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In order to account for experimental results which showed that the saturation elastic constants of a
single nickel crystal varied with the direction of magnetization, a phenomenological investigation has been
made of the stress, strain, and magnetic relations for single nickel crystals. The variation in elastic constants
is shown to be a “morphic” effect caused by the change in the crystal symmetry due to the magnetostriction
effect. In the energy equation this effect is represented by additional terms which involve squares and
products of both the magnetic intensities and stresses. These terms are as large as the magnetostrictive
terms when the stresses are of the order of 10 dynes/cm? The energy equation has been used to derive
the first- and second-order magnetostrictive effect, and the resulting terms agree with Becker and Déring’s
empirical constants for saturation conditions. For smaller magnetic intensities the terms divide up into
first- and second-order terms which vary differently with magnetic field intensity. It is shown that the
morphic effects involve six measurable constants, and some of these are evaluated experimentally.

I. INTRODUCTION

AREFUL measurements of the change in elastic
constants with magnetization in single nickel
crystals! have shown that the elastic constants for a
saturated crystal depend on the direction of saturation.
It is the primary purpose of this paper to show that the
change in saturation elastic constants with direction of
magnetization is due to what Mueller? has called a
“morphic” effect; namely, that the distortion of the
crystal by the magnetostrictive effect produces a crystal
of lower symmetry which involves more than the three
elastic constants of a cubic crystal. It is shown in this
paper that the additional elastic constants and their
variation with magnetic orientation can be obtained by
adding terms to the energy equation which involve
squares and products of both the magnetic intensity
and the stresses. Symmetry determines the number of
constants, and it is shown that there are six measurable
constants which characterize the effect.
The complete energy equation has been applied to a
derivation of the magnetostrictive effect, and it is

shown that first-and second-order terms are involved. At.

saturation the terms agree with those given previously
by Becker and Déring,® but for lower magnetic in-
tensities the terms divide up into first- and second-order
terms which vary differently with magnetic field
intensity. The experimental results of Masiyama* for a
single nickel crystal are fitted by the phenomenological
formula derived here, and a slightly better fit is obtained.
The evaluation of some of the first- and second-order
terms is accomplished.

1 These measurements were made primarily to determine the
“AE” effect and the microeddy current effects in single nickel
crystals and will be discussed in another paper, “The frequency
dependence of elastic constants and losses in nickel,” by Bozorth,
Mason, and McSkimin. The measurements are reproduced here
in order to evaluate the morphic effect.

2 H. Mueller, Phys. Rev. 58, 805 (1940).

3 R. Becker and W. Déring, Ferromagnetismus (Verlag. Julius
Springer, Berlin, 1934), page 275.

4Y. Masiyama, Sci. Rep. Tohoku Imp. Univ. 17, 945 (1928).

The tensor method is followed, since this results in a
considerable economy of effort and readily allows one
to change from one coordinate system to another. The
tensors are all of the cartesian type, since only rec-
tangular coordinate systems are considered. The method
followed is to add terms to the energy equation of a
form required to agree with the measured effects and
to determine the resulting constants by means of
symmetry considerations.

II. ENERGY FUNCTIONS FOR MAGNETOSTRICTIVE
CRYSTALS

It is well known that the changes in dimensions,
magnetic fields, and temperature for any body subject to
magnetostrictive and magnetic effects can be derived
from a thermodynamic function. In order to use the
measured magnetostrictive constants, it is better to
use the stress, intensity of magnetization, and entropy
as the independent variables. To do this we introduce
the elastic enthalpy H,, defined by the equation

H\=U-TSy, (1

where U is the internal energy function and T';; and S,;
are respectively the stresses and tensor strains, i.e.,
[3(0ui/ 0x;)+ du;/0x;], where u is the displacement.
The differential form of H, is known to be

dHy= — SiidT i+ Hudl w4 Odo, @)

where H,, are the magnetic fields, I, the intensities of
magnetization, © the absolute temperature, and o the
entropy. Hence, one obtains

Siy=—0H,/0Tj; Hm=0H:/0ln; ©=0H,/00. (3)

Since all of the measurements have been carried out
under adiabatic conditions, the entropy change is zero
and H, can be considered to be a function of the stresses
and magnetizations.

The usual method for deriving the energy terms is to
add first- and second-order terms and to determine the
number and types of constants by the symmetry con-
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dition. Use can be made of the fact that nickel has a
center of symmetry which results in having all the odd
rank tensors equal to zero. Furthermore, nickel can be
described as being soft magnetically but hard elasti-
cally. Hence, we can neglect all energy terms that
involve terms higher than products or squares of the
stresses. With these limitations, the elastic enthalpy
function H; can be written in the form

2H = —[s"ijuaT 5Tt Rijiinol nloTii T
+ M ismnl I nT i N iimnopl mI Lol pT'i5]
F KT Il vt KT mnoplmI nl ol
F K pnoparlmdnlol pl o . (4)

These equations hold for a crystal with a large
number of domains when the directions of the domains
are uncorrelated, for then the components of magnet-
ization are independent. For a single domain, the
magnetic intensity has a fixed value, the saturation
value Iy, and only the direction of magnetism can be
changed. If ay, as, o3 are the direction cosines of the
magnetic intensity with respect to the crystal axes,
then one has

13=(13I0; (5)

and there is a relation between the three direction
cosines, namely,

Li=aydy; Io=anlo;

a’+ o+ a?=1. (6)

The stresses T';; and the strains Si; are symmetrical
tensors, and hence we can interchange the order of the
subscripts. The same is true for the subscripts of the
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magnetic intensities, and hence it has become customary
to use a single index related to the two indices by the
equations

11=1; 22=2; 33=3; 12=21=6;

13=31=5; 23=32=4.

Similarly, for the fourth-rank tensors s;jxi, M kimny Kmnop
we can interchange 7 and j, k and /, 0 and p so that
only two indices are necessary for these terms. Further-
more, for the tensor ss,=s;;x it is proved in elastic
theory that ¢ and b can be interchanged so that there
are at most 21 independent constants. This is not true
for the magnetostrictive tensor Mq,=Mj; and in
general there are 36 independent terms. For the aniso-
tropic magnetic energy tensor Kap=Kijx all four of
the terms i, 7, k, I can be interchanged, and in general
there are only 15 independent terms. The number and
type of these independent constants for the symmetry
of nickel Oy, are well known from crystal theory. Since
the number and type of the constants of a sixth-rank
tensor do not appear to have been completely worked
out, they are considered in Appendix I.

With these components known, the expression for H;
can be written down. In this equation I is replaced by
aily, etc., indicating that it is a component of the
saturation intensity of magnetization Io. The energy
for the demagnetized case given by a’=al=a?=}%
has also been subtracted from the expression so that
the energy represents the difference between any state
and the demagnetized state. Certain combinations of
the a-values have also been made to cut the number of
independent terms to a minimum. With these simplifi-
cations, we can write —2H, as

)

—2H = sy (T2+ T+ T )+ 25T 19(T1T o+ T1 T s+ ToTs)+ 257 [ T2+ T+ T'6*]
+ (a2 =3I (Ri1— Ru12) T2+ 2(Ryss— Ruan) ToTs+4(Russ— Resn) T2]
+ (a2 — DI (Ri11— Ruro) To*+2(Rigs— Runn) T1 Ts+4(Raar— Resr) T's2 ]
+ (a2— DI (Rini— Rua) T4 2(Ruzs— Rion) T1 T3+ 4(Rass— Rest) Te¥]
+8ayasl ?{ To[ R14aTs+ Russ(T1+ T5) 14 Ruse T Ts)
+8asasl ?{ Ts[ R14sT 2+ Russ(T1+T'5) ]+ Rase T T}
+8aasl 2{ Ta[ RyssT1+ Russ(Ta+T'5) 1+ Russ TsTs}
+{(Mu—M1) [+ [2(N1a— N12a) +4(Nss1— Naar) U o*} [(@*— §) T1+ (e — §) T+ (e — ) T ]

+ { [N 11— 3N 112+ 2N 125+ 4 (N 41— 1\7551):]]04[((114—!—%.9— %)TH‘ (ot

35Tt (es*+3s—3)Ts]}

FE(Vin—N12s—4Ns51— 2N 4a) Y o* G — $)(T1+ T+ T5)
+[2M oI ?+4(N 1o+ Nssi) L o* L eeasT st arasTs+ ayaeTe |
+4[N12a+ N+ 2N 56— N1e— Neosa ! arPoeas Tat ayas’as Ts+ aranas?Ts

—KT(3—s)— K7 (1/27)— aras’as®], (8)

8 See, for example, W. G. Cady, Piezoelectricity (McGraw-Hill Book Company, Inc., New York, 1946) or W. P. Mason, Piezo-
eectric Crystals (D. Van Nostrand Company, Inc., New York, 1950) for the elastic tensors. The magnetostrictive tensor is the
same as the photoelastic tensor of Pockels. For the tensor K x: there are only two independent constants.
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where

s= aal+ atjad+ atayl,
K7y=[(— 2K+ 6K 1) I+ (— 3K 1u+15K ) [ ],
K7y=[66KT153— 45K 110+ 3K 111 ]I "

The first three terms represent the elastic energy, the
next six terms represent the energy stored by morphic
effects, ie., by the change of shape of the body, the
next five terms represent the energy stored by the first-
and second-order magnetostrictive effects, while the
last two terms represent the magnetic anisotropy terms
measured at constant stress. If we neglect the morphic
energy terms and set the five constants for the magneto-
strictive terms equal to B, to B;, the internal energy
reduces to the form given by Becker and Déring.* From
the value of the R constants found experimentally, the
morphic energy terms are about equal to the magneto-
strictive terms for stresses in the order of 10'° dynes/cm?,
but are smaller for smaller stresses. The anisotropy
energy constants K; and K, are those measured for
constant stress. As shown by Kittel,® these include the
anisotropy energy for constant lattice separation plus
the magnetostrictive energy caused by the lattice dis-
tortion. To obtain the tensor strains from this function
one differentiates with respect to the corresponding
stress, as shown by Eq. (3). For the engineering strain
values which are twice as large as the tensor strain
values for the shearing components

S,=—20H,/dT,; n=4,5,6. 9

Hence, the shear elastic constants s744, and other terms
which are multiplied by the stresses T's, T's, and T’ are
one-fourth as large as the corresponding terms which
express the relationship between engineering strains
and stresses.

III. MAGNETOSTRICTIVE EFFECTS IN
CUBIC CRYSTALS

When a nickel crystal is magnetized, it contracts
along the direction of magnetization and expands at
right angles to the direction of magnetization. The
measurements of Masiyama* are all elongations along
crystallographic axes or along directions such as the
[110] or [1117]. The elongations or contractions for any
direction 2’ can be obtained from the energy expression
(8) by differentiation with respect to the longitudinal
stress in this direction or

ng'=—6H,/6T.3’; (10)

but the strain Sy’ is related to the strains referred to
the crystallographic axes by the tensor transformation
equation

(11)

8 C. Kittel, Revs. Modern Phys. 21, 541 (1949).
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where the partial derivatives are the direction cosines
B1, Bz, and B; between the z’ axis and the x, y, and 2
axes, respectively. In terms of the one index stress and
strain terms

Sa'=— (80H:/9T1) — (820Hy/9T2)— (80 H>/8Ts)
— (2B2830H1/0Ts)— (281830H1/3T’s)
—261820H,/0Ts. (12)

Performing this differentiation, we have for the magneto-
strictive terms

Sy’ = [ a8+ a?B+ B2 — 3]

+ hol ar0B182+ ctisB1Bst azersBaBs]

+h3(3— )+ hal ar*B2+ as'B+ st +3s— 1]

+ [ ar’asasBaBst arastasBiBst arasas’iBe], (13)
where
b= [3(M 31— M) I+ N 11o— N1os+ 2Nss1— 2Naas I*],
ha=[2M yuI*+4(N 112+ Nss1) Lo*],
hs=34[N111— N12s— 4N s51— 2N 01 ] %,
hy=[3(N111—3N112)+ N 125+ 2(NVanr— Ns1) )1 o,
ks=4[N1os+ N aas+2N ss6— N112— Nsi L o*.

(14)

For nickel the volume magnetostriction is zero. If
we add the sum of S/, Sy, and S3’ and set the resultant
equal to zero for any direction of magnetization, ;=0
and there is a relation between four of the constants

Niii—N123—4Nss1— 2N 1=0

or (15)
2Ns51=3%(N111— N123)— Naar.

This reduces the formulas for the % values to the values
given below:

=M u—Mp)I?+[3(N11— Ne)

+3(N112— N12g)—3Naar J1o*],
he=[2M s+ (4N 1124+ N 11— N12a— 2N 1) I ],
ha=0,
hy=[3(N 12— N112)+3Nsar ]I %,
his=[5(N125— N112) = (N 111~ N112)+ 6N sar+ 8N sss ) .

(16)

An empirical formula for the magnetostrictive con-
stant in nickel has been given by Becker and Déring?
which takes the same form as Eq. (13) with k;=0.
Equation (13) with the constants of Eq. (14) is more
general for when it refers to the multidomain crystal
with uncorrelated domains, it gives the magnetostric-
tion as a function of magnetization when we replace
ail by I, etc. Hence, when one measures the magneto-
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striction starting from a fully demagnetized crystal,
Eq. (13) gives the magnetostriction as a function of the
magnetic intensity.

Becker and Déring have compared this formula with
the measured curves of Masiyama? for the magneto-
striction at saturation for nickel. They compare the
difference between the longitudinal and transverse
magnetostriction with their formula for the 001 plane,
the 011 plane, and the 111 plane. This difference was
chosen because it is independent of the domain structure
of the demagnetized state. By choosing the values

fi= — 24X 1075, Jiy= —94X 105, hy=—51X 1072,
hs=+104X10"%, k=0, an

the dotted curves of Figs. 1, 2, and 3 result for these
three planes.

Another comparison was made with the experimental
data, and it appears that the data are fitted better with
slightly different coefficients. For the 001 plane the
equation for \;—\,, the difference between the longi-
tudinal and transverse magnetostrictive constants
becomes

Ne— A= (hy+hs) cos?20+ %k, sin®26. (18)
The solid curve of Fig. 1 results when
hthy=—T6X1078, L1hy=—46X10"5.  (19)

For the 011 plane the equation for N\;—X\; is
>\ = )‘ = %(6h1+ 5h4) [COS2\I’ - Sinz‘y][COSZ\I, — Sinz%\llj
+ 1}, sin®¥[7 cos?¥+2 sin?2¥ ]

1 In2: 2:
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where V¥ is the angle measured from the 100 direction
The best fit with the measured points is obtained
by setting

L(6hi+-5hs) = —T0X10-8, Lhs=-+54X10~5. (21)

The solid line of Fig. 2 results. This still does not fit
the measured values completely, which indicates that
higher order energy terms are not negligible; but a
better agreement is obtained than with the values used
by Becker and Déring. If we combine the first value
of (19) with the first value of (21), we have the relation

hi=—40X10-5, hy=—36X10~°. (22)

For the 111 plane, a calculation of N\;—\, shows that
the difference is independent of orientation and has the
value

Ne—Ne=h1/342hs/9+ ho/ 3+ hs/18. (23)

No new constants are involved, but one check is
obtained for the values determined previously. These
add up to —46X10-%, which agrees well with the
measured results as shown by Fig. 3.

These measurements do not allow one to separate
out all of the constants, since we cannot resolve the
values of the constants of Eq. (13). The two involving
both second- and fourth-order constants, %; and k.,

h=3Mu—M)I?+[3(Nii—Nuo)
+%(N112"‘ N123) - 3N441]Io4,
ha=2M 4] ?+[4N 112+ (N 111— N123) — 2N ) [,

could be resolved if the magnetostriction constants were
measured in terms of the magnetic intensity, since terms
in 72 and I* occur. Unfortunately, however, Masiyama’s
measurements are presented in terms of the field
strengths. Two of these measurements for the 001 plane
are shown by Fig. 4. In order to obtain the magnetic
intensities, one would need to know the permeabilities
for the two directions as a function of field strength.
The initial slopes of these two curves, however, can be
used to determine approximately the ratio of the My,
constant to the M1— M, constant. This follows from
the fact that the initial permeability is a second-rank
tensor and hence has the same value for all directions
for a cubic crystal. From the initial slopes it appears
that the ratio is

2M44/(M11— Mlz) = 69/40
M44= 0.86(M11—M12).

Further constants could be evaluated if shear magneto-
striction measurements were available.

(24)

or (25)

IV. CHANGE OF ELECTRIC CONSTANTS WITH THE
DIRECTION OF MAGNETIZATION FOR A
SATURATED CRYSTAL

When the crystal is magnetically saturated, it is
found experimentally that for elastic waves propagated
along the [110], [111], and [100] directions the
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velocity depends on the direction of magnetic satura-
tion. This can be explained if we include “morphic”
effects; i.e., if we take account of the change of shape
of the crystal from a cubic form due to the magneto-
strictive effects in the crystal. These changes are
caused by the R terms of Eq. (8).

For a plane progressive ultrasonic wave it is much
more advantageous to express the stresses in terms of
the strains, since only one strain occurs in an uncoupled
plane progressive wave. This involves expressing the
results in terms of the internal energy function U
rather than the elastic enthalpy function H,. The
resulting terms can be determined by eliminating the
stresses fro H, and replacing them by the strains. The
details are discussed in Appendix II.
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If we differentiate ¥ with respect to .S, and neglect
the constant forces generated by the magnetostrictive
effect, the stress-strain relation can be expressed in the
matrix form

S1 S S Si Ss S
T, cln+én cTia+512 cl12+-813 N 815 816
T, cliat-o12 cli+822 clia+6s 824 25 816
Ts clia+-61s clia4528 cli+833 824 815 36
T d14 24 824 clutdu 845 4s
Ts d1s 25 815 845 278 56
Ts 16 16 836 346 56 clys+des

where c’11, ¢’12, ¢4 are the saturated elastic constants and the §’s are the modifications caused by the morphic
effects. These are given in terms of the R values in Appendix II.
All the measurements were made on a (110) section and for transmission in this direction the resulting

velocities are determined by solving the determinant?
3(cTutclast 611+ Be6+2816) — p2?;
3(cTiotclaut812+ Be6t+2016) ;
3(81ut 015t 846+3856);  3(S24tSastBus+8s6) ;

If we neglect squares of the d-quantities, the three
solutions of this equation can be written

pvit= 3 (cTutcT12)+ cTaat 1 (11t 22+ 2010)
+ do6+ 2016
pv*=3(c"u—c"12)+ 1 (Ou1t+d22— 2612) e
(shear, particle velocity along [110]),
pvs* =4yt 3 (844 855+ 2045)
(shear, particle velocity along [001]).

(long),

From the last shear velocity v;, we find that the
morphic value of the shear elastic constant is

6‘"44 = C'44+%€I442102[(da2— %) (Rux“ Rssl)

- 2a1a2R453]. (28)
This allows one to derive one relation between two of
the independent constants.

For the other shear velocity v, one has an elastic

7 Love, Theory of Elasticity, Fourth Edition (Cambridge Uni-
versity Press, London, 1928), p. 298.

%‘(6111+CI44+ 020+ 066+ 2510) — p? i

3(chietclastG10tbe6+2016) 5 3(S14+ 816+ das+ bse)
3 (8244 825+ 046+ 856) | =O0. (26)
3(2c 44+ 844+ 855+ 2845) — p1?
constant
Mg’ =3 (cT1i—cl12)+3(cTii—cT10)2
X[(a#—3)(Rui— Rua+2R1zs— 2R1z) ] (29)

The measurement allows one to determine the sum of
two other combinations.
Finally, for the longitudinal velocity v;, the elastic
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Fic. 4. Longitudinal minus transverse magnetostriction effect
plotted as a function of field strength H for 001 plane.
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constant becomes
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magnetization (10 megacycles).

8 These measurements were made by H. J
technique described in J. Acoust. Soc. Am. 24, 413 (1950).
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V. EXPERIMENTAL RESULTS

The original measurements® which indicated the
presence of a “morphic” effect were measurements of
the velocity and attenuation of ultrasonic waves in
single nickel crystals. These were made primarily to
determine the “AE” effect in single crystals and will be
discussed in detail in a companion paper.! The values
are reproduced here in order to evaluate the magnitude
of the morphic effects. All the measurements were
made on a (110) section, since it has been shown that
three independent waves, two shear and one longi-
tudinal, can be propagated in such a section. One shear
wave (called No. 1) is generated when the particle

. McSkimin by a

motion is along the [110] direction, while the other
(No. 2) is generated when the particle motion is along
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Fic. 7. Change in velocity for shear No. 2 as a function of
magnetization (10 megacycles).

the [001] direction. Figure 5 shows the increase in
velocity divided by the velocity for the demagnetized
condition as a function of current through the magnet-
izing coil for the No. 1 shear when the field is in the
direction of particle motion [110]. At saturation the
velocity is increased by a factor of 0.0224. The dotted
curve shows the velocity under decreasing conditions.
The velocity at zero field is less than that for the
demagnetized case, but returns to it when the crystal
is again demagnetized. Figure 6 shows a measurement
for the same shear with the field parallel to the [001]
direction. For this case the increase is 0.026 giving an
increase in elastic constant Ac of 2.41X 10" dynes/cm,
compared with 2.07X 10" dynes/cm? for the field in the
[110] direction. The difference between these of
3.4%10° dynes/cm is a morphic effect. Figures 7 and 8
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show similar measurements for the No. 2 shear as a
function of magnetic orientation. Here the morphic
effect is 2.5X10° dynes/cm?. Figures 9 and 10 show
similar measurements for the longitudinal wave, giving
a morphic effect of 0.9X10? dynes/cm?. All these effects
are gathered together in Table I, which shows also the
combinations of constants involved.

The measurements give three relations between the
six measurable combinations. While these are not
enough to evaluate all of the constants, they do show
the existence of a morphic effect. It is interesting to
observe that the changes measured are in the same
order of magnitude as the change in the elastic constant
occasioned by a temperature expansion which produces
a distortion comparable to the magnetostrictive distor-
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Fi1c. 8. Change in velocity for shear wave No. 2 as a function of
magnetization (10 megacycles).

tion. Since the temperature expansion coefficient of
nickel is 12 parts in 10 per degree C, an increase in
temperature of 4°C will produce an expansion as large
as the magnetostrictive effect. This increase in temper-
ature will cause a decrease of the elastic modulus of
0.14 percent® or a change of 3X10° dynes/cm? in
Young’s modulus, which is intermediate between the
values measured for the longitudinal and shear effects.
While no direct comparison can be made between
magnetostriction effects and temperature effects, since
one causes a change in volume and the other does not,
the fact that they produce effects of the same order of
magnitude is indicative of the related nature of the
effects, i.e., a separation of adjacent molecules.

# See G. W. Pierce, Proc. Am. Acad. Arts Sci. 63, No. 1 (1928).
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APPENDIX 1. NUMBER OF INDEPENDENT TERMS
OF A SIXTH-RANK TENSOR FOR A CUBIC
CRYSTAL OF CLASS O,=(4/m)3—(2/m)

When second-order effects are taken account of in magneto-
strictive effects, there are 3 sixth-rank tensors to consider, Nsjnops,
Riiktno, and Kmnopgr of Egs. (4). For the most general case there
are 729 terms in a sixth-rank tensor; but since 7 and j can be
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TasLE I. Measured velocities and elastic constants for a 110 section of a nickel crystal as a function of magnetic orientation.

Velocity

Crystal No. 1 mode demagnetized Ac Constants determined
Long. particle velocity  6.01X10° I along 001; Ac=4.06X 10" dynes/cm?  ¢*;(001) —c¥,,(110) =9X 108 dynes/cm?
along 110 cm/sec T along 170; Ac=3.97X 10" dynes/cm? =I2[[3 ("2 —c"1?) — "1 )(Rin— Ruo)
+}(01112—61122) (Ri21— Ri23) +cT4(Rss1— Ran)
Feli(chaRuu+ (cTu+c"12) Rosd) ]
Shear particle velocity — 3.66X10° I along 001; Ac=3.36X 10" dynes/cm? cM44(001) — cM44(110) =2.5X 10° dynes/cm?
along 001 cm/sec I along 110; Ac=3.11X 10" dynes/cm? =cl2[Ru1— Rssi— Russ ) 2
Shear par_t:icle velocity ~ 2.277X10° I along 001; Ac=2.41X10% dynes/cm?  ¢M(001) —c¥ 6(110) = 3.4X 10° dynes/cm?
along 110 cm/sec I along 110; Ac=2.07X 10" dynes/cm?

=3}(c'u—c'12)2[Rin— Rue+2(Rizs— Ruan) 1

interchanged in Nijnops and #, o, p, and s can be interchanged
without affecting the values of the terms, there are only 90 inde-
pendent terms for even the most unsymmetrical crystal, a triclinic
crystal. For the R tensor, 4 and j, k and J, #, and o, can be inter-
changed leaving only 216 independent terms. Furthermore, from
the definition of Rijkino, it is obvious that 4 and j can be inter-
changed with % and /. This reduces the number of independent
constants to 126 for Rijimne.

Since the number of independent constants of a sixth-rank
tensor’® does not seem to have been worked out for a cubic crystal
of class Oy, it is the purpose of this appendix to derive the con-
stants. This can be done by applying the symmetry conditions
for this crystal in conjunction with the transformation equations
for a sixth-rank tensor

Axi’ dx; dxx’ Axy’ Axa’ 9%,

R;"i'k‘l’n'o‘ SN e o e e '—"Riiklrw,

31
dx; 0x5 Oxk 0x; 0xn 0%, 1)

where 9xi//dx:i, -+, 9x,'/dx,, the partial derivatives, are the
direction cosines /; to 7. _

For a cubic crystal of class T4=43m, the symmetry conditions
are
x=—x; y=—y; z=—3,m) and x=y; y=z; z=2(3); (32)
that is, if the x axis is shifted 180° to the —x axis, the constants

Ry Rin R O 0 0
Rt Ren R O 0 0
Rsn Rzn Ran O 0 0
0 0 0 Ry O 0
0 0 0 0 Ry O
0 0 0 0 0 Rea
Rus Rz Riz 0 0 0
Rz Ras Ras O 0 0
Rasis Riazs Raz O 0 0
0 0 0 Ry O 0
0 0 0 0 Ry O
0 0 0 0 0 Rees
0 0 0 0 Ry O
0 0 0 0 Ryps O
0 0 0 0 R O
0 0 0 0 0 Russ
Rsis Ryas Rsss O 0 0
0 0 0 Res O 0

Hence, for an orthorhombic crystal there are 60 independent terms
if RobesRpae. For the tensor Rqp. of Eq. (4), since Rape= Rbac, the
number of independent terms is 39.

From the second condition of (32) we have in addition the

1 Sixth-rank tensors of the elastic type have been considered by F. Birch,
Phys. Rev. 71, 809 (1947); but these are not general enough for the Rijkine
:insor. since only the ij and k! terms can be interchanged rather than all

ree sets.

remain unchanged, etc. The symmetry O, is similar to this except
that a center of symmetry is added. This does not affect polar
properties of even order, and hence for a sixth-rank tensor class
Os is equivalent to class Tq given by Eq. (32).

The simplest conditions to apply is that a 180° orientation
around the %, ¥, and z axes results in the same elastic constants
as existed without orientation. For a rotation around the z axis
of 180°, the direction cosines are

%y /o=l =—1;
ale/ax1=12=0;
axa’/6x1=ls=0;

Applying this transformation, all terms for which 1, 2, or 3 occur
an even number of times have the same sign and hence are not
changed. However, if the terms 1 or 2 occur an odd number of
times, the sign of the term is negative, and hence such terms must
be equal to zero. If we apply the 180° transformation around x
and y also, terms 1, 2, and 3 occurring an odd number of times
disappear. This is equivalent to an orthorhombic crystal of class
222 or D,. If we replace the six index symbols by three index
symbeols, such that

11=1, 22=2, 33=3, 23=4,

the remaining terms are

axl'/6x2=m1=0;
A%y [dx2=mo=—1;
Bxa'/6x2=mz=0;

axx’/6x3=n1 =0
%2’/ 9%z =n2=0
9x3' /dxs=n3=1.

13=5, 12=6,

Ryuz Riza Rz O 0 0
Raz Rsea Ry O 0 0
Raiz Rae Ry O 0 0
0 0 0 Ry O 0
0 0 0 0 Reg2 O
0 0 0 0 0 R
0 0 0 Ru O 0
0 0 0 Ry O 0
0 0 0 R O 0
Ras Rew R O 0 0 (33)
0 0 0 0 0 Rse
0 0 0 0 Rest« O
0 0 0 0 0 Ry
0 0 0 0 0 R
0 0 0 0 0  Ries
0 0 0 0 Rie O
0 0 0 Rus O 0
Rsis Reze Ress O 0 0

symmetry that a rotation of 90° around #, y or z results in the
same elastic constants as in the unrotated crystals. These three
rotations are given by the direction cosines:

x rotation y rotation 2z rotation

1 0 O 00 -1 0 10
(0 0 1) (0 1 0 ) (-—1 0 O). 34)
0 —-10 10 0 0 01
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Applying these symmetries to the remaining constants, there are
number of relations between the constants. These are

Ry = Raz= Ry,
Ruz=Ru1s= Rann= Rags= Ran1= Raaz,
Rin=Rin=Roz=Rin= Rai=Rsn

= R13s= Rs13= Ross = R322= Ras3= Raza,
Ri2s=Riz2= Rg13= Ra12= Rm=Rm,
Ruu= Rssa= Reas,
Rygs1=Ruz= Rus= Rssa= Reo1 = Rz,
Riss= Ru14= Rass= Rsas= Raes= Ress,
Riss=Rs15= Riss=Re16= R24= Ruza

= Ryss= Re2s= Rse= Risa= Rass= Ruas,
Russ= Rsss= Rys5= Ress= Rsea= Ress.

(35)

Hence, there are nine remaining independent constants for the R
tensor. These relations are used in Egs. (8). For the N tensor,
since the last four numbers can be interchanged, there are three
relations between the 9 constants and the number reduce to six.
The relations are

Nm'—’Numz=Numz=Nm=N1«=Nm;

36
N123=N112823=Nl“- ( )
The remaining constants are then
N, Nus, Ni2s, Naas, Nes, and N ge. @37

This is the same number and type as in Birch’s sixth-rank tensor,

723
pendent constants. These relations are
Kn:=Kss1; Kin=Ku=Kus; (38)
and there are only three independent constants,
K, Kns, and Ki. (39)

APPENDIX II. DERIVATION OF TERMS IN INTERNAL
ENERGY FUNCTION

The method for transforming the expression for H; into the
potential function U, the internal energy is one of solving for the
stresses in terms of the strains and magnetic intensities and
substituting for these in H,. For the strains we have

S»= —(-)Hl/aT”
or

S1=(sTu+Au)T1+ (sT1a+ Agg) T+ (sT124 Ass) Ts+ AreT e
+ 21T s+ AreTo+ ha(an — 1) +hiLar*+ 35— 3T+ k(3 —s) (40)
So=A16T1+ A1eT 2+ AseTs+ AseT s+ AseTs+ (sTaatAne) T

+ haonasthsarasas?,
where

An=(al?—DIF(Rin—Ruz); ---; Asu=(a?—HIFRiu1—Rsn).

If we solve these for the stresses, we find that the stresses T’y
to T can be expressed in terms of the strains Sy’ to S’ given by

! = — — — _—
but the order of some of the subscripts is different. S =Si—[h(ar—D+h(a'+3s—DH+h—9] @)
Finally, for the tensor Kmnoper of Eq. (4), since all of the six e e T e
subscript; can be interchanged separately, there are three more S¢'=Se—[hararthsases?]
relations between the constants and there are only three inde- according to the relation
Sy Sy’ Sy S¢ Sy’ Sy

T I+ cligt-81a  chipton d14 815 16

T, gt Iutdne  fiatda 824 525 818

T, clatdis cietds Tutda 824 815 836 (42)

T, S14 824 S clut-du 845 d46

Ts d1s 825 15 S cTu+-8ss 56

Te 16 16 36 40 56 clyt-Bes

where any ¢';; is equal to

clij=(—1)"*iAs'/As, 43)
where As is the determinant of Eq. (40) and As% the minor
obtained by suppressing the ith row and jth column.

Since the A;; terms of Eq. (40) are all very small, it is per-
missible to neglect terms having products or powers of these
small quantities. With that restriction one finds that the &;
values are
S1u= —2asasl Fclu[c iR 1u+26"12Ro04 ],

815 = 83s= — 2ajosl T [ (c711+cT12) Raas+-c1oR1as ],

16=d2s= — 2a10al T [ ("1 +¢"12) Rauat-c12R1ad],

824=8su= — 2c20al Pl [ (' 11+ ¢T12) Rouat6"12R1ad],

b2s= —2azasl ¥ ' nRiu+26"12Rau4 ],

83s= —2azaal P e uRiu+26M2R20 ],

du=—clit(c?—3)I*(Ru1—Rsar),

dss= —clid(at— DI (Ria—Rss1),

Sss= —clid(as?—3)I*(Ru1—Rsn1),

Sis= —clidonaal *Russ,  d4s= —clidaraal *Ruse,

5s8= —clatozasl *Ruse,

5= —(cfu—che)(a?— DI (T u+cT12) (Rur— Rure)
—2c!13(Rizs—Rua) ],

daz= — (cFu—cl19) (a2 — DI AL (T u+¢"12) (Rur—Rurz)
—2¢113(Ryzs— Ria1) ],

33 = — (c'11—cT12) (e — DI P[(c'11t¢ 12) (Rin— Rura)
—2c15(Rizs—Rua) ],

(44)

812=— (c'11—c"12) (e — ) Io*[cF11(Rizs— Riar) — ¢F12(R1ii — Rurg) ],
s13= — (c'1—c"12) (e — DI *[c11(Riza— Ri21) —¢'12(Rynn— Rusa) ],
dg3=— (6111—6112)(011’—é)lo’fﬂlu(Rm—Rm) —C'u(Rul—Rm)]-
Inserting the values of T to T given by Eq. (42) in Eq. (8)
for H,, the value of the internal energy function U is given by
2U =1y [ S+ S2+S? T+ 2¢112[ 515245155+ 5253 ]
F e[S E+S2+ S+ 8115 2+ 52052+ 83355+ 2812512
426135153+ 26235253+ 281515 ¢+ 28155155+ 26165156
+ 268245254+ 28255255+ 2818525 s+ 28245354+ 26155355
428365356+ 8445 @+ 056552+ So6S 62+ 28455 4S5+ 26465456
+2685656Ss— 2k (c 1 —¢l12) [(a— $) 1+ (a2 — 1) S
+ (a?—3)S3]—2ki(cTu—cT12) [(ar*+ 35— HS1
+ (et + 35— D) Set (as'+ 35— 1) Ss1—2ks(c"11+2¢"12)
X [3=s1CS1+Sa+Ss]—2kec! [ azasSi+ 1S5+ ana2sSs ]
—2hse! [ aosasSit ararasSs+ araz0nSe ]
+2K:8(3—s5)+ 2K S(atatas?—1/27), (45)
where K3 and K8 are the anisotropy magnetic constants meas-
ured at constant strain. These are related to the anisotropy

constants measured at constant stress (as used in Eq. (8)) by
the equations

K18= KT — (¢'n—che) (24 (7/3) b+ (4/9) hid)
—(3/2)(c"uu+2c"12) k(3 — 5)+c b,

Ka8=K,T—(c"11—c"12) Bmhit (8/3)hd) +dcTau(6haks+hi?).

(46)



