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A Phenomenological Derivation of the First- and Second-Order Magnetostriction
and Moryhic Effects for a Nickel Crystal
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In order to account for experimental results mhich showed that the saturation elastic constants of a
single nickel crystal varied with the direction of magnetization, a phenomenological investigation has been
made of the stress, strain, and magnetic relations for single nickel crystals. The variation in elastic constants
is shown to be a "morphic" eGect caused by the change in the crystal symmetry due to the magnetostriction
eGect. In the energy equation this eGect is represented by additional terms which involve squares and
products of both the magnetic intensities and stresses. These terms are as large as the magnetostrictive
terms when the stresses are of the order of HPo dynes/cd. The energy equation has been used to derive
the 6rst- and second-order magnetostrictive eGect, and the resulting terms agree with Becker and Boring's
empirical constants for saturation conditions. For smaller magnetic intensities the terms divide up into
Grst- and second-order terms which vary diGerently with magnetic 6eld intensity. It is shown that the
morphic eGects involve six measurable constants, and some of these are evaluated experimentally.

I. INTRODUCTION

~ARRI'UL measurements of the change in elastic~ constants with magnetization in single nickel
crystals' have shown that the elastic constants for a
saturated crystal depend on the direction of saturation.
It is the primary purpose of this paper to show that the
change in saturation elastic constants with direction of
magnetization is due to what Mueller' has called a
"morphic" efFect; namely, that the distortion of the
crystal by the magnetostrictive efFect produces a crystal
of lower symmetry which involves more than the three
elastic constants of a cubic crystal. It is shown in this
paper that the additional elastic constants and their
variation with magnetic orientation can be obtained by
adding terms to the energy equation which involve
squares and products of both the magnetic intensity
and the stresses. Symmetry determines the number of
constants, and it is shown that there are six measurable
constants which characterize the efFect.

The complete energy equation has been applied to a
derivation of the magnetostrictive efFect, and it is
shown that 6rst-and second-order terms are involved. At
saturation the terms agree with those given previously
by Seeker and Boring, ' but for lower magnetic in-
tensities the terms divide up into 6rst- and second-order
terms which vary difFerently with magnetic 6eld
intensity. The experimental results of Masiyama4 for a
single nickel crystal are fitted by the phenomenological
formula derived here, and a slightly better 6t is obtained.
The evaluation of some of the 6rst- and second-order
terms is accomplished.

'These measurements were made primarily to determine the
"d,E" eGect and the microeddy current eGects in single nickel
crystals and mill be discussed in another paper, "The frequency
dependence of elastic constants and losses I nickel, "by Bozorth,
Mason, and McSkimin. The measurements are reproduced here
in order to evaluate the morphic eGect.' H. Mueller, Phys. Rev. SS, 805 (1940).

«R. Seeker and W. D6ring, Ilerromegeetisnees (Verlag. Julius
Springer, Berlin, 1934), page 275.' Y. Masiyama, Sci. Rep. Tohoku Imp. Univ. 1i, 945 (1928}.

The tensor method is followed, since this results in a
considerable economy of efFort and readily allows one
to change from one coordinate system to another. The
tensors are all of the cartesian type, since only rec-
tangular coordinate systems are considered. The method
followed is to add terms to the energy equation of a
form required to agree with the measured efFects and
to determine the resulting constants by means of
symmetry considerations.

II. ENERGY FUNCTIONS FOR MAGNETOSTRICTIVE
CRYSTALS

It is well known that the changes in dimensions,
magnetic 6elds, and temperature for any body subject to
magnetostrictive and magnetic efFects can be derived
from a thermodynamic function. In order to use the
measured rnagnetostrictive constants, it is better to
use the stress, intensity of magnetization, and entropy
as the independent variables. To do this we introduce
the elastic enthalpy H&, defined by the equation

Hl= V—T;;S;;,

where U is the internal energy function and T;; and 5„
are respectively the stresses and tensor strains, i.e.,
[$(au;/ax;)+au;/ax;j, where u is the displacement.
The difFerential form of H~ is known to be

ding= SgdT;,+H dI +—Odo, (2)

where H are the magnetic 6elds, I the intensities of
magnetization, 0 the absolute temperature, and cr the
entropy. Hence, one obtains

s,;=—a~,/az;; ~„=a~,/al„; o=a~,/a . (3)

Since all of the measurements have been carried out
under adiabatic conditions, the entropy change is zero
and H j can be considered to be a function of the stresses
and magnetizations.

The usual method for deriving the energy terms is to
add 6rst- and second-order terms and to determine the
number and types of constants by the symmetry con-
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dition. Use can be made of the fact that nickel has a
center of symmetry which results in having all the odd
rank tensors equal to zero. Furthermore, nickel can be
described as being soft magneticaQy but hard elasti-
cally. Hence, we can neglect all energy terms that
involve terms higher than products or squares of the
stresses. With these limitations, the elastic enthalpy
function B& can be written in the form

2II1= [& ijklTijTkr+RijkrooIoIoTijTkl

+IrjIij tooItoI 0Tij +&ijmoo&UoIoI P ij]
+&r .M.+&r ..PU.IJ,

+&' -„.IUZZ&oI' (4)

These equations hold for a crystal with a large
number of domains when the directions of the domains
are uncorrelated, for then the components of magnet-
ization are independent. For a single domain, the
magnetic intensity has a 6xed value, the saturation
value Io, and only the direction of magnetism can be
changed. If nl, 0.2, 0.3 are the direction cosines of the
magnetic intensity with respect to the crystal axes,
then one has

Il=alI0, Is= asI0', Is=asI0, (5)

and there is a relation between the three direction
cosines, namely,

a 2+ a 2+a 2 —1 (6)

The stresses T;; and the strains Sq~ are symmetrical
tensors, and hence we can interchange the order of the
subscripts. The same is true for the subscripts of the

magnetic intensities, and hence it has become customary
to use a single index related to the two indices by the
equations

11=1 22= 2; 33=3; 12=21=6;
13=31=5; 23=32=4. (7)

Similarly, for the fourth-rank tensors s;;&&, M&& „,E „,„
we can interchange 2 and j, k and l, 0 and p so that
only two indices are necessary for these terms. Further-
more, for the tensor s ~=s;;~~ it is proved in elastic
theory that u and b can be interchanged so that there
are at most 21 independent constants. This is not true
for the magnetostrictive tensor M ~——M;;I,~ and in
general there are 36 independent terms. For the aniso-
tropic magnetic energy tensor K,~

——K;;I,~ all four of
the terms i, j, k, l can be interchanged, and in general
there are only 15 independent terms. The number and
type of these independent constants for the symmetry
of nickel Oq are well known from crystal theory. ' Since
the number and type of the constants of a sixth-rank
tensor do not appear to have been completely worked
out, they are considered in Appendix I.

With these components known, the expression for H~
can be written down. In this equation I is replaced by
O, ~ID, etc., indicating that it is a component of the
saturation intensity of magnetization Io. The energy
for the demagnetized case given by n&' ——0.&' ——n3' ——-',

has also been subtracted from the expression so that
the energy represents the di8erence between any state
and the demagnetized state. Certain combinations of
the O.-values have also been made to cut the number of
independent terms to a minimum. With these simpli6-
cations, we can write —2H~ as

2II1= sr 11(T12+T2—2+ Ts')+ 2sjr2(T1T2+ T1Ts+ T2T3)+2s144[T42+ Ts'+ Ts']

+ (al 3)IO [(Rill R112)Tl +2(R123 R121)T2T3+4(R441 Rssl) T4 )
+(a2 3)IO [(Rill R112)T2 +2(R123 R121)TlT3+4(R441 R661)Ts']

+ (a3 3)IO [(Rill R112)T32+2(R123 R121)T1T2+4(R441 Rssl) Ts')

+8alasI0'I Ts[R144T3+Rlsr(T1+ T2)]+R4MT4T5}

+galasIO {T6[R144T2+R155(T1+Ts))+R46eT4Ts}

+8alasI02} Ti[R144T1+Rlss(T2+Ts)]+R453T5Ts}

+ I (4M 11—~12)Io'+ [2(&112—1»23)+4(&661—&441)]Io'}[(al' —r'6) T1+(as' —35)Ts+ (as' —x)Ts]

+ I [Sill 3+112+2&123+4(+443 Nssl))IO [(al +36 3)Tl+ (a2 +36 $)T2+ (as +36 'f) T3]}

+[3(Sill jV123 4+561 2+441))I0 (3 3)(T1+Ts+ T3)

+[2jM 420'+4(&112+&ssl)Io'][asasT4+ alasT6+alasTs]

+4@123+Ii 444+2&456 —&112—&551)In [al asasT4+alas asT5+ alasas Te]

—X 1($—s) —E 2[(1/27) —alsas'as'] (8)

See, for example, K. G. Cady, Piesodecfricity (McGraw-Hill Book Company, Inc. , New York, 1946) or W. P. Mason, Piezo-
dectric Crystals (D. Van Nostrand Company, Inc. , New York, j.9%) for the elastic tensors. The magnetostrictive tensor is the
same as the photoelastic tensor of Pockels. For the tensor E;~&& there are only two independent constants.
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where

The 6rst three terms represent the elastic energy, the
next six terms represent the energy stored by morphic
sects, i.e., by the change of shape of the body, the
next five terms represent the energy stored by the Grst-

and second-order magnetostrictive dkcts, while the
last two terms represent the magnetic anisotropy terms
measured at constant stress. If we neglect the morphic

energy terms and set the 6ve constants for the magneto-
strictive terms equal to 81 to B~, the internal energy
reduces to the form given by Seeker and Doring. 4 From
the value of the E. constants found experimentally, the
morphic en:rgy terms are about equal to the magneto-
strictive terms for stresM. s in the order of 10"dynes/cm',
but are smaller for smaller stresses. The anisotropy
energy constants El and E2 are those measured for
constant stress. As shown by Kittel, ' these include the
anisotropy energy for constant lattice separation plus
the magnetostrictive energy caused by the lattice dis-

tortion. To obtain the tensor strains from this function
one difkrentiates with respect to the corresponding
stress, as shown by Eq. (3). For the engineering strain
values which are twice as large as the tensor strain
values for the shearing components

S = 2BHI/BT; —I=4, 5, 6. (9)

Hence, the shear elastic constants s~44, and other terms
which are multiplied by the stresses T4, T~, and T6 are
one-fourth as large as the corresponding terms which

express the relationship between engineering strains
and stresses.

IIL MAGNETOSTRICTIVE EFFECTS IN
CUBIC CRYSTALS

When a nickel crystal is magnetized, it contracts
along the direction of magnetization and expands at
right angles to the direction of magnetization. The
measurements of Masiyama are all elongations along
crystallographic axes or along directions such as the
[110]or [111j.The elongations or contractions for any
direction z' can be obtained from the energy expression

(8) by differentiation with respect to the longitudinal
stress in this direction or

Sss BHI/BT33 (10)

but the strain S33' is related to the strains referred to
the crystallographic axes by the tensor transformation
equation

&$3 8X3 F 18X3 8/3
&33'= ~ I

8X; 8$~ 8$g 8$y &Ting

C. Kittel, Revs. Modern Phys. 21, 541 (1949}.

s= alsas'+a Ias'+as'as',

Erl= [(—2ErI +6E"Is)I0'+ ( 3E—rIII+15ErIIS) Iopj,
2= [66E 123

—45E 112+3E ill+

Performing this di8erentiation, we have for the magneto-

strictive terms

SS'=hI[aI'Pl'+as'P2'+as'Ps' sj—
+k2[ala2plp2+ azasplps+ a2aspsps]

+hs(~s —s)+h4[al'p, '+ as'ps'+ as'ps'+sr —
3 $

+h.[ '
~ P.p*+ .* P P.+ ~ *'P.P.j, (»)

where

hl= [2(MII—M12)Ip +[N U2 —NI23+2'l 651 2N3417IS ],
h2 [2M45I0'+4(NII2+N551)I0 j)
h3 3[N111 NI'23 4N561 2~~ 441jI0

5

k4 [2(N111 3NI12)+N 123+2(N441 N561) jI0 y

hs =4[NISS+N 451+2N 553 N IIS N—SSIjIS—'

(14)

For nickel the volume magnetostriction is zero. If
we add the sum of Sl', S2', and S3' and set the resultant
equal to zero for any direction of magnetization, h3=0
and there is a relation between four of the constants

or
+ill +123 4+5/1 2+441= O

2N 651 s(N 111 N 123) N 441.
(15)

This reduces the formulas for the h values to the values

given below:

kl= ['s(MII M12)IS +[/(N 111 N112)

+2 (NI12 N123) 3N441jIO jy

hs= [2M45IS'+(4N112+N 111 N123 2N441)IO jy
(16)

h3=0,

h4 [2(N I'23 N 112)+3N 441]IS',

hs= [5(N 123 N112) (N IINIIIS)+6¹SI+8N463jIS'.

An empirical formula for the magnetostrictive con-
stant in nickel has been given by Seeker and Doring'
which takes the same form as Eq. (13) with hs=0.
Equation (13) with the constants of Kq. (14) is more

general for when it refers to the multidomain crystal
with uncorrelated domains, it gives the magnetostric-
tion as a function of magnetization when we replace
a1IO by Il, etc. Hence, when one measures the magneto-

where the partial derivatives are the direction cosines

pl, ps, and ps between the z' axis and the x, y, and z

axes, respectively. In terms of the one index stress and
strain terms

Ss' = —(pI'BHI/BTI) (Ps—'BH I/BTS) (ps'B—HI/O Ts)

—(2PSPSBHI/O T4) (2pl p—sBHI/O TS)

—2PIPSBHI/BTS (12)
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Fzo. 1. Difference between longitudinal and transverse
magnetostrictive constants for 001 plane.

striction starting from a fully demagnetized crystal,
Eq. (13) gives the lnagnetostriction as a function of the
magnetic intensity.

Becker and Doring have compared this formula with

the measured curves of Masiyama4 for the magneto-
striction at saturation for nickel. They compare the
difkrence between the longitudinal and transverse
magnetostriction with their formula for the 001 plane,
the 011 plane, and the 111 plane. This diGerence was
chosen because it is independent of the domain structure
of the demagnetized state. By choosing the values

hi= —24&10~, h2= —94)(10~, h4= —51&(10~,

where 4 is the angle measured from the 100 direction
The best fit with the measured points is obtained
by setting

$(6ki+Sk4) = —70X10 ', &kl ——+54X10 '. (21)

The solid line of Fig. 2 results. This still does not fit
the measured values completely, which indicates that
higher order energy terms are not negligible; but a
better agreement is obtained than with the values used

by Becker and Doring. If we combine the first value
of (19) with the first value of (21), we have the relation

ki= —40X10 ' k4 ———36X10 '. (22)

For the 111plane, a calculation of X~—) & shows that
the difference is independent of orientation and has the
value

XI—ling
——ki/3+2k4/9+km/3+kl/18. (23)

No new constants are involved, but one check is
obtained for the values determined previously. These
add up to —46)&10 ', which agrees well with the
measured results as shown by Fig. 3.

These measurements do not allow one to separate
out all of the constants, since we cannot resolve the
values of the constants of Eq. (13).The two involving
both second- and fourth-order constants, h~ and h2,

ki ——+104X10, kl=0, (17) ki= 2(Mii —Mu)fo'+[2 @'iii—&in)
the dotted curves of Figs. 1, 2, and 3 result for these
three planes.

Another comparison was made with the experimental
data, and it appears that the data are fitted. better with

slightly diBerent coefficients. For the 001 plane the
equation for ) &

—
X&, the difference between the longi-

tudinal and transverse magnetostrictive constants
becomes

Xi—lI&
——(ki+ k4) cos'28+ ~2kl sirP20. (18)

The solid curve of Fig. 1 results when

ki+ k4= —76X 10~, —',ki ———46X 10~. (19)

For the 011 plane the equation for X&
—) & is

)I I
—li& =

& (6ki+ Sk4) [cos'4' —sin'0 j[cos'4—sin'24 j
+~kg sin'4'[7 cos'4+2 sin'si%j

+ i2kl sin'4 cos'4', (20)

+$(+112 +123) 3&44i]&0', (24)

k2= 2M42'0'+ [4&li2+ (&ill —&lis) —2&441jr0',

could be resolved if the magnetostriction constants were
measured in terms of the magnetic intensity, since terms
in 12 and I4 occur. Unfortunately, however, Masiyama's
measurements are presented in terms of the field

strengths. Two of these measurements for the 001 plane
are shown by Fig. 4. In order to obtain the magnetic
intensities, one would need to know the permeabilities
for the two directions as a function of fieM strength.
The initial slopes of these two curves, however, can be
used to determine approximately the ratio of the M44

constant to the M~~ —M~~ constant. This follows from
the fact that the initial permeability is a second-rank
tensor and hence has the same value for all directions
for a cubic crystal. From the initial slopes it appears
that the ratio is

100X 10
THEORETICAL 4 CONSTANT FORMULA
BECHER ANO OORING 4 CONSTANT FORMULA

0 MKASUREO POINTS or
2M44/(Mii —Mii) =69/40

M44 ——0.86(Mii —Mii).
(25)

4
'„-80

IL0
Id
D 40

100 111 011 lll 700
00 20 40 80 80 100 120 140 180 180

OEOREES ROTATION

Pro. 2. Difference between longitudinal and transverse
magnetostrictive constants for 011 plane.

Further constants could be evaluated if shear magneto-
striction measurements were available.

IV. CHANGE OF ELECTRIC CONSTANTS WITH THE
DIRECTION OF MAGNETIZATION FOR A

SATURATED CRYSTAL

%hen the crystal is magnetically saturated, it is
found experimentally that for elastic waves propagated
along the [110], [111], and [100] directions the
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velocity depends on the direction of magnetic satura-
tion. This can be explained if we include "morphic"
e6'ects; i.e, , if we take account of the change pf shape
of the crystal from a cubic form due to the magneto-
strictive e6ects in the crystal. These changes are
caused by the R terms of Eq. (8).

For a plane progressive ultrasonic wave it is much
more advantageous to express the stresses in terms of
the strains, since only one strain occurs in an uncoupled
plane progressive wave. This involves expressing the
results in terms of the internal energy function U
rather than the elastic enthalpy function B&. The
resulting terms can be determined by eliminating the
stresses fro B~ and replacing them by the strains. The
details are discussed in Appendix II.
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FIG. 3. Difference between longitudinal and transverse
magnetostrictive constants for 111 plane.

If we differentiate V with respect to S„and neglect
the constant forces generated by the magnetostrictive
e6'ect, the stress-strain relation can be expressed in the
matrix form

T1
T2
T3
T4
Ts
Te

S1

11+~11

C 13+~12
C 13+~13

~14

~1S

~le

12+~13

C 11+IBI22

C 12+43
834

82S

~le

S3

C 13+813
C 12+823

11+~33

IBI24

~15

~3e

S4

~14

&24

824

C'44+844

As
&4e

~1S

hs
~1S

84s

C~44+&ss

&se

~le

&1e

&3e

&4e

&se

C'44+ ~ee

where cl», c~», c~44 are the saturated elastic constants and the b's are the modifications caused by the morphic
efkcts. These are given in terms of the E values in Appendix II.

All the measurements were made on a (110) section and for transmission in this direction the resulting
velocities are determined by solving the deterrninant7

'S(c 11+C 44+311+366+231$) PF j 2(c 12+c 44+b12+b66+2b16) j S(314+315+346+366)

2(c»+c 44+3»+366+2816) j $(c 11+c 44+b22+8$6+2316) W'j 2(i—I24+326+34$+356) =0.

2 (314+b15+'4$+ b56) 2 (324+ 325+'46+ 356) 2 (2C 44+ 344+ 355+2'45) P~

(26)

If we neglect squares of the b-quantities, the three constant
solutions of this equation can be written

PVI 2(C 11+C 12)+C 44+4(311+322+2312)

+366+2b16 (long),

P$2 Q(C ll C 12)+4(311+322 2312)
(27)

(shear, particle velocity along L110]),

P&3 =C 44+2(344+~55+2~45)

(shear, particle velocity along [001]).

C $6 = 2(C ll C 12)+S'(C 11 C 12) IO

X [(423 3)(R111 R112+2R123 2R121)] (29)

The measurement allows one to determine the sum of
two other combinations.

Finally, for the longitudinal velocity u~, the elastic

FOR 110 DIRECTION

X -Z = —~4 lfNIIa+ -N441 J~ ' 4&»IO fpJ+2LS" 30 ~it jIJt ] ~ QJ ~ 0

From the last shear velocity e3, we find that the
morphic value of the shear elastic constant is

c~44 cr44+ 21cr4421$2Dn32 ——sl)(R44-1 R551)— —
—2421422R456]. (28)

This allows one to derive one relation between two of
the independent constants.

For the other shear velocity e2, one has an elastic

7 Love, Theory of E/us@city, Fourth Edition (Cambridge Uni-
versity Press, London, 1928), p. 298.
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Fzo. 4. Longitudinal minus transverse magnetostriction effect
plotted as a function of 6eld strength II for 001 plane.
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V. EXPERIMENTAL RESULTS

The original measurements' which indicated the
presence of a "morphic" eGect were measurements of
the velocity and attenuation of ultrasonic waves in

single nickel crystals. These were made primarily to
determine the "~"eGect in single crystals and will be
discussed in detail in a companion paper. ' The values
are reproduced here in order to evaluate the magnitude
of the morphic eBects. All the measurements were
made on a (110) section, since it has been shown that
three independent waves, two shear and one longi-
tudinal, can be propagated in such a section. One shear
wave (called No. 1) is generated when the particle
motion is along the [110]direction, while the other
(No. 2) is generated when the particle motion is along

Fzo. 5. Change in velocity for shear wave No. 1 as a function of
magnetization (10 megacycles).

constant becomes

4 11 = 2[C 11+C 12]+C 44+(423 3)IO"

X I [2(C 11+4 12) 4 12 ](R111 R112)

2(C 11 C 12 )(R123 R121) C 44 (R441 R331) I

—2C 44421422IO [4 12R144+(C 11+C 12)R244]. (30)
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FIG. 6. Change in velocity for shear wave No. 1 as a function of
magnetization (10 megacycles).

These measurements mere made by H. J. McSkimin by a
technique described in J. Acoust. Soc. Am. 2$ 413 {1950).

FrG. 7. Change in velocity for shear No. 2 as a function of
magnetization (10 megacycles).

the [001] direction. Figure 5 shows the increase in

velocity divided by the velocity for the demagnetized
condition as a function of current through the magnet-
izing coil for the No. 1 shear when the Geld is in the
direction of particle motion [110].At saturation the
velocity is increased by a factor of 0.0224. The dotted
curve shows the velocity under decreasing conditions.
The velocity at zero Geld is less than that for the
demagnetized case, but returns to it when the crystal
is again demagnetized. Figure 6 shows a measurement
for the same shear with the field parallel to the [001]
direction. For this case the increase is 0.026 giving an
increase in elastic constant hc of 2.41X10"dynes/cm,
compared with 2.07X10"dynes/cm' for the field in the
[110] direction. The difference between these of
3.4X 102 dynes/cm is a morphic effect. Figures 7 and 8
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show similar measurements for the No. 2 shear as a
function of magnetic orientation. Here the morphic
e8ect is 2.5&109 dynes/cm'. Figures 9 and 10 show

similar measurements for the longitudinal wave, giving
a morphic eGect of 0.9X10' dynes/cm'. All these e8ects
are gathered together in Table I, which shows also the
combinations of constants involved.

The measurements give three relations between the
six measurable combinations. While these are not
enough to evaluate all of the constants, they do show
the existence of a morphic effect. It is interesting to
observe that the changes measured are in the same
order of magnitude as the change in the elastic constant
occasioned by a temperature expansion which produces
a distortion comparable to the magnetostrictive distor-
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FIG. 9. Change in velocity for longitudinal wave as a function of
magnetization (10 megacycles).

APPENDIX I. NUMBER OF INDEPENDENT TERMS
OF A SIXTH-RANK TENSOR FOR A CUBIC

CRYSTAL OF CLASS Og, = (4/m)3 —(2/~}
When second-order effects are taken account of in magneto-

strictive effects, there are 3 sixth-rank tensors to consider, E@~~„
R;;q~~, and X ~„«of Eqs. (4). For the most general case there
are 729 terms in a sixth-rank tensor; but since i and j can be
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0 4
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20 AMPS.l1 ~ ~ ~~ ~

Cl

FIG. 8. Change in velocity for shear wave No. 2 as a function of
magnetization (10 megacycles).

0.004

tion. Since the temperature expansion coeScient of
nickel is 12 parts in j.0' per degree C, an increase in
temperature of O'C will produce an expansion as large
as the magnetostrictive eRect. This increase in temper-
ature will cause a decrease of the elastic modulus of
0.14 percent' or a change of 3&(10' dynes/cm' in
Young's modulus, which is intermediate between the
values measured for the longitudinal and shear effects.
While no direct comparison can be made between
magnetostriction efFects and temperature eRects, since
one causes a change in volume and the other does not,
the fact that they produce effects of the same order of
magnitude is indicative of the related nature of the
eRects, i.e., a separation of adjacent molecules.
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' See G. %.Pierce, Proc. Am. Acad. Arts Sci. Q, No. 1 (2928).
Fra. 20. Change in velocity for longitudinal wave as a function

of magnetization (10 megacycles).
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TABLE I. Measured velocities and elastic constants for a 110 section of a nickel crystal as a function of magnetic orientation.

Crystal No. i mode
Velocity

demagnetized Constants determined

Long. particle velocity 6.01X10s
along 110 cm/sec

I along 001; b,c=4.06X10' dynes/cm2
I along 1IO; d,c=3.97X10"dynes/cm'

chill(001) —c~ll{110)=9X10 dynes/cm2
=IG [[$(C 11 —C 12 )—C 12 j{RIII—RI12)

+)(c 2— ') {R —R )+ '(R -R )

Shear particle velocity
along 001

Shear particle velocity
along 110

3.66X10s
cm/sec

2.277 X10'
cm/sec

I along 001; b,c=3.36X101 dynes/cm'
I along 110; AC=3.11X10~ dynes/cm'

I along 001; hc= 2.41X10~ dynes/cm2

I along 110;dc=2.07X10' dynes/cm2

+C 44(C 12R144+(C ll+C 12}R244)g

c~44(001}—c~44{110)=2.5X 10' dynes/cm'
42C R441 Rssl —R4sd)I02

c~«(001)—c~«(110)=3.4X10' dynes/cm'

=1{C 11 C 12) [Rill RIIG+2{RI"2 RIGI))IG

interchanged in E;;»or, and n, 0, p, and z can be interchanged
without affecting the values of the terms, there are only 90 inde-

pendent terms for even the most unsymmetrical crystal, a triclinic
crystal. For the R tensor, i and j, k and l, e, and 0, can be inter-
changed leaving only 216 independent terms. Furthermore, from
the definition of R;;»1 „it is obvious that i and j can be inter-
changed with k and l. This reduces the number of independent
constants to 126 for R;;»1

Since the number of independent constants of a sixth-rank
tensor'e does not seem to have been worked out for a cubic crystal
of class 0», it is the purpose of this appendix to derive the con-
stan, ts. This can be done by applying the symmetry conditions
for this crystal in conjunction with the transformation equations
for a sixth-rank tensor

8Ãq gx~ 8$» Bxg Bx» 8$o
A' j'»'I'»'o' = Rijkl»oi {31)

~+» +l

where Bx /Bx;, . , Bx,'/Bx„ the partial derivatives, are the
direction cosines ll to e$.

For a cubic crystal of class T&=43m, the symmetry conditions
are

remain unchanged, etc. The symmetry 0» is similar to this except
that a center of symmetry is added. This does not affect polar
properties of even order, and hence for a sixth-rank tensor class
0» is equivalent to class Tq given by Eq. (32).

The simplest conditions to apply is that a 180' orientation
around the x, y, and z axes results in the same elastic constants
as existed without orientation. For a rotation around the z axis
of 180', the direction cosines are

Bgl'/Bxl=ll= —1; Dxl'/&x =m =0; Bx '/Bx =e =0
ax2/ax, =l2=0; a~,'/ax, =m, = —1; ax2'/ax$=~2=0
Bxs'/Bxl = id =0; Bxd'/Bx2= m$ ——0; ax$'/Bx$= n$= 1.

Applying this transformation, all terms for which 1, 2, or 3 occur
an even number of times have the same sign and hence are not
changed. However, if the terms 1 or 2 occur an odd number of
times, the sign of the term is negative, and hence such terms must
be equal to zero. If we apply the 180' transformation around x
and y also, terms 1, 2, and 3 occurring an odd number of times
disappear. This is equivalent to an orthorhombic crystal of class
222 or D2. If we replace the six index symbols by three index
symbols, such that

z= —z; y —y; z=-z(4, m) and x=y; y=z; z=x(3); (32) 11=1, 22=2, 33=3, 23=4, 13=5, 12=6,

that is, if the x axis is shifted 180' to the —x axis, the constants the remaining terms are

R111 R121 R1$1 0 0 0 R112
R211 R221 R2$1 0 0 0 R212

R$11 R$21 R$$1 0 0 0 R$12
0 0 0 R441 0 0 0
0 0 0 0 Rssl 0 0
0 0 0 0 0 Reel ~', 0

R122 R1$2 0
R222 R2$2 0
R$22 R$$2

0 0 R442

0 0 0
0 0 0

0 0
0 0
0 0
0 0

Rss2 0
0 Ree2

R11$ R12$

R21$ R22$

R$1$ R$2$
0 0
0 0
0 0

R1$$0 0 0 0 0
R2$$0 0 0 0 0
R$$$0 0 0 0 0
0 R44$ 0 0 R414 R424
0 0 Rss$0 0 0
0 0 0 Ree$0 0

R144
0 R244

0 R$44

R4$4 0
0 0
0 0

0 0
0 0
0 0
0 0
0 Rse4

Res4 0

(33)

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Rsls Rs2$ Rs$s 0
0 0 0 Re4s

Rlss
R2ss
Rdss 0

R4ds
0 0
0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 Rs4e

Reld Re2e Rese

0 Ried
8 R2de
0 Rddd

R4se
0 0
0 0

Hence, for an orthorhombic crystal there are 60 independent terms
if Ros, WRs, . For the tensor R sc of Eq. (4), since Raac=Rs ~, the
number of independent terms is 39.

From the second condition of (32) we have in addition the

10 Sixth-rank tensors of the elastic type have been considered by F. Birch,
Phys. Rev. V1, 809 (1947); but these are not general enough for the Rap g~
tensor, since only the ij and kl terms can be interchanged rather than all
three sets.

f 1 0 0) /0 0 —1&

lo o 11 lo 1 o
LIQ —1 0) {1 0 0 )

$0 1 0)
—1 0 0 ~. {34)

Eo o

symmetry that a rotation of 90' around x, y or z results in the
same elastic constants as in the unrotated crystals. These three
rotations are given by the direction cosines.

x rotation y rotation z rotation
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Applying these symmetries to the rem~i»~g constants, there are
number of relations between the constants, These are

Rill RSSS Rsssb

R112~Rlls~ R221 =RSSS=Rssl =RssS,
R121~Rlsl R212~ R122~ R211 Rsll

=Rlss =Rsls ~RSSS=Rs22= RSss =Rsss,

R12s RlsS RSls RslS RSsl RSSlb

R441 =R662 Reesb

Rssl R44s R442 Ress Reel R002b

R144=R414= R256= R625 =Rsee= Rese&

Rlss Rsls Ries Rele R244 R424

Rsee= Ress= Rs44= R454~ Rsss= Rsssb

R450= R540= R4es= R045= Rse4= R064

Hence, there are nine remaining independent constants for the R
tensor. These relations are used in Eqs. {8).For the S tensor,
since the last four numbers can be interchanged, there are three
relations between the 9 constants and the numbt;r reduce to six.
The relations are

+112 +111122 +111212 +125, +100 +155j (36)
+122 +112SSS +144.

The remaining constants are then

+lily +llSy +12sb +441b +sslb and +460. (3'I)

This is the same number and type as in Birch's sixth-rank tensor, o

but the order of some of the subscripts is different.
Finally, for the tensor E „,s„of Kq. (4), since all of the six

subscripts can be interchanged separately, there are three more

relations between the constants and there are only three inde-

pendent constants. These relations are

+112 +651 j +12s +441 +460j

and there are only three independent constants,

%11& %12& and %2s.

(38)

APPENDIX II. DERIVATION OF TERMS IN INTERNAL
ENERGY FUNCTION

The method for transforming the expression for Hl into the
potential function V, the internal energy is one of solving for the
stresses in terms of the strains and magnetic intensities and
substituting for these in Hl. For the strains we have

S = —BHl/8T
or

Sl (s 11+~11)TI+(s 12+~22)TS+{s'12+ass)Ts+~14T4
+'»Ts+~»TO+hs(ap $)+h—4[as'+ls $g+h—s() s) (40—)

0 s O

Se=bleT1+~leTS+dseTs+440T4+hseT5+(s 44+Bee}Te
+hsala2+ksalaSas,

where

&11—(al $)ro {Rill Rlls) j ~ ' ~ j &00= {ass—$)IQ (R441—Rssl).

If we solve these for the stresses, we 6nd that the stresses Tl
to Te can be expressed in terms of the strains Sl' to Se' given by

Sl'= Sl—&hi(al —4)+h4(al'+ gs —k)+hs(k —s)g (4&)

Se'=Se—
1 hsalas+ksalasassj

according to the relation

Sl'

Tl c 11+511
TS c 12+812
Ts c ls+~ls
T4 ~14

Ts ~15

Te ~le

S„'

C 12+512
C 11+~22

12+%2

&25

&le

Ss'

C 12+~1S
C 12+ASS
C ll+5SS

~24

&16

&se

S4'

~14

&24

c~44+8«
&45

&40

Ss'

~16

45
&15

&45

c 44+&55
&se

Se'

~10

~10

&se

40
~se

c~44+40

(42)

&14=

~16

&le=

&24=

825=

use=

&44

&56~

&00

2nsasIa'c'ss—fc'slR«s+2c'sd4«1
bss ———2asnsIIPc ss[(c ll+c ls}Rsss+c lsgl«],
bss= 2nlaslo c 44[(c ll+c ls)R144+'c 141«jy
bss~ 2nsasIsc ssf(c 11-+c»)RO«+c 1%«s],

2nlaslo'c—',sfc'11R,OO+2c'ld4«5,
—2ala+QSc 44t c 11R144+2c 12R244j,

—c'442{alS- $)IQ'(R441-R661),
—cr442(a22 —$)IQ'(R441 —Rssl),
-c'442(ass- k)ro'(R441 —Rssl),
-c 44 alasio R450& ~40 -c 44 alasrepR45e
—c 44 aSasIQ R450,

{c ll C 12){al' $)IQ I (c 11+c IS)(R111 R112)
—2c,s(Rlss —Rill}j,

(c ll c 12)(aS' $)10 I (c ll+c 12)(R111 R112)
2c 12{R12s R121)gy

(c 11 c 12)(as $)10 I (c 11+c 12)(R111 R112)
-2c~lS(R120-R121)j

(44)

where any c~;; is equal to
ci;I= (-1)'2m'&/m, (43)

where hs is the determinant of Eq. (40) and hs'& the minor

obtained by suppressing the 0th row and jth column.
Since the 0;; terms of Eq. (40) are all very small, it is per-

missible to neglect terms having products or powers of these

small quantities. With that restriction one 6nds that the b;,
values are

bls= (c 11 c")( »— ass)Io fc 11(Rlss—Rill) c)s(Rl—ll Rlu)g,
bls= (c'» c—'»)(ns—' k)Ia'fc—ss(R»s R»1) —cu(Rs—ls R»s) j,-
bss= —(C 11—c ls)(np —$)IO [c sl(Rsss —Rl 1)—c ls(R111—Rill) j.

Inserting the values of Tl to Te given by Eq. (42) in Eq. (8)
for Hl, the value of the internal energy function U is given by

2U=C'„[SP+Ss*+SO*]+2C ls[ssss+Ssss+SDsj
+c «[SO*+SO*+Spj+bsssp+bsssp+bs+ss+2bussss
+28,sS,Ss+282sSsSs+2&,4S',$4+28,5S,S5+28,0S,Se

+2as4SSS4+2a25SSS6+ 2810S2Se+2I44SsS4+2816SSS5

+2&seSSSe+44S4 +&55S5 +&eeSe +246S4Ss+2&40S4Se
+2bs~~s-2hl(c'1, —c'1,)[(nP—l)sl+(aP —))s,
+(ns' —))Ssg—2hs(c 11—c ls)[(ns'+ps —$)sl
+(a24+ fS—$)S2+(as4+)S—$)Ssj—2hs(C ll+2C 12)

XLt-sjr S,+S.+S.j-2hsc" L-.-sS.+- sS.+- -. ~ej
—2hsc «fnPnsasss+asas'nsSO+nsasns So)

+2E1 ()—S)+2ES (al a2 aS —1/27), (45)

where El~ and E28 are the anisotropy magnetic constants meas-
ured at constant strain. These are related to the anisotropy
constants measured at constant stress (as used in Eq. (8)) by
the equations

El ~El —(c 11—c 12)(hl +(7/3)hlh4+(4/9)h42)
—{3/2)(c~ll+2cllS)hs2{$ s)+fcl44hs' (46)

Xsa=X22' —(c lf c 12)(3hlk4+(8/3)h42}+pc 44{6hshs+h52).


