
690 L. %OLFEN STEIN

tively, and calculated a lower limit for I, of 10 I"' half-
lives. From the systematics of nuclear abundance data,
he thought that Xe"9 did not have an abnormally
high abundance compared to the other Xe isotopes.

Aten, ' however, has pointed out that in all cases,
where an odd isotope occurs bet;ween two even ones,
the odd one is always less abundant than the sum of
the abundances of the other two. The only exception is
Xe'" whose abundance is 26.23 percent while Xe"' and
Xe'" have abundances of 1.90 percent and 4.07 percent,
respectively. Therefore, most of the Xe"9present in the
atmosphere today originated by decay of I"' after the
formation of the earth just as most of the A" originated
from decay of K4'.

It was suggested by Dr. M. Goldhaber of this
Laboratory that t probably could be calculated more
accurately by comparing the F27/K" abundance ratio
with the Xe"9/A" abundance ratio. In this way the
terrestrial abundance data given by Goldschmidt' can
be applied directly; and as a first approximation it can
be assumed that the atmosphere contains the same
fraction of the earth's Xe"' that it does of the earth' s
A'0. The following equation was used:

(1127e xt/K -40) (XelN/A40)

refers to an abundance of 0.24 atom per 10 atoms
' A. H. %.Aten, Jr., Phys. Rev. 73, 1206 (1948).' V. M. Goldschmidt, Geochem. Verteilungsgesetze IX, Viden-

skapsakademien, Oslo (1937).

of silicon; ) is the disintegration constant of I"' K"
refers to the number of atoms (per 10' atoms of Si)
which have decayed to A" in time T, the age of the
earth, 3.35X10 years. Its present abundance was
taken as 0.0119 percent of the total potassium abun-
dance of 44,200 atoms' per 10' Si atoms; its half-life
—1.27X10' years" with 12 percent decaying to A".
The A ' in the equation refers to its abundance in the
atmosphere by volume, 0.93 percent; and Xe"' refers
to the radiogenic Xe"' which is assumed to be ZO

percent of the total Xe abundance in the atmosphere,
8X10 ' percent Xe by volume. " This leaves 6.23
percent Xe~o which is not radiogenic. Thus, the rule of
Aten is approximately satisfied, and the rule which
states that two odd isotopes of an element have roughly
the same abundance' ' is not seriously violated either
(abundance of Xe'" is 21.2 percent).

Solving the equation for t gives 15.4 half-lives of I"'
or 2.7X10 years for the time between the formation
of the elements and the formation of the earth. Thus,
the age of the elements (T+t) is 3.6)&10' years. This
calculation of t is very insensitive to the accuracy of the
assumptions and approximations that were used. For
example, if the amount t;aken for radiogenic Xe'" is
wrong by a factor of 10 the error in I, is only 22 percent.

' A. Holmes, Nature 159, 127 (1947).' G. A. Sawyer and M. L. Wiedenbeck, Phys. Rev. 79, 480
(1950).

"G. Damkohler, Z. Elektrochem. 41, 74 (1935).
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The conservation of total angular momentum J, z-component of angular momentum m, and parity p are
considered in connection with the statistical theory of nuclear reactions. Results are obtained for the angular
distribution of a single group of outgoing particles and for the cross section as a function of the spin of the
residual nucleus. The energy and angular distributions are also considered for the case in which many groups
are observed simultaneously. The density of nuclear states as a function of spin affects results appreciably.

INTRODUCTION

HEN a particle of energy less than 50 Mev strikes
a nucleus it is usually pictured as forming a

compound nucleus. ' In this process the incident energy
is distributed among thk many particles of the nucleus
with the result that the incident particle can no longer
be distinguished from the others. The outgoing product
particles of the collision are the products of the decay
of the compound nucleus. The state of the compound
nucleus and, consequently, its decay products are often
said to be independent of the way in which the com-
pound nucleus is produced. This statement must be

' N. Bohr, Nature 137, 344 (1936}.

quali6ed, however, by the condition that any compound
nuclear state must have the same total angular momen-
tum J, s-component of total angular momentum m, and
parity P as the initial state. m The conservation of J and

p, as has been noted a number of times, ' results in
selection rules which forbid transitions between certain
compound nuclear states and particular initial or final
states. Little mention, however, has been made of the
conservation of m, which may be said to have as its

~ It is assumed here and throughout that the initial state is
resolved into a sum of products of spin and orbital functions which
in turn can be expressed as a sum of states with particular values
of J, os, and P.' For example, H. A. Bethe, Revs. Modern Phys. 9, 108 (1937).
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consequence that the compound nucleus "remembers"
the axis of incidence of the initial particles. In the
present paper these conservation principles are applied
to nuclear reactions in which the compound nucleus has
so large a density of levels that it may be treated by the
statistical, or continuum theory. '~ In particular, the
angular distribution of such reactions is discussed.

GENERAL FORMULATION

A collision is considered of particle u with spin s and
particle n with spin i in which both spins are unpolar-
ized. The general procedure is to resolve the initial state
into states characterized by the set of quantum numbers

(/jJmP), where / is the orbital angular momentum, and

j is the vector sum of i and s. The parity P is actually
not an independent quantum number but is determined

by the value of I. It is noted separately, however, since
it is conserved and I is not. If only a single compound
nuclear state is involved, a fairly simple equation can
be written for the angular distribution of the product
particles. Even for this case, however, the equation
contains a number of constants about which theory tells
us very little. These constants describe the spin-orbit
coupling of the compound state relative to the initial
particle states and to the 6nal particle states. Several
attempts have been made to determine the constants in
this equation (or in the corresponding equation for two
or three compound states) for particular reactions. '

In the statistical theory it is assumed that the transi-
tion from the initial state of particles u and 0. to the
compound state, and the decay of the compound state
to particles b and p can be treated as independent
processes. This may be interpreted as meaning that if a
large number of compound levels are considered, the
phase relations between the matrix elements of the
transition to the compound state, and those from the
compound state, are random. '4 Consequently, one may
define 0(Jmp, aa/jm;8) =cross section for capture of u

by n forming a compound nucleus with quantum num-
bers (Jmp) starting with a plane wave making an angle
tII with the z-axis, in a spin state characterized by the
quantum numbers (jm,;), and considering only contribu-

, tions from orbital angular momentum /. This may be
written'

'This theory as used here is described by V. F. %eisskopf,
Lecture Series in Nuclear Physics (U. S. Govt. Printing Office,
December, 1947), p. 80.

~ J. M. Slatt and V. F. %eisskopf, "Theory of nuclear reac-
tions, " Technical Report No. 42 (Massachusetts Institute of
Technology, 1950) (unpublished}.

6Li'(p, a}a: C. Critch5eld and E. Teller, Phys. Rev. 60, 10
(1941); D. R. Inglis„Phys. Rev. 74, 21 (1948); Li~(d, a)a: R.
Resnick and D. R. IngHs, Phys. Rev. 76, 1318 (1949); Li'{p, e):
G. Sreit and I. Bloch, Phys. Rev. 7$, 397 (1948); F' (p, a):
E. Gerjuoy, Phys. Rev. 58, 503 {1940};C. Y. Chao, Phys. Rev.
80, 1035 (1950).' A rigorous derivation may be given following the method of
reference 5. The only assumption is that there is no etcstk scatter-
ing with a change of orbital angular momentum. This assumption

The first factor in Eq. (1) is proportional to the square
of a coefficient in the expansion of the incident plane
wave function rPy(O) in terms of spherical harmonics
FP'(0), where m~=m —m;. Since angles measured
relative to the axis of incidence are given by (0~ —8),

Py(O) = constPP(O —8).

By the addition theorem for legendre polynomials, it
follows that

[A(/mg8) [
=—[const |/y(e)F~"'(0) dQ[

=constP~™(8). (1a)

Equation (1) has been written so that this first factor
equals unity (times 8m~o) for the usual choice of 8 equals
zero. This will follow from Eq. (1a) if the proportion-
ality constant is set equal to unity.

The second factor in Eq. (1) represents the usual
coeKcients for combining angular momenta. ' The third
factor,

(2/+——1)sXo'Poi, (1b)

is the product of the "target area" for particles of
angular momentum / and the penetration factor I' I for
the combined angular momentum and coulomb barriers.
The last factor plays the role of a "sticking probability, "
which will be assumed later to be independent of the
various quantum numbers.

Similarly, @1"(Jmp, bpljm;e)dQ/4s =width (averaged
over a large number of compound levels all at essentially
the same energy) for decay of a compound nucleus with
quantum numbers (JmP) to form particles b and P
moving along a line making an angle 8 with the z-axis,
within a solid angle dQ, and in a spin state characterized
by the quantum numbers (jm;), considering only orbital
angular momentum 1.

Applying the law of detailed balancing,

o (JmP, bPljm, e)
I'(Jmp, bpljm, tt) =D~&

2x'Xg'

DJy
(ljJta

~
ljes —m, m;)'(21+1)

21r

XPwg(JP, bPlj) ~A(bn —m, 8) ~' (2)
follows from the statistical, or continuum theory in which the
only appreciable elastic nuclear scattering is due to the surface of
the nucleus. Equation (10.16) of reference 5 may be seen to be a
sum over / of Eq. (1}above for the case 8=0' by replacing p«
by (1—gP ~)&5~~. Incidentally, this derivation shows that, with
the assumption mentioned, it is possible to isolate contributions
to the cross section from diferent / values.' The argument e here stands for both polar and azimuthal
angles. On the other hand y is simply a polar angle since the results
are independent of q as long as polarization of spins is not con-
sidered. The functions I'&~&(8) then are associated legendre poly-
nomials normalized to 2/(2l+1) .' Condon and Shortley, Theory of Atomic Spectra (The
Macmillan Company, New York, 1935), p. 73. The tables given
there have been extended by Dr. David FalkoG, who kindly sent
me a copy of this work.

"Values after collision are indicated by bold-face type, except
in subscripts where they can be distinguished by the fact that
they are not in italic type.
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where DJ& is the average spacing of compound nuclear
levels with quantum numbers (Jp). This differs from
the usual formulation" only in the designation of the
direction 8 and the quantum numbers m and m;. To
obtain the usual form, one may define

I'y= Q I'(JrrrP, bPlj m8)dQ/4 s,

(rg= p (r(Jrap, bpljmO)

It then follows from Eq. (2) that

I'g ——(D~"ag/2s-'Xg') (2b)

However, F ~ and rq are of doubtful significance because
they are summed over ne independently, whereas m is
actually conserved throughout the reaction. If one
omits the summation over m in Eq. (2a), thus defining
I'q(te) and ~q(ra), one finds a relation less simple than
Eq. (2b):

D~r ng(m)
I'g(m) =

2s'XP(21+ 1)(ljJra
~
ij0rN) '

The differential cross section of the reaction is

given by

j J+j ~ s+8 i &+~

&(a& bP8)=Z Z
j m~ jl J—jl Oj ti 8fm jJ il j[

a (Jmp, aa/jm0)

(2i+1)(2s+ 1)

m'
(4)

the denominator is equal to

terms between outgoing waves differing as to the quan-
tum numbers (JmPljm;). This is justified as follows:

(1) There cannot possibly be any interference from
terms corresponding to different values of m because
the incident spins are unpolarized and m= nt;. Similarly,
in summing over the outgoing spins, any interference
terms between states having different values of j or m;
would drop out.

(2) The neglect of interference terms between out-
going waves arising from compound states, with differ-
ent values of J or p, follows from the assumption that
the reaction can be divided into two independent parts,
the formation and the decay of the compound nucleus.
One way of stating this is to say that these interference
terms cancel out when averaging over many compound
states for each value of J and p because the outgoing
waves have random phases.

(3) Interference terms between different outgoing
orbital angular momenta 1 arising from the same com-
pound state do not enter o (see reference 7), and conse-
quently, by the law of detailed balancing, will not
enter I'.

The main concern here is in the distribution of out-
going particles as to energy, angle, etc. Thus the de-
nominator of the second term in Eq. (3) is of interest
only insofar as it depends on the quantum numbers
(Jmp). Substituting from Eqs. (1a) and (2) into this
denominator and making use of the identity

I'(Jmp, bpljm;8)

r(JmP, col'j'm 8')dQ'/4m.
col'j'mg'

(3)

Here the first factor represents the formation of the
compound nucleus (the incident 8 equals zero) and the
second represents the width for outgoing particles b and

P at angle 8 divided by the total width for all possible
decay'products. The sums over m and j represent an
average over the initial polarization of the spins" which

averaging also requires the division by (2i+1)(2s+1).
The sum over initial orbital angular momenta l auto-
matically gives the sum over parity. The sum over 1 is
restricted to even or odd values, depending on the
parity p and the intrinsic parities of b and p; this restric-
tion is indicated by the prime on the summation sign.
The sum over (jm;) represents an integration over the

outgoing spin space, which is required since the Gnal

polarization is not measured. If a single residual state
is assumed, j ranges from

~
i—s

~
to (i+s).

A fundamental assumption involved in the derivation
of Eq. (3) is the possibility of neglecting interference

"Reference 4, p. 87.
~ G. Sreit and 3.Y. Darling, Phys. Rev. 71, 402 {j.947).

where

(6)

It is assumed that f is independent of 1' and j', and some
kind of average over c and y is factored out of the
summation. The function F(J) (times D) represents the
dependence on J of the yield of the final product of
interest plus all competing possibilities.

The summation over outgoing particles c in Eq. (5)
may usually be limited to neutrons, because the pene-
tration factor for outgoing neutrons is much greater
than for charged particles. The sum over residual nuclei

p requires a knowledge of the density of residual nuclear
states as a function of energy, spin, and parity. Here it
is assumed that the density is independent of parity
and that the dependence on spin and energy may be
separated, giving

p(E„ i)dE,=p, (i)W(E,)dE,
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=number of residual nuclear states corresponding to an
outgoing neutron energy between E, and E,+dE, and
residual nuclear spin i. (The (2i+1) degenerate states
corresponding to diferent m; values are counted as one
state. ) The number of 6nal states with a total spin j may
be expressed by a similar equation by introducing

p.(j)=i{p.(i=j+s)+p.(i= j—k) }.
The function F(J) then becomes

(6a)

J+1'
F(J)=

) Q Q p.(j')P, i (E,)W(E,)dE, . (7)
1' j~=l J-I'l

The main contribution to Eq. (7) becomes from low

values of l' corresponding to low energies E, for which

the density W(E,) is large; as a consequence, only
values of j' close to j'=J contribute to the sum over j'.
Approximating p(j') as a linear function of j' over this
interval

only a single residual nuclear state p is considered. A
very simple case is one in which the spins (i, s, i, and s)
are zero, giving for the angular distribution

~ (2l+1)'
o(aa, bP8) Q P,iPAi{ Pi (8) { 2, (10)

F(l)

assuming that the P factors are independent of l. The
amount of anisotropy is determined by the maximum
value of l e6'ective in the sum which depends on the
ability of the incident and outgoing particles to over-
come the angular momentum barrier. It should be
emphasized that only the factor {(2l+1)'/F(l)} in
Eq. (10) is dependent on the detailed assumptions of the
present formulation; the general features of the equa-
tion, including the anisotropy, follow directly from con-
servation of orbital angular momentum. If there is only
one possible final state so that the sum over c and y in
Eq. (3) does not appear, the angular distribution is for
the case of no spins

F(J)= ' {.E p.(J)P.i (E.)(2l'+1)
J 1'=0 o(«i bP8)-Z (2l+1)'P.i~Pi'(8) {'.

l=Q
(10a)

+ Q p, (i')P, i (E.)(2J+1)jW(E,)dE, . (7a)
1' J'+1

The first term in the brackets is the more important,
except for J less than 2 or 3. B it is assumed that"

p,(J)=const(2J+1), (g)

at least for the values of J for which the second term
in Eq. (7a) is important, the two terms become identicalI form and

F(J)-p.(J).

Making use of Eqs. (1) through (3) and (5), one finds

for the outgoing distribution

The main features of the angular distribution (Eq.
(9)) are (a) symmetry about 90' and usually (b) peaks
in the forward and backwards directions. The former
follows from the fact that interference terms between
outgoing waves of diferent parity are assumed to cancel
out. The latter is expected because the initial zero value
for m& should show itself in a large intensity for the
outgoing wave with m~ equal to zero, which wave is
peaked in the forward direction. Voile this is certainly
the case when no spins are present (Eq. (10)), it is not
always true when large nuclear spins are involved.

To get a measure of the anisotropy it is convenient
to obtain, from Eq. (9), expressions proportional to the
average cross section

o(aa, bP8) =
(2l+ 1)(2s+ 1)

CO i+8 j +j

g=0 j=ls—8l m—j J=ll—jl
(ljJm

~
lcm)'(21+ 1)

oAv —=(1/4')J odQ,

and the cross section for 8=0'. Once again ignoring the
dependence of the $ factors on J

i+A @+i i ](Jp, bp)
XP.ih(JP, aa) 2 Z'

i=li—Al I Is—ll mi i($(Jp=) c'r))

~bl
X (2l+1)(ljJm{ljm —m,m;)'

~

Pi™(8) {
'. (9)

F(J)
ANGULAR DISTRIBUTION

Equation (9) gives the angular distribution of a single

outgoing group of particles b resulting from the collision

of particles c and n, assuming statistical theory can be
applied to the compound nucleus. Of course, statistical
theory is not being applied to the residual nucleus, since

"This assumption is not unreasonable (see Appendix 8).

'+I i+i P,i(2J+1)
oA.(«bp)-Z

i=o i=i'-~l ~=li—il F(J)

i+8 J+j
X Q p' PAi, (11a)

j=l&—al &=I J—il

i+~' P,i(2l+1)
o(aa, bPO)

i=0 i=li—sl m j J=li—jl F(J)
i+I J+i

X(jlJmt loom)&
j-li—ll &=l J—il

x (ljJm~ lj0m)'(21+1)PAi. (11b)
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TAM.K I. Ratio of forward yield a{0) to average cross section
e A„as a function of residual nuclear spin i and maximum e8ective
outgoing orbital angular momentum 1 . Initial spins are zero.

or diGerent from that of the initial particles. For Case A
the results are independent of parity change and can be
expressed analytically (Appendix A).

3/2

1max
Case A

{Yes or No)

1
1.33
1.80
2.28
2.78
3.27

1
1
1.12
1.33
1.56
1.80

Case B
(No)

1
1.37
2.00
2.66
3.32
3.98

1
1.18
1.37
1.62
1.90
2.20

Case B
{Yes)

1
1.50
2.10
2.74
3.38
4.04

1
1
1.20
1.47
1.78
2.09

a.A, (an, bP) —',(2i+1)(21 .—i+-', )
for I ~&i——',, (12a)

o'Av(an, bP) (I +1)' for l & i——,',
o (an, bPO) (l +1)'. (12b)

a(0) l,„+1 1

0A„2i+1 4
(13)

The distribution is isotropic for i greater than 1

while for 1 considerably greater than i, the ani-

sotropy is approximately

TAsi.K II. Ratio of forward yield 0{0) to average cross section
cry,„ for 1 „=3as a function of i and under two assumptions for
l . Initial spins are zero.

i

1/2
3/2
5/2
7/2
9/2

11/2
13/2

le,x =4
(No) (Yes)

2.28
1.15
0.98
0.70
0.96
0.80
1.60

2.28
1.33
0.82
0.88
0.70
1.13
0.86

lmax &9
(Yes or No)

2.28
1.33
1.07
1
1
1
1

"E.Kisner and R. G. Sachs, Phys. Rev. 72, 680 {1947);I..
%'olfenstein and R. G. Sachs, Phys. Rev. 73, 528 {1948);C. ¹

Yang, Phys. Rev. 74, M4 {1948).

The anisotropy will be particularly sensitive to l

and 1, the maximum values of l and 1, respectively,
effective in the sums; in fact, the lower of these sets an
absolute bound on the degree of anisotropy of any
reaction. "It will also be sensitive to the values of i and

s, since the larger these are the less directly the con-

servation of m is reAected in the outgoing orbital
functions.

Calculations have been made of this anisotropy under

the following assumptions:
(1) i and s are equal to zero.
(2) s=-', .
(3) As an approximation the penetration factors P i

and E'~l are assumed equal to unity for l~&l, and

1&1,„, respectively, and equal to zero otherwise.

(4) The incident energy is sufficiently large that
lm.x ~&1m.*+i+ s.

(3) Two forms of F(J) are considered:
Case A. F(J) is proportional to 2J+1, which corre-

sponds to Eq. (8).
Case B. F(J) is constant for all values of J greater

than zero; F(0) equals i~F(1). An analysis of Eq. (7)
indicates that this corresponds approximately to p, (j)
constant for reasonable choices of W(E,).

Results are given in Table I for various values of i
and 1,„."No" or "Yes" indicates that the product of
the intrinsic parities of the final particles is the same as,

The results are not so simple if the limiting value l,„
of the entering orbital angular momentum must be con-
sid'ered; that is, assumption (4) is not valid. It is then

possible that for some values of the residual nuclear
spin the forward yield is less than the average. A par-
ticular example is shown in Table II; the results labeled
l )9 correspond to Eqs. (12). Except for (4), the
assumptions listed above (Case A) have been used.

Commonly, a single outgoing group of particles is not
observed but rather all outgoing groups within a certain
energy range. Equation (9) should then be modified by
including a factor pb(j)W(Zb)dEb (see Eq. (6a)), ex-

tending the summation over j to all values, and inte-

grating over the energy range. It is not clear whether

any anisotropy will remain after this summation; the
results depend upon the details of the assumptions,
particularly, the form of pb(j). Three possibilities have
been considered:

Case n The de.nsity pb(j) of residual nuclear states
corresponding to the outgoing particles b of interest is

proportional to (2j+1)" for all values of j that are
possible. This is clearly inconsistent with assumption

(4) previously used. Using the others of the previous
assumptions (Case A), it is shown in Appendix A that
the angular distribution is essentially isotropic. This
result is clearly independent of s, l, , and 1, and
therefore of assumptions (2) and (3).

Case P. The density pb(j) is constant as a function of

j. Using a constant for p, (j) in Eq. (7) gives Case B for

F(J) to a good approximation. Using the previous as-

sumptions (except assumption 4), calculations have

been made for the case l =4; the resulting values of
the anisotropy as measured by o(0)/ob, are 1.14 for
1 =2, and 1.23 for 1 =3.

Case p. The density pb(j) is limited to a maximum

value jp, being given by

pb(j) = const(2j+1) j&jb,
pb(j) =0 j)jp.

Assumption (4) is now applicable provided l, ~&l,„
+jp. Using all the previous assumptions (once again
Case A), one 6nds the anisotropy given in Table III.
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It should be noted that the assumptions used for this
case are not completely consistent, since if Eq. (14) were
used for p, (j) the resulting E(J) would not be that as-
sumed (Case A). However, it should be noted that the
residual nuclei n, corresponding to the outgoing low-

energy neutrons c, may have a considerably greater
excitation energy than the residual nuclei P correspond-
ing to outgoing particles b, particularly if high-energy
particles b are being selected. Thus, it may not be un-
reasonable to assume a cut-oB in pA(j) but not in p, (j).

OTHER RESULTS

Equation (11a) may also be considered as giving the
energy distribution of the outgoing particles if the
summation over j is replaced by a sum over residual
nuclear states with a density given by Eqs. (6) and (6a).

4+ s 4+i P,4(2J+1)
«.-Z

~0 i-14—Al &-14 il F(J)—
oo J+l

X2 Z J'Au»(i)&(EA)~EA
1~0 j~)J-1(

To simplify this result one may approximate p&(j) as a
linear function of j, as was done in deriving Eq. (7a).

4+A t+g 2J+1«-Z
&-4 i-I 4—~l ~ I4 il -E-(J)

(12a). Thus, for l =4, the cross section increases by
a factor of almost 3 from i $ to i)9/2. On the other
hand, the forward yield (Eq. (12b)) is independent of i.

COMPAMSON WITH EXPERIMENT

Results of several types of experiments are a6'ected

by these considerations:
(1) The angular distribution of a single outgoing

group of particles. Such measurements might help to
identify the spin of the residual nuclear state; however,
it is experimentally dificult to find an isolated group of
product particles when the incident energy is large
enough to allow the use of statistical theory for the
compound nucleus. Of the data available, that of Wyly"
on the N'4(d, p)N" is particularly suggestive. Although

only 2- to 3-Mev deuterons were used, the compound.
nucleus had an excitation of 22 Mev, and the angular
distribution varied little with bombarding energy. Two
proton groups were observed. One showed forward and
backward peaks, approximate symmetry about 90', and
was known to correspond to i= ~; the second was essen-

tially isotropic and had a much larger yield. This sug-

gested that the second corresponded to a larger value
of i. Unfortunately, quantitative calculations are in

TAsLE III. Ratio of forward yield e(0) to average cross section
crA„, averaged over many residual nuclear states with a spin dis-
tribution given by Eq. (14).

X {pA(J) p PA4(EA)(2l+1) WA(E, )
1=0

+(2J+1) z J'M(~b) pb(1)li'b(EA) }d&4. (15)

jo

1.05
1.03
1.02

Imam

3

1.11
1.05
1.03

1.19
1.09
1.05

1.30
1.19
1.08

The first term in the brackets has the form usually given
for the energy distribution, but the second term shows
a dependence of the energy distribution on the density
as a function of spin. Indeed, the usual form for the
distribution is obtained only if (Eq. (8)) is assumed for
pA(1). It should be noted also that the (21+1) factor
enters from quite di8erent considerations than usual in
the present derivation. An alternative simplification
follows from assuming no initial spins, initial / very
large, and F(J) proportional to 2J+1;

oo I«-Z {ZpA(j)(2j+1)
1 0 j=0

+Z p4(j)(2&+1)}&44(Er)&A(&A)dEA.

The equations obtained may also be used to deter-
mine the dependence of the cross section for a single
outgoing group on the spin of the residual nucleus, other
things being equal. The cross section tends to be larger
for larger residual nuclear spins because the larger spin
provides a greater number of modes of decay for the
compound nucleus, unless these are forbidden by the
angular-momentum barrier. This is clearly seen in Kq.

complete disagreement. The observed anisotropy is
much larger than the calculated; furthermore, since the
second group has a lower energy, it would not be ex-

pected to have a larger yield than the first, even if it
corresponded to a larger value of i.

(2) The angular distribution of all outgoing particles'

in a certain energy interval. Here the results of the
theory are more ambiguous. Cohen has analyzed data
on the angular distribution of (a, 44) reactions studied
with threshold detectors by Allen and others. "He finds,
for practically all nuclei, a distribution symmetric about
90', with peaks in the forward and backward directions.
The present analysis indicates that this small anisotropy
is not at all inconsistent with the statistical theory of
nuclear reactions. The results are in qualitative agree-
ment with the assumption of a constant density of
residual states as a function of spin (Case P) or a cutofF

in the density (Case y), but are not consistent with a
density proportional to (2i+1) with no cutofF. On the
other hand, the large anisotropy, unsymmetrical about

~ L. D. lyly, Phys. Rev. 76, 104 (1949).
'fl 3.L. Cohen, Ph.D. Thesis (Carnegie Institute of Technology,

1950); Allen, Nechaj, Sun, and Jennings, Phys. Rev. 76, 188
(1949).
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90', observed in (d, I) and (d, p) reactions, " is com-
pletely inconsistent with statistical theory and definitely
requires a di8erent mechanism.

(3) The relative yield of different outgoing particle
groups. This might give some information as to the rela-
tive spins of di8erent residual nuclear states; however,
this efI'ect may be smaller than expected fluctuations.

(4) The energy distribution of outgoing particles.
The usual equations are modified significantly only for
fairly high outgoing energies.

1~x
oAy~ Z Z' (1).

I 0 J I-j

For a fixed value of 1, the sum over J gives

j+1 if j &1 (—1)1~=1,
j if j «&1 (—1)1~=—1,
1+1 if j &~ 1 (—1)1™1,
1 if j &1 (—1)j~=—1.

(16)

If these are now summed over j equal to i—$ and i+), the results
are clearly independent of 8, and Eq. (16) becomes, for 1 „~&(i+/},

o Ay Z (2i+1}+Z (21+1)=+2{2i+1)(21,„—i+ -,').
I 1+$

If 1, &(i—$),

I=o

oAy Z (21+1)=(l, +1)'.
0

Similarly, from Eq. (11b), one 6nds for a single value of j

o {0}= Z Z' (ljJoj lj00)'(21+1)
I 0 J ll—jl

= (lmax+1)'4 for (—1)~+j= 1
=0 for (—1)~+'= —1.

Here use has been made of the normalization condition

I+i
Z {ljJO[ ljoo}2=1

J=ll-jl

"See reference 13, also Falk, Creutz, and Seitz, Phys. Rev. 76,
322 (1949);C. E, Falk, Ph.D. Thesis (Carnegie Institute of Tech-
nology, 1950);P. Ammiraju, Phys. Rev. 76, 1421 (1949);H. Gove,
Phys. Rev. 7S, 345 (1950).

APPENDIX A

Derivation of Eqs. (12a) and (12b)

Starting with Eq. (11a) and setting the initial spins equal to
zero, so that J=/, one 6nds for a single value of j

2J+1 J+j
o'Av~ ~ ~oJ

F(J) I-lJ—;l

The prime on the summation indicates that

(-1)'(-1)'(-1)'=1,
where 8 is zero, if the 6nal intrinsic parity (that is, the product of
the intrinsic parities of the final particles) is the same as the
initial, and one otherwise. Making assumptions (3), (4), and (5)
(Case A), and changing the order of summation,

plus the fact that this combination coefBcient vanishes if (1+j+J)
is odd. For the case of s=) and given i, there is always one even
and one odd possibility for j so that summing over j gives Eq. {12b)
independent of i or of b.

It is worth noting in passing the important effect of parity
change for the case s=O; that is, the inelastic scattering of fast
alpha-particles from a target of spin zero. In this case the forward
scattering is zero if 8+i is odd, whereas there will be a pronounced.
forward peak if 5+i is even.

Burn Over Residual Nuclear States (Case e)
Now it is desired to introduce a limit l on the J summation

and to sum over j, using a weighting factor p(j)~(2j+1). This
gives, from Eq. (16), changing the order of summation,

1max 1max J+I 1~x1~x
oAy Z Z Z (2j+1)= Z Z {2J+1)(21+1).

Similarly,

J 0 I 0 j=lJ ll J-o l=o

APPENDIX B

Level Density as a Function of Spin

A very rough discussion will be given here as to the forms to be
expected for the function p(i), which represents the density of
residual nuclear levels as a function of spin i. Suppose a single
nucleon carries all the excitation; then it is to be expected that
all values of angular momentum up to a fairly large value are
approximately equally probable since the energy separating differ-
ent angular momentum levels is small compared to the excitation
energy. The result is quite diGerent if the excitation energy is
shared equally by two nucleons. For each nucleon it might be
assumed that all values of angular momentum are equally prob-
able, but if the interaction energy between the two nucleons is
assumed to be small, the probability of a resultant angular mo-
mentum i is proportional to (2i+1). The reason for this is simply
that the larger the total angular momentum, the more combina-
tions of two angular momenta one can Gnd having this as a possible
resultant. This result can be generalized somewhat. If (a) the
different values of angular momentum for the individual nucleons
have a probability which may be approximated as a linear func-
tion of angular momentum over every interval of length 2I, and
if (b) the probability of an individual nucleon angular momentum
greater than I is much larger than that for less than I, then it
follows that the probability of a resultant angular momentum i
is proportional to (2i+1) for i less than or equal to I. The results
hold for more than two nucleons sharing the excitation; however,
if many nucleons share the excitation, it is unlikely that the
hypotheses are applicable.

For outgoing particles of spin $ it is convenient to use p(j}
de6ned by Eq. (6a) rather than p(i). It is immediately evident
that if p(i) is a linear function of i, such as (2i+1), then p(j} is
exactly the same function of j.

lmax lmax J+I
o(0)~ Z Z Z {2j+1)(ljJO ( ljoo)2(21+1)

J 0 1=0 j=l J—ll

1~1~x
(2J+1)(21+1)= o'Ay,

J-0 l=o

where the relationship
J+I

(2j+1)(ljJO
~
ljoo) 2 = 2J+1

j=l J-ll
has been used.


