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On the Scattering of a Particle by a Static Potential
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The behavior of the solutions of scattering integral equations is studied as a function of the potential
strength 'A. From an analysis of the second Born approximation for a Yukawa potential it seems indicated
that the Born expansion for a nuclear potential has no useful domain of applicability. The convergence of
the Born expansion is discussed. It is shown that the Fredholm theory of integral equations enables one to
express the solutions as a quotient of infinite power series in 'A which still converge when the Born expansion
breaks down. Only in exceptional cases can this method be used for obtaining rapid numerical estimates.

I. INTRODUCTION

HE energy range over which experimental data
on nucleon-nucleon scattering are available has

in recent years been considerably extended. It seems
worthwhBe, therefore, to inquire how suitable the
various theoretical methods for analyzing these data
are, especially in the domain of higher energies. %e
shall here consider the scattering theory in terms of a
conventional potential picture, an assumption which
may well turn out to be inadequate.

The general situation in the low energy region (up to
10 Mev, say) is quite satisfactory. A phase shift

analysis is not too involved owing to the fact that the
problem is essentially one of 5-states only. Moreover,
variational methods have proved to be quite powerful
for the codification of the low energy experimental
material. '

For higher energies the variational approach has, to
our knowledge, not been applied. The phase shift
method still seems the most reliable one so far devised,
but it is well known to become an increasingly cumber-
some tool.

For rapid estimates in this region one often takes
recourse to the first Born approximation. But apart
from general statements that this will be more trust-
worthy the higher the energy, or the weaker the
potential strength, little is known about the convergence
of the Born expansion (for its definition see Sec. IIa).
It is, of course, i0uminating to have information on the
higher approximations in this expansion. Few attempts
in this direction are known to us. %'e may mention
here the work of %u' on the Born approximation for
the scattering by a gaussian potential and that of
Kallen' who calculated in second Born approximation
the 5, I', D-phase shifts for a central Yukawa potential.
In Sec. IIb of this paper we will present a case where the
second Born approximation is actually very amenable
to evaluation, ~s., that of the Yukawa potential. It is
particularly convenient for the discussion that the
results for this case are presentable in closed form. It

' J. Schwinger, hectographed notes on nuclear physics, Harvard
(1947);J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
Revs. Modern Phys. 22, 77 {1950).' T. Y. Wu, Phys. Rev. 73, 934 (1948).' G. Kh, llbn, Ark. Fysik 2, 33 (1950).

will be shown that the Born expansion for a central
Yukawa potential fitted to describe the low energy
interactions is quite unreliable, even at energies of

100 Mev and more. Indeed, bearing in mind that at
not very much higher energies the potential picture is
bound to break down anyway, it would seem justified
to state that there is no really useful domain of applica-
bility, whatsoever, for the Born expansion for a nuclear
potential.

Apart from the investigation of some of the lower
order Born approximations it would seem not without
interest to study the general behavior of the solutions
of scattering integral equations as a function of the
potential strength ). To this subject" Secs. III and
IV of the present paper are devoted. In Sec. III we
treat the scattering in S-states only. It is easy to find
the radius Xo of convergence of the Born expansion for
the example of the Hulthen potential. More generally,
it is then shown that also for values of X lying outside
the convergence domain the solutions of the problem
satisfying the required boundary conditions can be
obtained by invoking convergent power series in X.
Indeed, it suKces that Jo"r

~
V(r)

~
dr is finite to express

these solutions (and thus also the scattering matrix) as
a quotient of two such series, each of which converges
for arbitrarily large X. This method, which essentially
is based on Fredholm's theory of integral equations,
constitutes a departure from the usual Born expansion.
But for X&Xo this new representation can, of course, be
reduced to the Born series. However, the calculation of
a number of terms sufEcient for a good numerical
estimate is possible only in exceptional cases. The
exponential potential is one such instance, and in Sec.
III the rapidity of convergence and a comparison with
the Born expansion is illustrated with the help of this
example.

In Sec. IV the general problem is discussed where one
does not confine oneself to S-states, in fact, where no
use of a development in spherical harmonics is made.
Here too one can show the convergence of a quotient
representation of the solutions under similar conditions

"See also T. Kato, Frog. Theor. Phys. 4, 514 (1949);J. Phys.
Soc. Japan 4, 334 {1949);Prog. Theor. Phys. 5, 207 (1950). This
author investigates the depenclenre. of eigenvalues and eigen-
vectors on ).
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SCATTERING OF A PARTICLE

as for 5-states. These requirements are actually fu16lled
for the case of the Yukawa potential already mentioned.
However, the convergence is too slow for the energies
of interest to make rapid estimates by means of this
method. It would seem that the best one can hope for
is still a good variational guess (see also Sec. IV).

appropriate averages over spin states have to be
performed.

The Born expansion is dehned as the representation
of P(x) in Eq. (2), and thus of f(8) (or more generally
of the scattering matrix), and of do/dQ as a power series
in X. This amounts to iterating Eq. (2), which gives

II. THE SCATTERING INTEGRAL EQUATION;
THE BORN EXPANSION 4(x) =A(x)+ 2 l" E-(*,y)A(y)~y,J

(6)

(a) General Formalism

In this section we will 6rst collect some preliminary
formulas for the scattering of a particle in a central
field of force and mill then discuss the results of the
first and second Born approximation for the case of the
Yukawa potential. The details of this calculation will

be found in Appendix I.
The Schroedinger equation for the neutron-proton

system referring to the center of mass is4

f6+k' —XV(r) jr=0, (1)

where the customary dimensionless units have been
introduced: length is measured in units ro, the character-
istic length of the potential, and

k = (MEoro'/2h') &,

where Eo is the energy of the incident particle in the
laboratory system. X is the potential strength, defined

by the usual conditions of normalization of V(r) at
small distances. Whatever spin and exchange depen-
dence the interaction may have is implicitly contained
in 'A.

We look for the solution of Eq. (1) which is regular
and which at large distances behaves like a plane wave
plus an outgoing spherical wave; i.e., we want to solve
the integral equation

f(x) =A(x)+~
J

E(x, y)4(y)dy

fo(x) =exp(ikx),

E(x, y) = exp(ik]x —y~) V(y)/4—z [x—y[

in which

E&——E, E„(x,y) = E(x, z)E„&(z,y)dz, n) 1. (7)

It has to be verified, however, under what conditions
this procedure is consistent, i.e., whether the necessary
convergence requirements for the series occurring on
the right-hand side of Eq. (7) are fulfilled. This question
will be discussed in the following sections.

The expansion of f(8) corresponding to that of f
given by Kq. (6) is

oo

f(8) = ——g 7 ", exp( —ik'x~) V(x~)E„~(x~,x2)
4g n-i

Xexp(ikxg) dxgdx2
(8)

Eo(xg, x2) = 8(xg —xm).

Here 8 is the angle between k and h'. The vector k'
has the same direction as x, and

~

k'
~

=
(
k

~
.

It is often convenient to express the right-hand side
of Eq. (8) as an integral over momentum space. To
achieve this put

(pl VI q) =
J

"dxV(x) exp( —i(p —q)x),

E (p, q) (1/8z') tdxdyE„(x, y) exp( ipx+—iqy)

Then
r

f(8)= Z7 " dp(—k'—
I
V

I p) E.-~(p, k) (I I)
4~ ys-i

= —G(x, y) V(r) (3)
We note the following useful formulas:

The Green's function G which we have picked guaran-
tees that the required boundary conditions are ful6lled.

Asymptotically P(x) as given by Kq. (2) is of the
following general form

P(x) i'(x)+)xj 'exp(ik(x~) f(8),

E„+g(p,q) = "E.(p, t)E(t, q)dt, (12)

where f(8) is the amplitude for the scattering over an
angle 8. The di8erential cross section is given by

do/do, = ro'( f(8) (',

where, in the presence of spin-dependent forces, the

'It is, of course, irrelevant for the subsequent discussion of
some general properties of the solutions of Eq. (1) that we consider
here the particular physical system of two interacting nucleons.

E(p~ q) = (p I
V

I q)/8z'(p' —k' —ie), c)0 (14)

where in Eq. (14) P has been given a small positive
imaginary part ie which serves to make integrations
over p well de6ned and in accordance with the condition
that our kernel corresponds to outgoing waves only.
In all 6nal results one should let e tend to zero.



R. JOST AND A. PAIS

For the purpose of the discussion given in the next
section we subject Eq. (2) to an expansion in spherical
harmonics. Thus, G is written as follows'

G(x x') - lZ(1+2)'Gi(» ")Pi(~),
I=O

where 0 denotes the angle between x and x' and»=
~
x ~,

»'= ~x'~. P&(8) are the normalized Legendre poly-
nomials, while

Gi(», »') = (»»') —
Vi+)(k») L(—) 'J (;(k»')

+iJ)+)(k»') j, »')». (15)

For»'&», G~(», »') is defined by the right-hand side of
Eq. (15), where now» and»' are interchanged. Put

P(x) =P( P, (8)q, (r), exp(ikx) =Pi fi(»)Pi(8).

Using the well-known expansion of a plane wave with
respect to Legendre polynomials and applying the
addition theorem for spherical harmonics, one gets

p((») = { (z2l+1)/kI»&2J, +t(k»)

Gi(», »') V(»') y, (»')»"d»'
0

For S-states (1=0) one therefore has, with —ik»&po(»)2&
= ~(»):

~
co

y(») = e '~" e'~"+—7
~

g(», »') V(»') p(r')d»',

(16a)
g(», »') = —(1/2ik) {expLik(»+»') j—exp(ik {»—»'

{) I .

The asymptotic form of q (») is

p(») e "—S (li, k)e'" (16b)

$9(li, k), the eigenvalue of the scattering matrix corre-
sponding to angular momentum zero and wave number
k is given by

So(X, k) = 1+(7/k) ~I sink»V(») y(»)d». (16c)
0

In accordance with the definition introduced above,
the Born expansion of q (») and of So(7, k) is obtained
by developing these quantities in a power series in ) .

(b) Example: The Yukawa Potential

Disregarding for the moment the question whether
Kq. (7) has any meaning at all, we will next investigate
an example in which the terms ~X and li' of Eq. (6) are
calculated explicitly; or, more precisely, me shall
compute the contributions ~V and X' to Kq. (5).

The case to be considered is that of the n-p-scattering

'See G. N. Watson, Theory of Bessd Functions (Cambridge
University Press, London, j.944), second edition, p. 366, Eqs. (9)
and (j.o).

B(a'+b')
c'(k)—

2%2

|t=k', (=cose.

Bah
c'(—h)

~2
(21)

by a spin and exchange dependent central Yukawa
potential with constants fitted so as to account for the
deuteron binding energy and the epithermal scattering.
We are well aware of the academic character of a purely
central force for the n p-system, but then our present
investigation is one of method. We thus have

V(x) = e
—*/x,

X|,,= (ai,P,+bi,)Bg„ (17)
)i,= (a,P,+b,)B,.

"tr" and "s" refer to triplet and singlet states, respec-
tively. P, is the space exchange operator. The constants
a, b determine the exchange type of the forces and are
normalized so that

a,+b,=1, a„+b„=—3.

We will consider two cases of exchange type for which
numerical results by means of phase shift analysis are
available in the literature, for energies which are of
interest for the present purposes. These are first the
"even" theory, proposed by Serber, for which

a,=b, = ', ; ai, b-i, —$
——(ev——en theory); (18)

secondly, the "symmetrical" theory, for which

c,=2 b, = —1 a ——2 b8 p 8 p tt p

(symmetrical theory). (19)

The constants B depend on what range is chosen for
the Yukawa potential. We shall use the following set
of values:

»0 1.18X10 "cm, ——B,= —1.58, B&, +0.'76. (2—0—)

For the time being me shall drop the subscripts "tr"
and "s" and turn to the evaluation of the differential
cross section up to the order indicated above. In the
result so obtained we then must perform the spin
averaging. Thus we have in our approximation, using
Eqs. (5), (11), and (14):
do r», y'

dt's &4~)

j. 1 2

i dy(k'iXVi y) (p{7V{k)
Sx'~ p' —k' —ie

According to Eq. (17)

(k'~ V k) =4~/( k —k' '+1),
( ~P.V k)=4~/( k+k 2+1).

Inserting this, one readily obtains

do' 8 b—=B2r 2 +
dQ 2g(1+$)+1 2'�(1—$)+ 1
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Here

1. EverI, Theory

%e now apply these results to the two cases mentioned
1 1 1 above.

C(&)=„dp (22)
lp —&'I'+1 p' ~ fo—lp —&I'+1

To be consistent we may retain only the terms 8'
and B' in Eq. (21). Evidently, we then need only the
real part ReC'(() of C($). Hence,

Using Eq. (18), approximating the expression (25)
in the way mentioned above, and performing the spin
averaging, one obtains

where
da/dD =do, /dD+ da3/dQ,

-2

d02 r ' 1 1
(BP+ —27BgP ) +

dQ 16 2g(1+$)+1 2g(1 —$)+1

-2

~ +2r 2 +
dn 2~(1+))+1 2g(1 —f)+1.

do 3 ro' pv
-(IB.I'+»B.')

dn 16~3 (p2 g2) (~2 p2)

603

a' -29(1+5)+1 29(1—h)+1-
pro 4

a2= (B, +27Bq, ) —+— ln(1+4')
8 .1+4' g(1+2')

X ((a +b')Re@(g)+2abRe4 ( g)j—. (24)

It will be shown in Appendix I that

%2m'
ReC ($)=

I ~(1—k) (2~'+4~+1—2A) I
'

~(1—$)Xt-- t (25)
l 2(2r, '+4g+1 2rP$) I—

Thus Eqs. (23)—(25) give us the differential cross
section. By carefully performing the limiting transition
rp~ which leads to the coulomb case, one will verify
that the right-hand side of Eq. (24) vanishes. This is
in accordance with the well-known circumstance that
the approximation ~X' happens to give the rigorous
answer for the coulomb potential.

The total cross section 0. is obtained by integration
over $. Putting again a= o2+os, we get

u'+b' ab
o 2

——4m B'ro' + In(1+4') .
1+4' 2g(1+2g)

For the purpose of integrating over angles, the expres-
sion (25) can be considerably simplified, provided we
restrict ourselves to suKciently high energies. It is then
not hard to see that the tan ' can be replaced by its
argument. %e have verihed that in this way one
obtains an error which is only ~2% at 90 Mev and
which gets progressively smaller for still higher energies.
Proceeding in this way, one obtains

w83r-02 v+1
I P(a+b)' p(a b)'I—ln-

2n' P' m'— y —1

~r, (~B, ~

3+81B„3)
0'3=

4q(3g+1) (4g'+5g+1) '

X [(4g'+5g+1) —2q(2g+1) 1n(2g+1)).

Using Eq. (20) we compute the various quantities for
E0=90 Mev, corresponding to g=1.5. This energy is
chosen so as to enable a comparison with the values
given by Christian and Hart, which were obtained by
numerical evaluation of phase shifts. According to
these authors

a=90 mb, E=da(180 )/do(90')=3. 25,

whereas

o2=88 mb, R2=da2(180 )/do2(90 )=20.5/3. 9=5.2,

do 2(180')+da3(180') 20.5+8.1
a3= 52 mb, R3= =4.1.

day(180 )+dam(90 ) 3.9+3.0

Thus, the first Born approximation seems to give a
good approximation to cr, but evidently this is mis-
leading, as follows from the comparison of R2 and R.
Going to the next approximation gives a better picture
of the angular distribution, but now one is far off again
with respect to the total cross section. Clearly, the Born
expansion is still quite useless at this energy, and the
situation does not get much better for larger Eo, as is
shown by Table I. Thus, even at 270 Mev (where for
that matter the potential picture is getting to be quite
far fetched) o3 still gives a correction of more than 20
percent to a2. One must therefore conclude that the
Born expansion is nowhere quantitatively reliable.

+1—Iy(a+b)' —p(a —b)'I In (26a)

Z. SyrfImetri ca/ Theory

In view of the experimental evidence this seems a
quite academic case. %e are mentioning it only in order

where the following abbreviations have been used:

P= (2vP+4q+1)/2', y= (2g+1)/2g. (26b)

~ R. S. Christian and E. %. Hart, Phys. Rev. 77, 441 (1949),
see especially Table III. We are indebted to Dr. Christian for
supplying us with further unpublished numerical results.
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TABLE I. Born approximation for Yukawa potential.

Bo(Mev)

120
150
180
210
240
270

oe(mb)

66
51
42
36
31
27

eg(mb)

31
18
14
11
8
6

7.7
10.7
14
18
22
29

6.1
8.5

11.5
15.0
18.5
24.6

y"+k'y —XVp=0 (27)

and is completely characterized by the boundary
conditions (16b), and e (X; k, 0) =0.

Since, in the 6rst place, we are interested in the series
expansion of er(X; k, r) and So(X k) in powers of X, we
have to investigate the analytical character of these
quantities as functions of ). It is then convenient to
build up the solution cp from such other solutions of
Eq. (27) for which a power series expansion in X is
always possible. It is easy to And functions of this kind.
We have, in fact, only to look for solutions of Eq. (27),
which are de6ned by initial values which are independent

of X. Since we can solve Eq. (27) under the given initial
conditions for any complex value of X, it is intuitively

' G. F. Chew and M. L. Goldberger, Phys. Rev. 73, 1409 (1948).
For a correction see F. Rohrlich and J. Eisenstein, Phys. Rev.
?5, 705 (1949), footnote on p. 711.

to have another means of comparison, vis. , with the
results of Chew and Goldberger. 7 Also working with a
Yukawa potential and with the constants (20), they
found

0.=140 mb, 8=6.81 for E0=80 Mev.

Using Eq. (19) we obtain

on=133 mb, Rg ——56.9/4. 7=12.1;
a3= 46 mb, R~= (56.9—3.7)/(4. 7+3.9)=6.2.

Note that d~g(180') is negative, which is not unexpected
for an interaction of which a big part is exchange force.
Qualitatively the same situation obtains as for the even
theory.

Rather than pursue the investigation to higher terms
in the expansion —the calculation of which is very
much more complicated —it would seem preferable at
this stage to inquire into the general validity of power
series expansions in X for scattering problems. To this
subject the next two sections are devoted.

III. 1-DEPENDENCE OF THE SOLUTIONS) 8-STATES

In this section we will discuss the general structure
of the solution e (X; k, r) of the integral equation (16a)
for S-states. This will lead us to conclusions about the
validity of the Born expansion. For reasons of simplicity
we will assume that the potential XV(r) contains no
exchange operators unless otherwise stated. Our results,
however, will be general. Further, we will assume that
Jq"r I V(r)

~

dr is 6nite, which condition could be replaced

by more general ones.

q (X; k, r) is a solution of the differential equation

clear that for given k and r such solutions are entire
functions of X. This is the assertion of a theorem by
H. Poincarh. ' A convenient choice (although not the
only one) for such a solution is def'ned by

lime'~"f(X; k, r) = 1;t~ oo
(28)

and f(X; k, r) is seen to satisfy the integral equation:

f(X; k, r) =e—""

where

f(X; k)=fP, ; k,—0)

and [see Eq. (16b)]

(31)

So(X; k) =f(X; k)/f(X; —k). (32)

Thus, y(X; k, r) and So(X; k) are meromorphic func-
tions in 'A with poles at the zero's of f(X; —k), which we
denote by X~, X2 X„.If X~ is the zero with the
smallest absolute value, then the Born expansion will
certainly diverge for

~

X
~
)

~
X~ ( and converge for

~
X~ & X~ . We will not try here to give estimates for

X& or X& . However, it is easy to see that: (1) for the
Born expansion to converge it suffices that

~) ~)I r~V(r)[dr&1.
0

This is an immediate consequence of (16a) and

f

e»&~+"'&—eo ~~-"'~
f
& 2

f kJ r'.

(2) For real, nonvanishing k the X„cannot be real, for
the Wronskian of f(X; k, r) and f(X; —k, r) is inde-
pendent of r, and from (28) it follows that

f(X; k, r) [Bf(X; —k, r)/ar]—LBf(X; k, r)/Br] f(X; —k, r) =2ik. (33)

8 H. Poincarb, Acta Math. 4, 215 (1S84); see, e.g., Eezyklopadie
der j/Iathematisches Wissenschuft, Vol. 2, part 2, p. 501. Compare
for this and the following discussion, R. Jost, Helv. Phys. Acta
22, 256 (1947); V. Bargmann, Phys. Rev. 75, 301 (1949); Revs.
Modern Phys. 21, 488 (1949). A solution with this property was
used by M. Born, Z. Physik 38, 803 (1926) Lp. 810$ for the
discussion of the one-dimensional scattering. The statement made
in Born's paper, p. 816, concerning the convergence of the three-
dimensional Born expansion seems to us erroneous, however,
(see Sec. IV of this paper). Instead of using the solution (28),
one may for the present purpose equally well use a solution
U(); k, r) speci6ed by U(X; k, 0)=0, U'(); k, 0) = 1.This solution
was umph by C. K. Froberg, Ark. Mat. Astron. Fysik 34 A, No. 28
(1948).However, Eq. (4} for the determination of the phase shift
is incorrect.

9 V. Bargmann, Revs. Modern Phys. 21, 4SS (1949), Appendix.

+ (X/k)~t sink(r' —r) V(r')f(X; k r')dr' (29.)

The power series in X, which one gets by successive
iteration of Eq. (29), converges' for any X. Of course,
f(X; k, r) will not be zero for r=0. However, the
solution e(X; k, r) which does vanish at the origin, can
easily be expressed in terms of f:
e (X; kr) = L1/f(X; —k)]P(X; k)f(X—; k, r)—f(X; k)f(X; —k, r)], (30)
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Furthermore, f(X; —k, r) =f"(X*;k, r). If, therefore, X

would be real, Eq. (33) would yield a contradiction for
r =0, since the left-hand side would vanish.

The following example of a V(r), for which the 7
„

are simple functions of e and k, may serve to illustrate
the general situation:"

The zero's X of f(X; —k) lie at the points

X = —n'+2ikn,

and the Born expansion converges for

»)I» & (1+4k')&.

(37)

(38)

Here
V(r) =e '/(1 —e '). (34)

f(X k, r) =e '""F(i[k+(km+A')&]
i[k (k—'+X')&]; 1+2ik; e ') (35)

where F(n, P; y; s) is the hypergeometric function, and

It is desirable to relate the form (30) for the solution
9(X; k, r) directly to the original integral equation
(16a). This is indeed necessary for the extension of the
present discussion to the more general Eq. (2). The
way to do this is the application of Fredholm's" theory
to the integral equation (16a).

Putting

f(l;k)=II» 1+
n(n+ 2ik) ) (36)

we get

g(r, r') V(r') =K(r, r'), (39)

&(X; k, r)=(e—'~"—e'~")+[X/a(X k)] t a(7; k; r, r')(e '~"' e+'""')dr—',
0

(40)

with

and

(—7)" y" 00

a(X;k)=1+ P ~! dr, .
~ dr„

~f 0

E(r~, r~) K(r), r2) ~ ~ K(r, , r„)

K(r„,rg) K(r„,r2) . K(r. , r )

(41)

K(r, r') E(r, rg)
(—x)"!"

h(X; k; r, r')=K(r, r')+ P ' dr&
~

dr„E(r,, r') K(r, , rq)
n-i g~ ~0

K(r„,r') E(r„,rg)

E(r, r„)
~ . E(rg, r) .

~ E(r„,r.)
The series implied in Eq. (40) converge absolutely Then

for any X. Again «(X; k, r) appears as the quotient of
two entire functions, and we will prove in Appendix II f(~ k' r) "p» " ( ~)I I ( k+ )
that Eqs. (40) and (30) are actually identical in the Xj~;@[2(—&)1 exp( —«/2)],sense that

h(X; k) —=f(X; —k). (43) f(X; k) =Q)I."a„(k),
0

The zero's of h(X; k), i.e., X, now appear as eigen-
values of the kernel E(r, r'); i.e., for X= X there exists
a solution of Eq. (27) for which

f(X„;k, 0)=0 and f(X„;k, r)~e'~" (44).
The fact that the imaginary part of X does not vanish
means that a stationary solution of the Schroedinger
equation with the property (44) exists only if the
potential X„V(r)acts as a source (see Sec. IV).

We conclude this section with an example which
shows how rapid a convergence one can expect for
f(X, k), or rather the phase shift y, as a power series in
X for nuclear potentials. We take

up= 1,

o.„(k)= [n!(2ik+1)(2ik+2) (2ik+n)] '

We further use r0=0.75X10 " cm, X=2.13. For
these values Eq. (27) can be considered as the radial
equation for 'S-states, with the binding energy of the
deuteron appropriately fitted. We have calculated p for
Be=40 Mev (k=0.514). The results are collected in
Table II. The first column indicates the highest power
of X which has been included. gp is the phase shift
computed by the Fredholm method from f(X; k). For
comparison we also give gg, the phase shift calculated

V=e r "See, e. g., A. B.Whittaker and C. D. Watson, Modern Analysis' L. Hulthbn, Ark. Mat. Astron. Pysik 2SA, No. 5 (1942); (CambrjdgeUniversityPress, London, 1940), fourthedjtion, Chap.
298, No. 1 (1942). X&,
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TABLE II. Phase shifts for exponential potential E0=40 Mev.

Approx.

1.602
1.156
1.259
1.258

2.613
0.392
3.157
0.559

in the corresponding four Born approximations. The
results are self-explanatory.

IV. THE X-DEPENDENCE OF THE SOLUTIONS;
GENRES CASE

We now go back to the discussion of Kqs. (2) and (3).
Following the Fredholm procedure, already outlined in
the previous section, we will show that for all finite X

the solution f(X; k, x) can again be represented as the
quotient of two convergent power series in X.

However, we cannot without further ado apply the
general formulas of the Fredholm theory )see Eqs.
(40)—(42)j.The reason for this is that E(x, x) becomes
infinite, owing to the singularity of the Green s function,

F(r)dr &3II,
al

F(r)&M'r '

(46)

(47)

Equation (47) is a condition of smoothness on the
potential prohibiting, e.g., the occurrence of high
"peaks. " (Since the conditions (46) and (4'7) look very
reasonable from a physical standpoint, we have not
tried to replace them by weaker ones. )

Thus,

so that the Fredholm determinants do not exist. It is,
however, easy to circumvent this obstacle. Obviously,
the formulas of Fredholm still give solutions (proper
convergence assumed), if we replace all those elements
along the diagonal of the determinants which are of the
form E(x, x) by zero." We will see in Appendix III
that the following conditions, imposed" on V(lxl), are
sufhcient to insure the convergence of this procedure:

I V(lxl) l
& lxl 'F(lxl), (45)

where the function F(r) satisnes the inequalities

f(X; k, x) =exp(ikx)+X "LD(X; x, x') jh(X)j exp(ikx')dx',

~(—X)" t

h(X; x, x') =E(x, x')+ P
n-i ~!

E(xg, x')

dxy' ' ' ' dx~ E(X2q x )J E(x2, xg)

E(x,, x,)

E(x, x ) E(x, xg) E(x, x2) ~ E(x, x„)
E(x~, x„)
E(x2, x„), (49)

E(x., x') E(x„,x,) IC(x„,x2)

-(—))" ~
5(X)= 1+ Q dx, dx„E(x2,xy)

n-i

E(x„x2) E(x~, x„)
E(xe, x„). (50)

E(x, x~) E(x, xe) ~

So we conclude that f(X; k, x) is again a meromorphic
function of X with poles at the zeros ) „ofh(X), and the
same is true for the function f(8) de6ned in Eq. (4).
The zero X~ with the smallest absolute value gives the
radius of convergence for the Born expansion (6). Since
it is easy to prove'4 that the Born expansion converges
for X3f&1,it follows that l X~

l
«M ', for any value of k.

The X„areeigenvalues of the kernel E(x, y), and this
means that the homogeneous equation

From (51) and (52) we can conclude that the imaginary
part of X„for k/0 cannot vanish. In fact:

a ( ap„ai/i„*)
l='().-).*)y*vy (53)

ax, & ax„ax,)
integrating (53) over a large sphere and using (52)
yields~5

k
l f(8) l'dQ= —i(X.*—X„)I f„eVf„dx, (54)

f„(k,x) =X„E(x,x')f„(k,x')dx' (51)

has at least one nontrivial solution with the asymptotic
behavior

0-(k, x)-lxl 'f.(8) exp(i&lxl) (52)
~ This device is due to D. Hilbert, GrgedsNge eider allgemeinen

Theory der IntegralgleickNegen {Leipzig, 1912),p. 30. H. Poincarb,
Opere'I (Paris, 1934), Vol. IH, p. 560; Acta Math. 33, 5/ (1901).

It consists in multiplying formally numerator and denominator
of the resolvent by expt XJ'K(x, x)dxj.

"The generalization to noncentral potentials presents no
difhculties.

'4 This follows from

JK„+&(x,y) exp(iky)dy &M fK„(x,y) exp(gy)dy .
"For positive imaginary k the eigenvalues of K(x, y) are real

and give the potential strengths necessary for a bound state with
an energy given by k,
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(57)

X(P tf—ic—)([p —t['+1)'] ' (58)

Dg (2/——4w')
J

t dpdtD p' g —it) (—P q —is)—
pn, (); It, x) = exp(ikx)

which proves the point. Equation (53) shows that and triplet states)
i()„—)t„*)/~VSacts as a source distribution allowing
a stationary outgoing current distribution asymptoti- A(")= ~" L(o+~)Dt+ o D2]~

cally described by Eq. (52).
Brea)ting off the summation in Eqs. (49) and (50) at D,= (I/4s4) JtdpdtL(p —

r)
—z~)

a certain e= np, we are allowed to rearrange the terms
and thus see that the solution P(X; k, x) can always be
represented to an arbitrary high accuracy by a poly-
nomial in the iterated kernels E of the form

np

+ Q o
J

E (x, x') exp(ikx')dx', (55)
n 1

with the o„composed of the integrals J'E„(x,x)dx.
In the same sense, f(8) can be approached by a linear
combination of Born approximations f„te'(8):

np

fna(8) =—Pay„& &(8),
4m ~

(56)

Lcompare Eq. (8)] in which, according to Eqs. (48)—
(50), the a„arerational functions of X, but, of course,
not simply X".

From the foregoing considerations it follows that the
right-hand side of Eq. (55) wit'h unknown parameters
a„is in principle well suited as Ansatz for a variational
procedure. But this clearly does not save labor as
compared with the evaluation of an adequate number
of terms in the Fredholm expansion itself. However,
it certainly is unwarranted to employ a partial Born
expansion, i.e., Eq. (55) with a„=X", for such purposes
whenever the potential strength gets too large.

Despite the formal appeal of the Fredholm procedure,
it is not suited for numerical work, because of its slow
convergence. %e will brieQy exemplify this by con-
sidering again the Vukawa potential and going up to
the second power in numerator and denominator of
Eq. (48). Up to this approximation the numerator is
identical in the second Born approximation for f(8)
In the foregoing, we have tacitly assumed that ) V did
not involve exchange operators, but the extension to
their being present is straightforward.

Using Eqs. (17) and (1g) we fmd in our approximation
for the denominator A(X) in Eq. (48) (for both singlet

ReDt= [2(4g+1)] ' (60)

ReD2= —(1/2g+ 1) In[2(q+ 1)/(4g+ 1)]&. (61)

The right-hand side of both Eq. (60) and Eq. (61)
are positive for q=1.5 corresponding to the energy
Ep= 90 Mev used in Sec. II. Therefore, the cross section
increases over that obtained in the second Born
approximation, which itself was already too large.

In conclusion, we remark that the analysis of the
legitimacy of power series expansions put forward in
this paper is to a large extent speciGc for the simple
problem of scattering by a static potential. The situa-
tion is much more intricate for the Born expansions of
relativistic Geld theories. In fact, the kernels encoun-
tered there are of a much more singular nature, so that
one certainly cannot hope to apply the simple Fredholm
theory to this case. This is, of course, merely a reflection
on the deep-lying differences in mathematical structure
between the fairly simple diGerential equations of the
nonrelativistic Schroedinger theory and the basic Geld-
theoretical equations. In fact, in those cases where the
development of the scattering matrix in powers of the
coupling parameter fails, we are confronted with a
situation where one does not even know what to mean
by a solution. It seems to us that a clariGcation of this
point is needed before one can attempt actual evalua-
tions in problems where the coupling constants involved
are large.

One of us (R.J.) would like to express his gratitude
to the Institute for Advanced Study for a grant-in-aid.

X(]p —t('+1)([p+t['+1)] '. (59)

D~ and D2 are evaluated in Appendix III. Their
respective real parts are

APPENDIX

(I) Born Approximation for the Yukawa Potential

%e shall here compute 4((} defined by Eq. (22). Introducing ao»hary variables x&, x&, x& whose ranges are confined to x;&0, we
may write'g

a(xl+Xg+XI- 1)
'L { (p —&')'+ 1I»+(P' —~—i~)»+ ((s—~)'+ & l» j'

Transforming from p to th„new variable

P = p —h'sj —hing,

"See R. P. Feynman, Phys. Rev. 76, 769 (1949).
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one gets upon performing the P-integration

b(XI+X +X'~—1)Ck1dxgxee(g}-$H
$y {@1{i—SI}+XI(i—SI)—X~—2&@IXI }+S1+Sg—iaaf'j~'

Integrate over x~ and put x1+sg=u, x1—xg e:
1 tk

e(()=gee dl de[a-gI1 —2u+$(cc'+9)+${u'—8)k) i—e(1 N—)g t
0 ~Q

Owing to the imaginary term in the square bracket, this expression is never zero for —u&o&u. Hence, the o-integration is well-defined
and yields

1

C(&) = $r' udut! '{u}{b(u)—au'} & u= )g(1—g), b=u —y{1—2u+ u'(1+&) }—ie(1—u).

The integrand has branch points at u+ and u, where

ug' ——(1/2q) t 2g+1~(4y+1)&+i~{1~(4g+1)&}j,
and poles at uy.

ug C 1/g(1+))){2y+i~x(q)+i&{2&(q(i —g)+1)x '(g) }j, x(g) = {(2g+1)~—2q~(1+() }&.

The position of these points in the complex u plane is sketched
in Fig. 1.

1
Rm, gL. m aXiS

FIG. 1. Position of poles and branch points of the
integrand in Eq. (I.1).

It is easy to find the indefinite integral over u. In substituting
the limits one has to take care in the choice of branch. At u= 1
the limit value is real. Since

Irn{b(u) —eum} &0, 0&u&1,

it follows from the position of u that

(k(~) —0~'I'»-0= { n(1+—ie) I'
= (—e)~{1+H~e ') = —in~(1+S&n ')

One may now let e—+0, and one finds after some calculation

im u+{1—u )I~+
c{~)= ln

g(1+&){u+—u ) u (1—u+)I~ '

Ip= (2g+1)up —2q —upq {2(1—()}&,

1Yy= 1+up —iud {2(1—$) }&.

The real and imaginary part of 4 are now readily found. We will
only consider ReC(P). As (see Fig. 1)

u+(1—u )I /u {1—u+)I+)0,
we can for this purpose replace the ln in 4 by lnE+/E .

Upon taking the imaginary part of the latter quantity we get

Ree{g)= 7r

{29{1—5)(20'+49+1—2A) }~

2 {2g{i—g) {2g'+4g+1—2Pg) }&

~ tan '
4~'{1-&)+~{I+~)+2

(II) Proof that a(X; jg) =f(2I. ; —)g)

Using 2 tan Iu= tan '$2u/{1 —em) j we are led to the expression quoted in Eq. (25). It is convenient to discuss for this proof the func-
tion g(X; k, r) =exp(ikr) f(X; k, r) rather than f();k, r) of Eq. (28). One verifies that g satisfies

g(X; —k, r) =1+(X/2ik)f [exp(2ik(r' —rI) —1jV(r')g(). ; —k, r')dr',

Now we get for f{);—k) the expansion:
n 00 00

f('A; —k) =g(X; —k, 0)=1+Z —. dr1 dr~ ~ ~ dr„(exp2ikr1—1)„12ik gn-I

)& (exp2ik {r~—r1}—1) ~ (exp2ik {r„—r 1}—1)V(r1) V(rg) ~ ~ V(r„).
On the other hand,

n Go

6('A; k) =1+Z (n!) ' —. dry r„detD„„iep(xiri„kt„+j) exp(ik )
r„—r, () i V{rq) V(rm) ~ V(r„)—.

gg 1 0

The integrand of the last integral is symmetric in all the variables; therefore,
rg CO C0

h(X; k) 1+Z —. dr& dr& dr Det„„((exp(ik(r„+r„I ) exp(ik) r„—r„())[ V(rq) V(r2) ~ V(r„)—
Writing g„=exp{ikr&),the determinant reads (remembering r1&r2&rq ~ &r„)

(6'—1) 5 {4—1/4) 5 {4 —1/h) . h —{k —1/k) 6 (6 -1/5)
5'{41—1/51) {6'—1) $3{6—1/42) ." 8 -1(b—1/6) 4(k~ —1/6)

4- (k —1/4 ) 4- (5 —1/k ) 4 —(5 —1/4 ) {4-'—1)
S-(S -1/&) S.(S -1/S.) S-(S -1/S) ~" S-(S- -il&. )

This determinant is obviously a linear function of &„andit vanishes for $ = $ 1, so

D„=[(4'/k«P) —1$F(h k i).

S-(S- —1/&- )
(a-'-1)
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By putting $ =0, one sees that F{$1~ ~ o$ 1) D 1. Therefore,

D„Dk„o/f„io) —15Do o) to=2, 3 ~ ~,

but Dk= pp —1, and thus, inserting the definition of p„,one gets

D„(exp2ikri—1)(exp2ik(ro —ri) —1) ~ ~ (ex~ p2ik Ir„r„—i I
—1)

which completes the proof.

(111) The Convergence Proof for the Expansions (48)

As a preliminary step we will prove that the Fredholm formulas apply for the kernel of the iterated integral equation (2):

ik(X; h, x) =exp(ihx)+XfE(x, x') exp(ihx')dx'+) 'fE,(x, x') ib(li; h, x')dx',

i.e., that

where

and

with

i(~; h, *)=Fo(h, x}+goof Ifo(&', *,*')Fo(h, x')dx',

Fo(h, x) =exp(ilier)+XfE(x, x') exp(ihx )dx'

B (~; x x')-~, (X&; x, x')/~, (X),

(III.2)

(III.3)

(III.4)

co ( ) S)ss
Ao()P; x, x') =Ei(x, x')+Z, dxi fdx„sj

K (x, x')
Kg{x1,x')

K,(x, x,)
K2(x1 Xl)

K,(x, x„)
K2(x1, x„}

and
K (x„,x') K2(x„,x1) Kg{x,x )

oxo ( gm) ss K,(x„x,} " Z,.(x„x„}
~.() )=I+Z " fd*, fd "„ (Irr.6}

K,(x„,x,) " K,(x„,x„)
As assumptions for the potential V(x), we need Eqs. (46), (47). %'e first prove the convergence of the series for 6()«). For this we note

E(,)
1

d
exp(ikl x—*il)

p'(I I)
xp(ok l*i—x'I)

I'(I 'I)
16

I
x—xil

'
I xi —x'I

=A(x, x')(4orlx'I) 'V(lx'I)

and we are going to show that, using {46}and {47),

(III.7)

(III.10)

(III.12)

B(x, x') &${Q/R)~ M logI t.(Q/R)~+i j/t. (Q/R}~ —1 (rrr. 13)

I
A (x, x')

I
&X&~. {III.S)

Introducing the definition of F(l x I) from Eq. (43), we have

I
A (* x')

I
& (I/4v) I*'

Ifd*iF(l » I)/(I*i I I*—» I l*i—*'
I )-fl(x, *') (GI.9)

The integral on the right-hand side is obviously only a function of Ixl =R,
I
x'I =Q, and g(x, x') =4, and we claim that for given R

and Q it takes its maximum value for C =0. This is intuitively clear from symmetry reasons, and it can be proved as follows:
cxo 1

B(x, s'}=—Q rdrF(r) sinada dy4~ PP+r~ —2R sin@ cos(y —$C }j&PQ2+r —2Qr sin8 cos{ y+)C) j&'

By use of the standard methods for evaluating elliptic integrals'~ one gets for the integral over q .

I.2/(a —b cose) 5E I [(a' bcosC)/(—a bcose) 5t I,— (m. i1)
where e&u'&b&0 are still functions of R, Q, r, 8.

Differentiating Eq. (III.11) with respect te cosC yields'I

t b/21(a —b case}t5tDIDa' —b cosC)/(a bcose)5tl —&0.

Therefore, we can restrict ourselves to the case C =0, for which the integral B(x, x') can be evaluated simply by using polar coordinates
with a polar axis along the common direction of the vectors x and x'. The result is

B(x, x') &- — f drF(r) log t +f drF(r) log t Plog f drF(r)
1Q& r+(QR)& r+(QR) t Qt+Rt o

where we assumed Q&R which, for the estimate of B, is the less favorable case. Noting that the three logarithms are equal for r =Q,
or r=R, we get the first estimate:

(where M =Jo drF(r)) and, remembering the assumption F(r) &M'/r, a second estimate

{III.14}

17 A. 3. Frank and C. D. Mises, Digeee4ud Nnd Iwtegralgkichzcegender Physik (1930), second edition, Vol. 1, p. 172. For the defini-
tions of the complete elliptic integrals K(k) and D(k) see Jahnke-Emde, Tables of Factions (Dover Publications, New York, 1943), p. 73.

"Jahnke-Emde, reference 17, p. 76 and p. 73.
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Therefore,
1 q ~ . (q/Z)~+1 ~,B(x, x')&- — Min M log; —M' &—M'coth ——=E.
2 (Q/R)& —1' 2 4 4 M

(III.15)

and e fortiori Eq. {III.8).
The completion of the convergence proof now goes along standard lines. First we estimate the determinant of Kq. (III.6):

lli('2(x' x~) II
= D«IIA(x', x~) II.

V(x,) V(x,) V(x„)
1 gC, @K' 4lx, 4lx, l 4lx„l

By Hadamard's lemma'9 and Eq. (45) this is

( ) I N ( ~(lxal) F(lxal) ~(lx I)
4hlxil'4hlx~l' 4hlx I"

and because of Kq. (46)

dx~ f«"» D«ll&~(x', »}ll &kd "N~"",

which assures the convergence of Eq. (III.6) for any finite ).To prove the convergence of

fr4(X', x, x')Fa(h, x')dx',

we first note that

(III.16)

(III.17)

I
p (g x) I

&1+ I ~I d, , V(*) (1+ I &I d, , ~(lx I) 1+I! l~
4h x—x' 4h lx'I lx —x'I=

and therefore the determinant in Eq. (III.5) is less than
M"+'N"+'h&& "+»(1+

I
}.

I M},
which makes Kq. (III.17) convergent for any finite X.

The representation (III.2-6) of the solution for the scattering integral equation (2) has the disadvantage that the denominator b,2()P)
of the resolvent H2(X; x, x') vanishes for &X;, where ) g are the eigenvalues of the original integral equation. It is therefore possible
to factor an entire function in the numerator and denominator of Eq. (III.4). This fact was proved in general by H. Poincarb. 20

Since we know the convergence of our series, we can immediately use his results, which lead to the prescriptions of Sec. IV, Eqs.
(49), (50), where numerator and denominator have no zero's in common.

(IV) The Fredhohn Method for the Yukawa Potential
In this section we calculate the integrals D1 and D2 given by Eqs. (58), (59). D1 is easily found by using the configuration space

representation in which

D&=(1/16h )fdxdy exp(2ik Ix—yl) exp( —h —y)/(lx —yl~hy).

This integral is elementary, and its outcome is given in Kq. (60). D2 is treated by introducing again auxiliary integrations over variables
g&0 i=i ~ ~ 4:

3I b(X1+X2+X8+X4—1)
'P*,(P —&)+~2(q —&)+~8I(y—q)2+1I+~4I (P+q)2+iI —k(~,+~2)j

The expression in square brackets can be written as the sum of a symmetrical quadratic expression Za;&y;y&, where (y&, y&, y8) =y and
(y4, y8, ye) = q, and a constant term. We transform the six dimensional quadratic expression on principal axes:

Za;gy;yj, =XX;P,.2.

One easily sees that
II; ~;=de= I.(h, +h,yh, )(h,+h, +h,}—(*,—h,}ey.

Introducing );&P; as new variables and putting ZP 2=P2 we get

Ds=(3!Os/4+4)fdh,
' f

where 08= H is the surface of a 6-dimensional unit sphere and

A =~8+@4—y(X1+X2)—ie{X1+X2).
Hence,

Dg=(1/4h)fdh;4(Zh; —1)d 1A '.
We introduce

X1+X2=X, X8+S4——e1, —X&y&Z,
+1 +2 Py &8 &4 &2y &1&&2+&1

One can then integrate over e2 and thereupon over e1, noting that the argument of the 8-function now reads x+@1—1. The result is

1 1 de(1 —x) P dy
0 (2—x) {1—(q+1)x—zan) J~(2—x+y)(4x —3x'—y')&

1 1 Ch (x—~)~
tan '

o {2—x) {1—(g+1)x—~exI 2—x

i(q+1), y& 1 P1 Ck, (g—Q)&

2y+1 2q+1 ~ Jo (1—(g+1)x}(2—s) 2—s
'9 See reference 11, p. 212.
o H. Poincarb, reference 12.
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where P indicates that the principal value has to be taken with
respect to the point x (q+2} '. It is readily seen that the
principal value integral can be written as

dS 2—x+i(x—8)&

( 2—(/+2)$) I2—XI 2—x—i(x—e)&

taken along the contour I of Fig. 2 which encircles the branch
points @=0,1 of (x—P) in the negative sense {the plane is cut
along the segment 0&x&1).The contributions of the two in6ni-
tesimal semi-circles near x=(g+2) ' cancel each other; indeed,
the value of the logarithm in any given point of the path above
the cut is equal and opposite in sign in the corresponding point be-
low it.

We next deform I to the contour II, coming from x= ~,
encircling the pole of the integrand at x=2 and the branch point
of the logarithm at x=4/3 in the negative sense, and then return-
ing to ~. The plane is cut along that part of the real axis for
which x&4/3. Care has to be exercised in continuing (x—x')& to

RI'hL a Aagg

FIG. 2. Deformation of the integration path of the integral (IV.1).

points on path II as well as in choosing the branch of the logarithm
on the upper and lower half of this contour. The contributions
near the pole x= 2 cancel again and the 6nal result is

D, = —(I/2q+1) }iIn} 2(q+1)/(4q+1)]+i tan '(q&/(2g+1))I,

which was used in Eq. (61).
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Liquid helium II film transport over various surfaces has been studied by a new method in which a
cylindrical capacitor using hquid helium as the dielectric is employed as a depth gauge. Changes in liquid
level resulting from 61m transport produce changes in capacitance which in turn cause frequency changes
in a high frequency circuit. The details of this method are described. The film transport rates, measured
to 1.25'K, were found to depend on the substrate; at 1.25'K, the highest rate observed was 52 X10 ' cm'/cm
sec for etched copper and the lowest, 7.5X10 ~ cm'/cm sec for glass. The rates were also measured over iron
in the magnetized and unmagnetized state and over a superconductor in the superconducting and in the
normal state. No differences were noted. In the latter case the thermal conductivity of the container is
abruptly changed and the absence of an eGect supports the view that heat transfer plays no significant
role in deter~~rIing the transport rate.

INTRODUCTION

S INCE the discovery' of the film transport phe-
nomenon of liquid helium II, various investigations

have been made to determine the characteristics of the
transport. Among the phenomena studied was the
effect of the underlying surface material. ' These studies
indicated that the transport rate is independent of
surface material. However, a recent examination of this
property by Mendelssohn and White' 4 and the present
authors" has shown that this is not the case.
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Theories of the HeII film have been advanced Dy
Frenkel, ' Schiff, s Temperley, ' and Bijl, de Boer, and
Michels. "The first two authors have considered helium
atoms to be under the inQuence of gravity and of the
van der waals attractive forces of the walls. This treat-
ment indicates that film thicknesses on conducting
surfaces are greater, by about a factor of two, than
@ms on dielectrics. Film Qow, according to Frenkel,
should be limited by viscosity. For the case of HeII,
the theoretical result becomes ambiguous owing to the
presence of a zero viscosity, or superQuid component.
Temperley has treated the film as an adsorbed phase
in which He atoms occupy bound sites on the surface
of the solid walls. The adsorbed layers farthest from the
wall are assumed to occupy only a fraction of the avail-
able sites, and film Qow is considered to arise from a
transition of atoms from their existing sites to empty
neighbors. The inQuence of the wall is considerably
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