large in comparison with the decrease in Eq. (1)
which rewards it. For large crystals it is of greater
interest, therefore, to inquire how the free energies of
neighboring configurations compare, even though none
of these is at all close to the shape given by the Ku16
construction. In Sec. II we therefore consider the
question: when can the free energy of a plane surface
be lowered by rearranging the atoms into hills and
valleys of a size large compared with atomic dimensions
but still small from the macroscopic standpointP

Section III wiB be devoted to an investigation of the
conditions under which the equilibrium shape can be
bounded in part by continuously curved regions, or
more generally, the conditions under which a continu-

ously curved surface can be thermodynamically stable
with respect to small distortions or roughenings.

In Sec. IV it wiO be shown that the often-used as-

II. THERMODYNAMIC STABILITY OF A HILL-
AND-VALLEY SURFACE STRUCTURE

To see under what circumstances it is possible to
decrease the free energy of an initially Qat surface by
rearranging the atoms into hills and valleys, consider a
polar plot of surface free energy such as that in Fig. 1.
I,et OA be the direction normal to the crystal surface
in question. Consider any three other directions 08&,
082, OB& (only the first two are shown in the plane of
the drawing), having positive projections on OA. The
planes normal to these three directions could form the
sides of a hill-and-valley structure on a macroscopic
surface norma1 to OA. The surface free energy of such
a hi11-and-valley structure would be, per unit area of
the macroscopic surface,

va= vifi+v2f2+Yaf3,

where y&, y2, y3 are the surface tensions of the three
boundary planes just mentioned, and f~, fm, fa are the
areas of surfaces of these three types in the hiB-and-

valley structure per unit projected area in. the plane of
the macroscopic surface. If we let e&, e2, e3 be the unit
normal vectors for the three boundary planes, the
equations determining f&, f2, f& are

fz&i+fw~+f3&a= &, (3)

where e is the unit vector in the direction 0.4. Now if

we let z&, z2, ~3 be the system reciprocal to e&, e~, e~, i.e.,

(~&g),

Eq. (2) can be written

rk (71&1+72&2+ Y3&3) '&. (4)

The vector in parentheses is, however, identical with
the vector c which joints the origin to the corner C
defined as the intersection of the three planes drawn
normal to OB&, OB2, 083, respectively, at the points
where these directions intersect the polar plot of y. For

C'ey= py& C'e2= ppr C'e3= +31

&a= c ey

i.e., the surface free energy of the hill-and-valley
structure is represented by the length OM from the
origin to the foot M of a perpendicular drawn from C
to OA,

and the vector in parentheses satisfies these equations.
Thus, hnally

(~)
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Thus, if there exists any set of directions OB&, 082,
OB3 with positive pro jections on OA, such that 3f
lies inside the polar plot of y, an ideal crystal surface
normal to OA will be thermodynamically unstable with
respect to formation of some sort of hill-and-valley
structure. The converse is also true: if no such set of
directions exists, the ideal surface normal to OA will

be stable. The possibility of more than three types of
surface for the sides of the hill-and-valley structure does
not impair this conclusion, since the free energy of any
hypothetical structure with more than three types of
hill side can always be lowered by eliminating all but
the three most favorable types. Now the condition that
M be inside the polar plot of y is the same as the con-
dition that C be inside the plane drawn normal to OA
at the point of its intersection with the y-plot. If there
exists a set OB~, OB~, 083 for which this is the case,
the plane normal to OA cannot occur as a boundary
plane in the Wulff construction for the equilibrium
shape, i.e., it can neither form a Hat portion of the
boundary nor be tangent to a continuously curved
portion; conversely, if OA is included among the
normals of the equilibrium shape, some such set OB&,
082, 083 must exist, Ke therefore have the result:
If a given macroscopic surface of a crystal does not coincide
in orientation with some portion of the boundary of the

equilibrium shape, there will always exist a hill and valley--
structure whzck has a lower free energy than a flat surface,
while if tke given surface does occur in the equi7ibrzum

shape, no kill and valley -stru-cture can be more stable
The implications of this result depend very much on

the nature of the equilibrium shape. If the equilibrium
shape is a polyhedron, as has usually been assumed to
be the case for crystals, then a crystal surface chosen
with a random macroscopic orientation will almost
always prefer to have a hill-and-valley structure. At the
other extreme, if the equilibrium shape has no sharp
corners at all, then surfaces of every orientation will

prefer to remain smooth.

III. QUALITATIVE CHARACTERISTICS OF THE y-PLOT
AND THE EQUILIBRIUM SHAPE

Let us now consider under what conditions a given
direction will occur among the surface normals of the
equilibrium shape. In Fig. 2, let 0 be the origin of the
Wul6 diagram and OA a normal direction to be inves-
tigated. Let A' be another point of the y-plot inhni-
tesimally distant from A. The plane normal to OA at A
and that normal to OA' at A' will intersect along a line
through P; a third such plane, constructed on a line OA"
lying outside the plane of the drawing (not shown, of
course) would intersect the other two planes at some
point P,. The figure has been drawn for the case in
which P, and P coincide; but we shall use different
symbols for them, since P, does not in general lie in the
plane OAA' of the drawing. Now if A is a point in
whose neighborhood the slope of the y-plot varies
continuously with direction, P,(A, A ', A ")will approach
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FIG. 2. Use of the tangent sphere to predict properties of the
Wulff construction. The heavy curve shows two portions of the
polar p1ot of surface free energy, and the dashed circle is a cross
section of the sphere tangent to this plot at A and passing through
the origin 0.

a iimiting position P,(A) as A' and A" approach A. A
sphere drawn with the origin and P.(A) as opposite ends
of a diameter will be tangent to the p-plot at A. If any
point of the y-plot, either in the neighborhood of A or
in some more distant region, lies inside this sphere,
P,(A) will lie outside the surface of the Wul8 con-
struction for the equilibrium shape; if the y-plot is
entirely outside the sphere, P, (A) will be on the peri-
phery of the equilibrium shape. Since we are assuming
the slope of the y-plot to be continuous near A, no
other point Q of the plane AP(A) can be on the peri-
phery of the equilibrium shape, for there can always
be found an A"' in the neighborhood of A whose plane
will pass inside Q. We therefore have the result: If OA
is a radius vector of the y plot in whose n-eighborhood tke
derivatives of y are contznuous, then a necessary and suf
ficient condition, for tke direction OA to occur among the
normals of the equzlibrium shape is that the y plot nowhere-

pass inside the sphere drawn through the origin and
tangent to the y plot at A. W-hen the y'plot is outsid-e this
sphere at all points except A, all orientations in the neigh
borhood of OA will occur among the normals of the equi
librium shape; i.e., the latter will be continuously curved
in the region where its normal has the direction OA.

Combination of this result with that of the preceding
Section gives the further conclusion: 4 continuously
curved surface with normals in the neighborhood of OA
uill be stable with respect to formation of a kill and valley--
structure if, and only if, the y plot nowhere pa-sses inside
the sPhere through the origin and tangent at A.

%e consider next the conditions under which a plane
region of 6nite area can occur as part of the boundary
of the equilibrium shape. Since the position of the point
P,(A), de6ned previously varies continuously with A
(Fig. 2), except at points of the y-plot where the
derivatives of y are discontinuous, it is clear that in
order for the boundary of the equilibrium shape to
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consist in part of a finite area of a plane such as A P(A)
in Fig. 2, it is necessary that A be a cusp of the y-plot.
Extending this reasoning gives the result: In order that
the surface of the equilibrium shape have a flat portion of
Pnite extent and uith an orientation normal to a given
vector OA of the y plot, i-t is necessary and sufficient that
the p-plot have a pointed cusp at 3 and simgltaneously
that there be some sphere through A and the origin which
lies entirely inside the y plot-In. order that the surface
have a finite cylindrical portion with surface normals cor
responding to a certain plane sector of the y plot, it i-s

necessary and scient that the y plot ha-ve a knife edge-

cusp for all directions in this sector, and simultaneously
that for each point A of the cusp in this sector it be possible
to draw a sphere through the origin, tangent to the knife
edge cusp at A, and lying entirely inside the y plo!-

These results provide a convenient tool for exploring
the possible types of equilibrium shapes for various
types of y-plots. We shall consider first the case where

y and its derivatives are continuous for all directions.
As we shall show presently, this case cannot occur for
crystals, for which y may be expected to have cusped
minima in crystallographically simple directions; how-
ever, it may occur for liquid crystals and for the aniso-
tropic colloid phases known as tactoids. ' For this case
there are clearly two possibilities:

(a) All directions occur among the normals to the
equilibrium shape, so that there are no sharp edges or
corners. This will occur if the sphere tangent at any
point of the y-plot always lies inside it, a condition
which will obviously be fulfilled if the y-plot is suf-
ficiently close to a sphere.

(b) The equilibrium shape is bounded by a number of
smoothly curved (not flat) surfaces which intersect in

sharp edges. This includes all cases not falling under (a);
photographs of tactoids' usually show shapes of this
type,

As has just been mentioned, the y-plot for a crystal
may be expected to have cusps; and it can, in fact,
be argued that at sufFiciently low temperatures point
cusps occur for all orientations whose Miller indices are
rational, and knife-edge cusps for orientations any two
of whose Miller indices are rational. The argument is
similar to that used by Read and Shockley' to deduce
the corresponding result for grain boundary energies,
and it will be sketched only briefIy here. We assume
that when the Miller indices are rational, the surface
structure of lowest energy will consist of atomic steps
arranged in some sort of two-dimensional lattice
structure. If the unit normal describing the orientation
of the surface is changed infinitesimally, say from n to
(n+bn), the arrangement of minimum energy will be
the same two-dimensional lattice of steps as before, but

5H. Zocher, Z. anorg. u. allgem. Chem. 147, 91 (192S); J.
Jochims, Kolloid-Z. 41, 215 {1927);H. Zocher and K. Jacobsohn,
Kolloid-Z. 41, 220 (1927), Kolloid-Beihefte 2S, 167 (1929);
W. Belier and W. Wojtewicz, Phys. Rev. (A) 75, 343 I'1949).

'%. T. Read and %'. Shockley, Phys. Rev. 78, 275 (1950).

with widely spaced lines along which the interval
between steps is slightly greater or slightly less than in
the original lattice. The density of these lines will be
proportional to Bn; and when this density is low, the
modification of the energy will be proportional to the
density of lines, hence to bn. A similar proportionality
to bn will hold for the energy change when the normal
is changed to (n —bn); but the coeflicient will, in general,
be diGerent. The average of the specific surface energies
for (n+bn) and (n —bn) will thus, in general, differ
from that for n by an amount of order 8n, so that the
y-plot has a cusp for orientation n. This cusp must
point toward rather than away from the origin, since
otherwise the step array assumed for orientation n
would not be the arrangement of minimum energy.

This conclusion needs to be modified somewhat at
the high temperatures at which most of the phenomena
involving surface tension of crystals occur. For when
the spacing between steps is large, as for say a (20, 1, 0)
surface of a cubic crystal, thermal Quctuations in the
positions of the steps may be sufFicient to prevent their
having any long-range order; in other words, the two-
dimensional lattice of steps may "melt. '" When this
occurs, no cusp in the y-plot is to be expected. When the
spacing of steps is small —for example, a (210) surface—
they may be expected to have a long-range order, and
the considerations of the preceding paragraph should
apply. The most reasonable form to assume for the
y-plot of a crystal at elevated temperature is, therefore,
a plot which is smooth except in directions in which
two or all of the Miller indices have the ratio of suf-
ficiently small integers; in these directions cusps of the
type mentioned in the preceding paragraph should
occur.

Assuming the y-plots of crystals to be of this form,
we may use the italicized results above to classify the
possibilities for crystals as follows:

(c) The equilibrium shape consists of a number of flat
surfaces joined by rounded regions, with no sharp edges
or corners. This will occur if the cusps are so mild that
none of the tangent spheres passes outside the y-plot.

(d) The equilibrium shape consists of flat surfaces
and curved regions, with sharp edges.

(e) The equilibrium shape is a polyhedron. This will
occur if the cusps are so pronounced that no tangent
sphere can be drawn inside all the cusps.

Of the five cases we have enumerated, all except case
(e) have been practically ignored in the literature.

IV. SPECIAL CASES WHICH LEAD TO A y-PLOT
COMPOUNDED OF PORTIONS OF SPHERES

It is clear from the results of the preceding section that
a cusped y-plot whose smooth regions are portions of
spheres through the origin represents a transitional case

~ This "melting" is closely related to the existence of a critical
temperature for surface fluctuations, a phenomenon which has
been studied quantitatively by W K. Burton and N. Cabrera,
Disc. Faraday Soc. 5, 33 (1949).
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between case (e) (polyhedral equilibrium shape) and
case (c) (smooth shape). For such a y-plot all of the
perpendicular planes erected on radius vectors of any
one of the spherical. regions pass through a common
point. The principal object of this Section is to prove
that a theoretical p-plot of this sort is predicted by
any model of a crystal based on the assumptions that
the atoms interact attractively in pairs by means of
forces of finite range and that the surface and interior
lattice spacings are the same.

Let us assume the energy of a crystal relative to
separated atoms to be (a)

Pp

/

I
J

(b&

E= —
2 Q C'j= Q Vbfbi' b

(6)
FIG. 3. Portions of the polar plot of the surface energy of an

ideal crystal plane for a crystal model obeying Eq. (6). The heavy
curves are portions of the polar plot, while the dashed curves are
the continuations of the circles to which they belong.

where ~;;=a& is the negative interaction energy of
atoms i and j, a function of the vector b connecting
them, and v~ is the number of pairs of atoms separated
by the vector b. For simplicity we assume, in the present
treatment, that all atoms are alike; however, the
analysis can be generalized to include at least some
types of non-monatomic crystals. If the surface and
interior lattice spacings are assumed to be the same, an
ideal surface of the crystal normal to any unit vector
n will have the same atomic arrangement as if one
passed a plane normal to n through the middle of the
lattice and removed the material on one side. If fq is
the number of interatomic vectors of type b per unit
area of a plane normal to b, the surface energy, as
determined from the riumber of bonds cut, is

If the interatomic forces have 6nite range, there will

be a only finite number of 1's for which e~/0, and the
possible directions for n can be divided into pyramids
within each of which none of the quantities n b changes
sign. Within any such pyramid p, therefore,

"y„=n'sp)

the vector s~ changing as we go from one pyramid to
another. Thus, under the assumptions used, the locus
of the end of the vector y„n is, within each pyramid,
the surface of a sphere passing through the origin; the
spheres change as we go from one pyramid to another.

Consider now a path on the surface of the y-plot,
passing from one of the pyramidal regions of solid angle,
say pq, to another p2. As we follow this path, either the
sphere going with p2 will cut inside that going with p&,
as in (a) of Fig. 3, or it will cut outside as in (b). The
former is impossible if all the et, are of the same sign
()0). For then all the terms in Eq. (7) are positive,
so that the s„ in whose pyramid I lies gives a larger
value of n s„ than any other pyramid p'. Since for case
(a) of Fig. 3 a vector n lying in p~ has n s~& n s2, only
cusps of the type shown in (b) can occur when all eq

are &0. When some of the ~~ are &0, as for an ionic
crystal, Eq. (8) may lead either to case (a) or to case (b).
If it leads to case (a), the ideal crystal surface formed by

cutting through the volume of the crystal along a plane
cannot be stable, since, as was shown in the preceding
section, the y-plot cannot have outward-pointing cusps.

The results just proved can be generalized a little.
Consider a surface whose orientation divers from that
of one of the simple crystallographic planes (heal) by a
fairly small angle tIlj, so that fairly widely spaced steps
result. Instead of assuming that the atoms interact in
pairs, we may assume merely that the energy of the
surface in question is proportional to the projection of
its area onto (heal) plus a term proportional to the
density of steps, i.e., that steps whose spacing exceeds
a certain distance do not interact. This assumption, as
is easily seen, leads to the prediction of the spherical
form of Fig. 3 (b) for the p-plot over the range of orien-
tations to which the assumption applies.

Stranski and his collaborators' ' have carried out
extensive investigations on the dependence of equi-
librium forms and other properties of crystals on the
range of the interatomic forces, using the assumption of
attractive pair-wise interactions. From what has been
said earlier in this Section, it is clear that this model,
though useful as an aid in visualizing the physical
mechanisms responsible for the surface structures of
crystals, has rather special properties which real
crystals, especially metallic ones, will not, in general,
possess. One illustration of this fact is provided by the
comparison of the energies of an atomically smooth
surface and a hill-and-valley surface, the problem we
have treated for the general case in Sec. II. Our Eq. (5),
which has the same form as Eq. (8), implies that if a
surface with macroscopic normal OA (Fig. 1) is made

up of hills with sides normal to vectors OBI, OB~, OB~
of the y-plot, the macroscopic surface tension yf, will,

' This work has been published in a large number of papers of
which we shall cite only a few: I. N. Stranski, Z. physik. Chem.
B11, 342 (1931); I. N. Stranski and R. Kaischew, Z. Krist. 78,
373 (1931), Z. physik. Chem. $26, 312 (1934); Ann. Physik 23,
330 (1935); I. N. Stranski, Z. physik. Chem. B38, 451 (1938);
I. N. Stranski and R. Suhrmann, Z. Krist. 105, 481 (1944), Ann.
Physik 1, 153 (1947); I. N. Stranski, Disc. Faraday Soc. 5,
13 (1949). See also the brief summary in reference 9.' I. N. Stranski, Ber. deut. chem. Ges. A72, 141 (1939).
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if plotted radially as a function of the direction of OA,
lie on a portion of the sphere passing through the origin,

B&, 82, and 83.But if the assumptions of pair-wise inter-
action and uniform lattice spacing hold, and if B&, B2,
and 83 are so chosen that the p-plot for atomically
smooth surfaces has no cusps in the pyramid OB&B2B3,
then by Eq. (8) the y-plot for smooth surfaces in this
region will also be a sphere going through these four
points. In other words, for any OA the smooth surface
and the hill-and-valley surface will have the same

energy. This equality will not, in general, hold if less
restrictive assumptions regarding the interatomic
forces are used. In the next Section, we shall discuss
another problem with respect to which this model
likewise behaves in an exceptional manner.

V. APPLICATION TO THE ROUNDING OF EDGES

In this Section, we shall consider the question of the
sharpness of the edges and corners of an equilibrium
polyhedron, or of a hill-and-valley surface formed by
thermal etching. The present discussion will be limited
to cases in which the Wulff construction predicts ideally
sharp edges, i.e., cases (b), (d), and (e) of Sec. III.
Moreover, since this paper is concerned with the phe-
nomenological rather than the atomistic approach to
crystal surfaces, we shall be able to treat only those
cases (if such exist) in which the radius of curvature
of the edges and corners is fairly large compared with
atomic dimensions; these are, of course, the cases for
which the departure from ideal sharpness is most likely
to be detectable experimentally.

When the minimum radius of curvature is large, it is

tempting to retain the expression (1) for the surface
free energy of the crystal, taking account of the curved
edges by allowing y to depend on the radius of curvature

p of the surface, e.g., by setting

~(n, P) = ~o(n)+[Vi(n)/P1+[VA(n)/P'j. (9)

For simplicity we shall consider only an edge where the
surface contour is cylindrical, so that only one radius of
curvature need be considered. To make an equation of
the form of Eq. (9) significant it is, of course, necessary
that the position of the mathematical surface, by which
the, crystal surface is idealized, be defined accurately at
each point. For a crystal a definition of sufhcient ac-
curacy is that of Gibbs, "which places the surface in

such a position that, for any cylinder bounded by an
element of the surface, the normals erected around its
boundary, and a closing surface in the deep interior, the
mass within the cylinder equals its volume times the
interior density. This definition locates a plane surface
precisely and locates a curved surface to within an
uncertainty in the normal direction of the order of a'/P,
where a is the lattice constant; this accuracy is sufBcient
for our purpose.

Consider the rounded edge, shown in Fig. 4, con-
necting two Qat surfaces a and b which make an angle
8 with each other. Although this edge will not, in gen-
eral, have a circular cross section, for simplicity we shall
consider it constrained to be circular, so that p is con-
stant over it. We wish to compare the free energies of
the various possible surfaces of this form which one can
obtain by choosing di6erent values for p. When p=o,
the surface is the sharp-edged one ACB which minimizes
JyodS but makes the higher terms of Eq. (9) infinite;
when p is very large, the higher terms of Eq. (9) are
negligible and JjoifS increases with increasing p. The
explicit expression for JpdS is easily written down if
faces a and b have an extension ))p, since, for this
case, only a negligible outward displacement of faces
a and b is required to keep the volume of the crystal
constant when p is changed. Supposing planes a and b

fixed, we have, for a length L normal to the plane of the
figure,

(1/1.))I yodS

= const —(yo,+goo) p tan(8/2)+ (yo)A P8, (10)

(I/I) ~[(V/P)+(V /P')AS=&~ );8+4,).,8/P, (»)

( Yo)Av ( Yl)Av, (Yo)ov are averages over the range
—8/2 to 8/2 of the angle n of Fig. 4. The sum of Eqs.
(10) and (11) is a minimum with respect to P when

p'=(yo)Av8/[(Vo)Av8 —(yo +goo) tan(8/2)]. (12)

Whenever this equation gives a p)& the lattice constant,
it should describe fairly correctly the amount of
rounding which an edge of the equilibrium shape will
have.

The denominator of Eq. (12) has a simple geometrical
interpretation in terms of the polar plot of surface free
energy, an interpretation which, though valid for any
yo, and y~~, is most easily demonstrated for the case
where yo, =go~. This denominator can be written

8/2

l ['ro —vr(&o +goo) sec(8/2) cosa/de. (13)
~ —8/2

Pro. 4. Cross section of the surface of a crystal near where two Hat
faces a and b meet in a rounded edge.

'0 J. W. Gibbs, Collected 8"orks (Longmans, Green, and Com-
pany, New York, 1928), p. 3f4.

When yo = go~, the coefBcient of cosa in the integrand
is just the distance from the origin to the edge C of the
WulG construction in Fig. 5. The whole integrand is,
therefore, the distance EM, where OS= go(n), and vlf'
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is the intersection of OS with the sphere having OC as
a diameter. The integral Eq. (13), which is the de-
nominator of Eq. (12), is, therefore, essentially propor-
tional to the area of the shaded region, being an integral
over this region in which each element of area is given
a weight inversely proportional to its distance from the
origin. Thus, the more nearly this portion of the p-plot
approaches the dotted sphere, the larger will be the
equilibrium radius of curvature p of the edge of the
crystal. The theoretical model considered in the pre-
ceding Section, which assumes pair-wise attractive
interactions and uniform lattice spacing, therefore
predicts a very large value of p for the edges of the
equilibrium form, this value being limited only by the
fact that the size of the specimen is finite rather than
infinite as we have assumed in deriving Eq. (12).
Stranski, ' using an atomistic argument based on this
model, has already pointed out that p becomes infinite
as the size of the specimen is increased; the new feature
of the calculation of Eq. (12) is that it allows us to
estimate p when the assumptions of this model are not
fulfilled.

At the present time, numerical estimates must, of
course, be very crude, since we can only guess at (y2)A„.
A reasonable guess would be (y2)A, f(yo)A, a', where a
is the lattice constant, and f is a quantity of the order
of a fraction of unity. Equation (12) then gives

p/a (2fA/hA)&, (14)

where A is the area of the section of the y-plot of Fig. 5
between the normals to a and b, and hA is the shaded
area. It is clear from this that the y-plot must be very
close indeed to the sphere before p becomes larger than
j.0 or 20 atom spacings. It does not seem likely that the
special models, referred to in the preceding paragraph
and in Sec. IV, can be sufBciently nearly valid for any
metals for this to occur; and we accordingly conclude
that, for metals for which case (e) of Sec. III holds, the
edges and corners of the equilibrium shape will be sharp
to within at most a few tens of atom spacings. %'hen
case (d) or case (c) obtains, part or all of the equi-
librium shape will be smoothly rounded, and reasoning
similar to that just given suggests that for specimens of
observable size the amount of rounding will correspond

FIG. 5. Geometrical significance of the denominator of Eq. (12).
The heavy curve is the polar plot of surface free energy with
origin at 0, and the dashed curve is a section of a sphere.

fairly closely to that demanded. by the WuLR construc-
tion without any further refinements.

An example to which these conclusions can be applied
is provided by the sharp points of tungsten and other
metals which have been used in field emission studies. "
These points, of the order of a micron or less in diameter,
appear to revert to a particular standard shape when
heated to temperatures of the order of half the melting
temperature, this shape being a smoothly rounded one
with, perhaps, a few Bat regions in the crystal-
lographically simplest directions. For tungsten, at
least, there is other evidence, summarized in reference
1, which suggests that the equilibrium shape for a larger
specimen is polyhedral or almost so. Since the argu-
ments just given are unfavorable to the hypothesis that
the observed rounding is due to the dependence of
surface tension on curvature, we must conclude either
that the equilibrium shape determined by the Wul6
construction is not polyhedral after all but of the
smoothly rounded type (c), or else that the standard
shape of the field emission points is not an equilibrium
shape but a quasi-steady configuration determined by
some continuing transport process.

"A review has been given by R. O. Jenkins, Repts. Prog. Phys.
9, 177 (1943). See also E. W. Muller, Z. Physik 120, 270 (1943);
126, 642 (1949).


