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This paper is based on the elementary remark that the ex-
traction of gauge invariant results from a formally gauge invariant
theory is ensured if one employs methods of solution that involve
only gauge covariant quantities. We illustrate this statement in
connection with the problem of vacuum polarization by a pre-
scribed electromagnetic 6eld. The vacuum current of a charged
Dirac field, which can be expressed in terms of the Green's function
of that field, implies an addition to the action integral of the elec-
tromagnetic field. Now these quantities can be related to the
dynamical properties of a "particle" with space-time coordinates
that depend upon a proper-time parameter. The proper-time
equations of motion involve only electromagnetic 6eld strengths,
and provide a suitable gauge invariant basis for treating problems.
Rigorous solutions of the equations of motion can be obtained for
a constant Geld, and for a plane wave 6eld. A renormalization of
6eld strength and charge, applied to the modi6ed lagrange func-
tion for constant fields, yields a finite, gauge invariant result which
implies nonlinear properties for the electromagnetic 6eld in the
vacuum. The contribution of a zero spin charged 6eld is also
stated. After the same 6eld strength renormalization, the modified

physical quantities describing a plane wave in the vacuum reduce
to just those of the maxwell field; there are no nonlinear phenomena
for a single plane wave, of arbitrary strength and spectral com-
position. The results obtained for constant (that is, slowly varying
fields), are then applied to treat the two-photon disintegration of

a spin zero neutral meson arising from the polarization of the
proton vacuum. We obtain approximate, gauge invariant ex-
pressions for the effective interaction between the meson and the
electromagnetic field, in which the nuclear coupling may be scalar,
pseudoscalar, or pseudovector in nature. The direct veri6cation
of equivalence between the pseudoscalar and pseudovector inter-
actions only requires a proper statement of the limiting processes
involved. For arbitrarily varying 6elds, perturbation methods can
be applied to the equations of motion, as discussed in Appendix
A, or one can employ an expansion in powers of the potential
vector. The latter automatically yields gauge invariant results,
provided only that the proper-time integration is reserved to the
last. This indicates that the sjgnificant aspect of the proper-time
method is its isolation of divergences in integrals with respect
to the proper-time parameter, which is independent of the coor-
dinate system and of the gauge. The connection between the
proper-time method and the technique of "invariant regulariza-
tion" is discussed. Incidentally, the probability of actual pair
creation is obtained from the imaginary part of the electromagnetic
6eld action integral. Finally, as an application of the Green's
function for a constant Geld, we construct the mass operator of an
electron in a weak, homogeneous external field, and derive the
additional spin magnetic moment of a/2m magnetons by means of
a perturbation calculation in which proper-mass plays the cus-
tomary role of energy.

I. INTRODUCTION

1

�~QUANTUM

electrodynamics is characterized by
several formal invariance properties, notably rel-

ativistic and gauge invariance. Yet specific calculations

by conventional methods may yield results that violate
these requirements, in consequence of the divergences
inherent in present field theories. Such difhculties con-
cerning relativistic invariance have been avoided by
employing formulations of the theory that are explicitly
invariant under coordinate transformations, and by
maintaining this generality through the course of cal-
culations. The preservation of gauge invariance has
apparently been considered to be a more formidable
task. It should be evident, however, that the two
problems are quite analogous, and that gauge invariance
difBculties naturally disappear when methods of solu-
tion are adopted that involve only gauge invariant
quantities.

We shall illustrate this assertion by applying such a
gauge invariant method to treat several aspects of the
problem of vacuum polarization by a prescribed elec-
tromagnetic field. The calculation of the current asso-
ciated with the vacuum of a charged particle held
involves the construction of the Green's function for
the particle 6eld in the prescribed electromagnetic
field. This vacuum current can be exhibited as the
variation of an action integral with respect to the
potential vector, which action efkctively adds to that
of the maxwell fieM in describing the behavior of elec-

6

tromagnetic 6elds in the vacuum. We shall relate these
problems to the solution of particle equations of motion
with a proper-time parameter. The equations of motion,
which involve only electromagnetic 6eld strengths,
provide the desired gauge invariant basis for our dis-
cussion.

Explicit solutions can be obtained in the two situa-
tions of constant 6elds, and 6elds propagated with the
speed of light in the form of a plane wave. ' For constant
(that is, slowly varying) fields, a renormalization of
6eld strength and charge yields a modi6ed lagrange
function diQ'ering from that of the maxwell 6eld by
terms that imply a nonlinear behavior for the electro-
magnetic field. The result agrees precisely with one
obtained some time ago by other methods and a some-
what diGerent viewpoint. The modi6ed physical quan-
tities characterizing the plane wave in the vacuum
revert to those of the maxwell field after the same field

strength renormalization. For weak arbitrarily varying
fields, perturbation methods can be applied to the
equations of motion. This will be discussed in Ap-
pendix A.

The consequences thus obtained are useful in con-
nection with a class of problems in which gauge invari-

' That the Dirac equation can be solved exactly, in the field of
a plane wave, was recognized by D. M. Volkow, Z. Physik 94, 25
(1935).

'W. Heisenberg and H. Euler, Z. Physik 9S, 714 (1936).
V. Weisskopf, Kgl. Danske Videnskab. Selskabs. Mat. -fys. Medd.
14, No. 6 (1936).
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ance difhculties have been encountered' —the multiple
photon disintegration of a neutral meson. Without
further extensive calculation, we shall obtain approxi-
mate gauge invariant expressions for the interaction of
a zero-spin, neutral meson with two photons, where the
intermediate nuclear interaction may be scalar, or the
equivalent pseudoscalar and pseudovector couplings.

The utility of the proper-time technique to be ex-
ploited in this paper, apart from its value in obtaining
rigorous solutions in a few special cases, lies in its
isolation of the divergent aspects of a calculation in
integrals with respect to the proper-time, a parameter
that makes no reference to the coordinate system or the
gauge. indeed, we shall show that the customary per-
turbation procedure of expansion in powers of the
potential vector does yield gauge invariant results,
provided only that the proper-time integration is
reserved to the last. The technique of "invariant
regularization"4 represents a partial realization of this
proper-time method through the use of specially
weighted integrals over the conjugate quantity, the
square of the proper mass.

Finally, in Appendix 3 we shall employ the Green's
function of an electron in a weak, homogeneous, ex-
ternal field to calculate the second-order electromag-
netic mass, thereby providing a simple derivation of
the second-order correction to the electron magnetic
moment.

where

and

y„( i8„eA„—(x))P—(x)+mP(x) =0,
(i8„eA„(x))$(x)y—„+esp(x) =0,

II/(x, xa), P(x', xo) }= gob(x —x'),

j.(*)=K%(*) vA(*)3,

+0 ~P4y YO I ~

(2.1)

(2 2)

(2.3)

(2 4)

(2.5)

The structure of the current operator,

j.(x)= -e(V.)e 5[4 (*) A(x)j (2.6)

which arises from an explicit charge symmetrization,
can be related to a time symmetrization by introducing
chronologically ordered operators. Thus, with the
notation

H. GENERAL THEORY

The field equations, commutation relations, and cur-
rent vector of the Dirac field are given by'

and

«(x-x') =
j. , xp& xp'

1) $0 +SO p

(2.8)

we have

4-(x)A(x'), xo»o'
(4-(x)A(x'))+e(x *—') = (2.9)—$p(x')f. (x), xo(x, '.
Therefore

(j„(x))=ietr&„G(x, x')$,
where

G(x, x') =i((g (x)$(x'))+)e(x x')—,

(2.11)

(2.12)

and tr indicates the diagonal sum with respect to the
spinor indices.

The function G(x, x') satisfies an inhomogeneous
difkrential equation which is obtained by noting that

[y( iB —eA(x—))+m jG(x x')
= (ro(4 (x), 4 (x') I)&(xo—xo'), (2.13)

where the right side expresses the discontinuous change
in form of G(x, x') as xo is altered from xo' —0 to xo'+0.
According to Eq. (2.2), therefore, we have

[y( i8 e—A(x—))+m jG(x, x') = b(x—x'); (2.14)

that is, G(x, x') is a Green's function for the Dirac
field. We shall not discuss which particular Green's
function this is, as specified by the associated boundary
conditions, since no ambiguity enters if actual pair
creation in the vacuuIn does not occur, which we shall
expressly assume.

It is useful to regard G(x, x') as the matrix element
of an operator G, in which states are labeled by space-
time coordinates as well as by the suppressed spinor
indices:

G(x, x') = (xiGi x'). (2.15)

The defining diBerential equations for the Green's
function is then considered to be a matrix element of
the operator equation

where

(yli+m)G= 1, (2.16)

(2.17)

y[f (x), gp(x)1= (p (x)pp(x'))+c(x —x')j ~ „(2.10)

provided one takes the average of the forms obtained
by letting x' approach x from the future, and from the
past. The quantity of actual interest here is the expec-
tation value of j„(x) in the vacuum of the Dirac field,

t
A(xo)&(xo'), xo&xa'

(A(xo)&(xo'))+=
lB(xp')A(xo), xo(xo',

(2.7)
is characterized by the operator properties

[*„,D„]=i&„„, [II„,11„]=i+„„, (2.18)

3H. Fukuda and Y. Miyamoto, Prog. Theor. Phys. 4, 347
(&949}.

4 W. Pauli and F. Villars, Revs. Modern Phys. 21, 434 (1949).
~ We employ units in which k=a=1. Note that also p=tt ty0,

since y0y„, p, =o, 1, 2, 3 form hermitian matrices.

P„„=B„A„—8„A„ (2.19)

is the antisymmetrical field strength tensor.
With this symbolism, it is easy to show that the
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vacuum current vector,

(j„(x)) ie try„(xIGI x),

is obtained from an action integral by
A„(x). This is accomplished by exhibiting

In virtue of the vanishing trace of an odd number of
y-factors, we have

ie TrybAG'
variation of

= —Tr&I(yll)yii ds exp[ —i(m' —(yil)')sj
bII'&»= (dh)bA„(x)(j„(x))=ie TrphAG (2.21)

J

as a total differential, subject to bA„(x) vanishing at
in6nity. In the second version of bW", BA„denotes the
operator with the matrix elements

(xI&IA„Ix')=b(x—x')bA„(x), (2.22)

= 8 gi dss —' exp[ —i(m' —(yli)')sj,
0

(2.31)

which again involves the fundamental trace property
(2.26). Thus,

—eyhA = 8(yII+m), (2.23)

1
=i ds exp I i(y—ll+m)s}, (2.24)

yli+m ~ e

and Tr indicates the complete diagonal symmation,
including spinor indices and the continuous space-time
coordinates. Now

g&'&(h)=)i)I dss ' exp( —imms) tr(xI U(s) Ix),
0

U(s) = exp( —its),
where

SC= —(yll)'= lI„'—-', eo„„F„„,

e"=2ib. V.j.

(2.32)

(2.33)

(2.34)

in virtue of the fundamental property of the trace,

TrAB= TrBA.

Thus, to within an additive constant,

(2.26)

W&'&=i~ dss 'e '~ Tr—
exp

—
f iyIIs}—

0

(dx) Z &'&(x)

(2.27)

where the lagrange function 2&"(x) is given by

g&»(h) =i " d-ss' e'~ tr(xI exp I
—iyils} I x). (228)

An alternative representation, and the one we shall
actually employ for calculations, is obtained by writing

G= (—~11+m)[ms —(~11)2$-&
= [m' —(yil)'j '(—yii+m) (2.29)

so that

ie TrybA6'

Ot&

=8 i~~ dss ' Tr expI —i(yil+m)s}, (2.25)
0

We now see that the construction of G(x, x') and
2 "(x) devolves upon the evaluation of

(*'I U(s) I*")= (*(s)'Ix(0)"). (2.3S)

The latter notation emphasizes that U(s) may be
regarded as the operator describing the development of
a system governed by the "hamiltonian, " K, in the
"time" s, the matrix element of U(s) being the trans-
formation function from a state in which x„(s=0) has
the value x„"to a state in which x„(s) has the value x„'.
Thus, we are led to an associated dynamical problem
in which the space-time coordinates of a "particle"
depend upon a proper time parameter, in a manner
determined by the equations of motion

dh„/ds= —i[x„,Kj=211„,
dll„/ds= —i[11„,X$=e(F„,II.+II„F„.)

+ 2ter&,.(BF&,./B—x„)= 2eF„,II.
ie(BF„./Bx, )—+gee&,.(BF&,„/Bx„). (2.36)

The transformation function is characterized by the
differential equations, '

i~ (*(s)'I*(0)")= (*(s)'IS0
I
*(0)"), (2.37)

( it&„' eA—„(x')—(x(s') I x(0)")
= (x(s)'

I II„(s)I
x(0)"), (2.38)

(i8„" eA„(x")—)(x(s) '
I x(0)")

=(*(s)'III„(0)l*(0)"), (2.39)
or

G= ( yil+m)i— ds exp[ —i(m' —(yII)')sj
0

and the boundary condition

(x(s)'I x(0)")j, e= b(x' —x"). (2.40)

=i~I ds exp[ —i(ms —(yll)')sj( —yli+m).

6 A proper time wave equation, in conjunction with the second-
order Dirac operator, has been discussed by V. Pock, Physik. Z.

(2 30) Sowjetunion 12, 404 (1937). See also Y. Nsmbu, Prog. Theor.
Phys. 5, 82 (1950),
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%e shall now illustrate, for the elementary situation
P„,=O, the procedure which will be employed in the
following sections for constructing the transformation
function.

The equations of motion read

and the Green's function is obtained as

G(x', x")=i) ds exp( i—m's)

X(x(s)'( (—yli+m)
~
x(0)")

whence

and

Therefore

dII„/ds= Q, dx„/ds= 2II„,

II„(s)= II„(0),

(h„(s)—x„(0))/s= 2II„(0).

(2.41)

(2.42)

(2.43)

~ 00

=(4h) '4(x', x") dss 'exp( —im's)
40

(h'-h") ~ . (*'- ")'
X~ —y +m

~
exp i-,'

2s ) s
(2.54)

C(x', x")=CO (x', x"),
~l

c(x', x")=exp ie chQ„(h) .
(2.50)

K= II'= —,'s—'(x(s) —x(0))'= —,'s—'[x'(s)
—2x(s)x(0)+x'(0)]+-,'s '[x(s), x(0)]

=-'s '[x'(s) —2x(s)x(0)+x'(0)]—2is ' (2.44)

since

[x„(s),x„(0)]= [x„(0)+2sII„(0), x„(0)]= 2is—8„„, (2.45)

Having ordered the coordinate operators so that x(s)
everywhere stands to the left of x(0), we can immedi-

ately evaluate the matrix element of K in Kq. (2.37),
thus obtaining

i8.(x(s)'i x(0)")
= [-,'s '(x' —x")'—2is—"](h(s)'~ x(0)"), (2.46)

the solution of which is

(x(s)'~x(0)")=C(x', x")s—'exp[i~(x' —x")'/s]. (2.47)

To determine the function C(x', x"), we note that

(x(s) '
i II„(s) i x(0)")= (x(s) '

i II„(0)i x(0)")
= ((x„'—x„")/2s)(x(s)'I x(0)"), (2.48)

which, in conjunction with Eqs. (2.38) and (2.39),
implies that

( i8„' eA—„(x'))—C(x', x")
= (iB„" eA„( —)x)C(x', x")=0, (2.49)

Ol

An equivalent, and more familiar procedure, is to
employ the representation labeled by the eigenvalues
of Gp. Now

=b(II' —II") exp( —ilI"s), (2.55)

while (x(s)'~ II(s)') is determined by

(—i8„'—eA„(x')) (x(s)'~ II(s)')
= II„'(x(s)'i II(s)'), (2.56)

and the normalization condition

(11(s)'
~
x(s)')(dx') (x(s)'

~
II(s)")= 5(II' —II"), (2.57)

to be

(h(s)'I 11(s)')
~P

= (2h) ' exp ie ~ dxA exp(ix'II') (2.5.8)
J 0

Therefore,

(h(s)'Ih(0)")

t (x(s)' j II(s) ') (dII') (II(s)'
~
11(0)")

4
X (dil")(II(0)"ix(0)")

EI= (2h)-'4 (x', x") (dII')

Xexp[i(x' —x")II'—iII"s], (2.59)

X ds (dII') exp[i(x' —x")II']
40

The line integral in Kq. (2.50) is independent of the
integration path, since F„.=Q Finally, the c. onstant C g(h& x«) i(2h) —4@(h& x«)
is fixed by the boundary condition (2.40). It is evident
that Kq. (2.47) does have the character of a delta-
function as s approaches zero, provided

Cs-' "(Ck) exp(i-,'x'/s) =1; (2.51) X (—yil'+m) exp[ —i(II"+m')s] (2.60)

that is,

Therefore,
C= —i(4h) '. (2.52)

(x(s)'~ x(0)")= i(4h) 'C —(x', x")s——'
Xexp[i-,'(x' x")'/s], —(2.53)

which reduce to Eqs. (2.53) and (2.54) on performance
of the G' integration.

IIL CONSTANT FIELDS

The equations of motion (2.36) here simplify to

Ch„/ds= 2II„, dII„/ds= 2eF„„II„, (3.1)
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or, in matrix notation,

dx/ds= 2II, dli/ds= 2aFII.

The solution of Eq. (3.15) has the form

(3.2) C(*', *")
The symbolic solution of these equations is ~f

=C(x") exp ie ~ dx(A(x)+$F(x x"—)), (3.17)
II(s) =e"~*II(0)

x(s) —x(0) = [(e"s'—1)/eF jII(0), (3 3)

whence

and

in which the integral is independent of the integration
path, since A„(x)+ ', F„„(x-x")„—has a vanishing curl.

II(0)= eF(e"~'—1) '(x(s) —x(0)) However, by restricting the integration path to be a
straight line connecting x' and x", we may, in virtue of
Eq. (3.6), simply write

II(s) =-', eFe'~' sinh '(eFs)(x(s) —x(0))
= (x(s) x(0))2'—eFe 's' sinh '(eFs). (3.5)

The latter form involves the fact that

F, (F—„„= F.„). —

We now consider

K+ 2saF = II-'(s) = (x(s)—x(0))K(x(s)—x(0)),
K= 'e'F' sin-h '(eFs).

(3.6)

In rearranging the order of these operators, the fol-

lowing commutator is required:

[x(s), x(0)]=[x(0)+(eF) '(e"~*—1)II(0), x(0)]
i(sF) 1(s2ets 1)- (3 8)

tr(F) =0, (3.10)

which follows from Eq. (3.6). The resulting differential
equation (2.37)

i8,(x(s)'
~
x(0)")=[—,e F+ (x' —x")K(x' —x")

pi treF—coth(eFs))(x(s)'~ x(0)"), (3.11)

has the solution

BC+ 'eaF= x(s)Kx(s)-2x(s)Kx(0)+x—(0)Kx(0)
—qi treF coth(eFs), (3.9)

where tr again denotes a diagonal summation, and we
have employed the fact that

C(x', x")=CC(x', x"),
~1

C(x', x")=exp ie I dxA(x),
gl I

(3.18)

and, with C a constant, attain the solution of (3.15)
and (3.16). The constant C has the value

C=-i(4x) ' (3.19)

since the limiting form of (x(s)'~x(0)") as s—4 is
independent of the external field.

Finally, then

G(x', x")=i ds exp( —An's)
eJ p

X[—y„(x(s)'
i II„(s) i

x(0)")

+m(x(s)'i x(0)")]

. f=i ds exp( im's)—
p

(x(s)'I x(0)")= -i(4~)-'4(*', x").-«&s-2
Xexp[i ,'(x' x"-)eF—coth(eFs)(x' —x")j

exp[i-,'eaFs], (3.20)

and the Green's function G(x', x") is obtained from
(2.30) in the two equivalent forms,

X[-(*( )'I 11.(0)l *(0)")~.

+vs(x(s)'i x(0)")j, (3.21)

(x(s)'~ x(0)")=C(x', x")e «'~s —'
Xexp[b(x' x")eF coth—(eFs) (x' x")]-

exp(igeaFs),

1.(s) = ~~ tr in[(eFs) ' sinh(eFs) j.
To determine C(x', x"), we employ

(x(s)'
~
II(s)

~
x(0)")= ~~[eF coth(eFs)+eF]

X (x' —x")(x(s)'
~
x(0)"),

(3.12)

which will be given explicitly on substituting Kqs.
(3.13), (3.14), and (3.20).

The lagrange function 2&"(x) is now computed as

2&"(x)=-',i ~ ass —'exp( —im's)3.13

Xtr(x(s)'~ x(0)")j...
= (1/32m') dss ' exp( —im's)

~p
Xe t'~ tr exp(igeaFs). (3.22)

We may exhibit this more explicitly as a real quantity
by a deformation of the integration path, which is[i8„" eA„(x") IteF„„—(x' x"),Q—(x', x")=—0. (3.16)

(x(s)'~ II(0)
~
x(0)")=$(eF coth(sFs) —eF1

X (x'—x")(x(s)'~ x(0)"), (3.14)

in conjunction with Eq. (3.12), to obtain the differential
equations

[ i8„' eA„(x') —geF„„—(x' x")„—jC(x', x")—=0, (3.15)
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electively the substitution s~—zs:

2&'&(x) = —(1/32)r') dss ' exp( —m's)

From the eigenvalue equation

Fv.b.=FV.,

and its equivalent according to Eq. (3.35),

(3.37)

Xe '&' tr exp(~ie(rps),
(3.23)

l(s) = —,
' tr lnL(eps) ' sin(eFs) j.

Indeed, we could have initially employed the integral
representation

F"*»».= (1/—P') 84u (3.38)

we obtain by iteration:

P iP).4.= (F')'O' F.) 'Fi.*4"= (1/(F')')BV' (3 39)

The identity (3.36) then yields the eigenvalue equation

L
'—( 11)'j '=) d pL —( '—(vti)') ), (324)

0

which exists in consequence of the restriction on real
pair creation. This, however, would have obscured the
proper time interpretation.

To evaluate the Dirac matrix trace, we employ the
following spin matrix property:

(F')4+2%(F')' —8'= 0,

which has the solutions ~F(", ~P'", with

P'"=( s/~)D++f8)'+(& (:8—)'j,
F'"= ('/~)L(5:+'8)»-(~-'8)'j

Expressed in terms of these eigenvalues,

e '&'= (es)'F'"F"'/sin(eF&"s) sin(eF&"s)

(3.40)

(3.41)

2 (es) 2P (i)P (2)
(3.25)2 {&rvvv (rkvI ~vX&)vv f)vvf)vt+ZevvivV5i (3.42)

coses(F &" F&")—coses—(F&"+F&")where

e "'= (es)'8/Im coshesX, (3.43)

where Im designates the imaginary part of the following
expression.

The final result for 2&" is
we have

(2e"F")'=2F"'+ 2 v~p"F"*

thus introducing the fundamental scalar

(3.28) 12("=— dss ' exp( —m's)
8 2$,

vs= iviv~vsv4, vs'= —1, (3 26)
or

and e„„),„ is 1, or —1, if (»ivy)&) forms an even, or odd
permutation of (1234), and is zero otherwise. In terms
of the dual field strength tensor,

and pseudoscalar

F=~4F„„'=p(H' —E'), (3.29) Re coshesX
(es)'8 —1, (3.44)

Im coshesX

B=xi4F„.P„„"=EH

constructed from the field strengths. Since

(l P)'=2(~+v 8),

(330)
in which we have supplied the additive constant neces-
sary to make 2(" vanish in the absence of a field. The

(3 31)
first term in the expansion of v(v' " for weak fields is

Therefore,

(-', F)'= ~(2(~~'8))' (3.32)

and y~'= —1, it follows that 2oF has the four eigen-
values

(O

dss ' exp( —m's)P. (3.45)
12m' &p

On separating this explicitly, and adding the lagrange
function of the maxwell 6eld,

tr exp(i~cops) =4 Re coshes(2(F+iB))»
=—4 Re coshesX, (3.33)

where Re denotes the real part of the subsequent ex-

pression. Note, incidentally, that

z&» = —s= -,'(E2—H2),

we obtain the total lagrange function

fs) 00

(3.46)

X'= (H+sE)'. (3.34) 1+ dss 'exp( —m, 's) F
12jf p

The eigenvalues of the matrix F= (F„„)are required
for the construction of exp( —l(s)). They can be ob-
tained with the aid of the easily verifiable relations,

dss —' exp( —m's)

F.xp). ——4,8,

~fsX FP ~ Ffsl Xv

(3.35)

(3.36)

Re coshesX
X (es)' ——1——',(es)'F (3 47)

Im coshesX
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The logarithmically divergent factor that multiplies the
maxwell lagrange function may be absorbed by a change
of scale for aB fields, and a corresponding scale change,
or renormalization, of charge. If we identify the quan-
tities thus far employed by a zero subscript, and intro-
duce new units of field strength and charge according to

and a renormalization of the form (3.48), with

C= Cp+C&

1
dss 'exp( —nos)

482r2 ~o

P+og = (1+Ceo') (Po+ogo),

e'= eo2/(1+Ceoo),
(3.48)

yields

oo

+ ~ dss ' exp( —m's), (3.53)

1
ds s ' exp( —m's),

we obtain the finite, gauge invariant result

1
dss-' exp( —m's)

8m' ~p

Re coshesX
X (es)2g —1—-', (es) 2r

Im coshesX

2c22 ()2/mc)'
2 (E2 H2)+

45 mc'

X L(E2—H')'+7(E H)')+ .. (3.49)

In the latter expansion, the conventional rationalized
units have been reinstated, and a= e2/42rhc.

Incidentally, the addition to the lagrange function
produced by a spin zero charged field is obtained from
Eq. (3.23) by omitting the Dirac trace, and multiplying
by (—2). Thus,

1
Z= —p — " dss-'exp( —m's)

8n2 &,

X L(es) 2g(Re/Im) —1—-', (es) 28)

CO

+ —
~

dss ' exp( —s22s)
16m' ~p

X[(es)2g(1/Im) —1+2 (es) 2F)

2a2 (f2/mc)'= -,'(E'—H')+ L(E2—H')'+7(E H)')
45 mc'

c22 (h/s2c) ' 7
+— —(E'—H')'+(E H)' + . . (3.54)

90 pc' 4

The physical quantities characterizing the field are
comprised in the energy momentum tensor

Tu„= b„„Z (8Z/BF„2) F—„2,
= —(Fu2F„), bu„42F)„2)(8—2/B-V)

+S„„(Z r(aZ/—ar) gas/—ag) (3.55.)

1
dss ' exp( —nos)

16m'

The maxwell tensor

(~)—p F ~ g &p~2 (3.56)

(es)'g
x

gm coshesX

is obtained from Z = —F, the weak field approximation

(3 50) of Eq. (3.49). The next terms in the expansion of 60

yield

2 (ls/mc)'
(4Ãy7g2)+ ~ . (3.57)

45 mc'e2 00

Zo(" = —
II dss —' exp( —nos) 5

48m' "p IV. PLANE WAVE FIELDS

in which n designates the mass of the spinless particle, ( 16 (i2/mc)'

and an additive constant has been supplied as in Eq.
" " ( 45 mc2 j

(3.44). The first term in the expansion for weak 6elds is
separated explicitly by writing

t

+ I dss ' exp( —S22s)
162r2 ~o F„„=f„„F($), p= n„o:„, (4 1)

A plane wave, traveling with the speed of light, is
characterized by the field strength tensor

n„'= 0,

(es) 2g
1+2

( )2p (3 5 1)
where n„ is a null vector,

Im coshesX (4.2)

If we take into account the existence of both spin 0 and F(P) is an arbitrary function. The constant tensor
and spin ~~ charged Ge1ds, f„„,and its dual fu„o, are restricted by the conditions

(3.52) n„f„,=0, nufu„~ 0, ——(4.3)
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from which are derived

f,ifi.*=0, f,sf),.=f,i*fi„*=—rs, rs.. (4.4)
x„(s)—x„(0)=

The latter statement also includes a convention con-
cerning the scale of f„„

The proper time equitions of motion in this ex-
ternal field, With the constant D„determined by Eq. (4.20), Eq.

(4.18) states thatd*„/ds= 211„,
dII„/ds = 2eF (g)f„„II„+n„eF'(g) $oq„f„„,

(x„(s)—x„(0)) s
II„(s)=

2s (g(s) —g(0))

X [2C„eA ($(s))—rs„e'A '($(s))+n„eF($(s))oi of]

S pt (ss)

d([2C„eA (p)
(5(s)—k(0))' "s&o&

e„e'A—'(g)+n„eF(g) 2of] (4.21.)

admit several first integrals. Thus

d(rs„ll„(s))/ds =0,

d(f„„*II„(s))/ds =0.

(4.6)

(4.7)

In addition,

d(f„„II„(s))/ds= n„eF(—$)d(/ds, (4.8)
since

On integrating Eq. (4.18) with respect to s, we find that
~((8)

dg[2c„oA(g) —N„omA2(g)
2(III)s "t&oi

+N„eF($),'of]-+2D„s. (4.20)

and therefore
d$/ds= 2nII; We can finally evaluate C„as

where
d (f„„ll„+rs„eA (P))/ds =0,

dA(k)/dk= F($).

In arriving at Eq. (4.10), it is necessary to recognjze
that d$/ds commutes with g, in virtue of

[g, «]=[I„x„,n„II„]=i~„=O (.4.12)

Since nII is a constant of the motion, Eq. (4.9) can
be integrated to yield

(f(s)—5(0))/s= 2« (4.13)

from which we infer that

[h(s) 5(0)7=2s[« 5(0)7=0 (4 14)

The constant vector encountered on integration of Eq.
(4.10),

f„,II,+n„eA ($)=C„,

has the following evident properties:

(4.15)

f„„*lI„=f„„oD„, (4.19)

which is independent of s, in agreement with Eq. (4.7).

mrCo 0, fp„*Cv=o, ——f„„C„= ri„nlI,
(4
—

16)C„'=(elI)'.

The elimination of f„.II. from the equation of motion,
with the aid of Eq. (4.15), gives

dII„/ds = (d/d$) [2C„eA (g) rs„o'A'($)—
+n„eF(&)',of], (4.17)-

whence

II„=-', dx„/ds= (1/2nII) [2C„eA (g) rs„e'A '(g)—
+n„eF{/)gof]+D„, (4.18)

where D„ is an integration constant. Note, incidentally,
that

C„=f„„II„+n„eA

f„„(x„(s)—x,(o)) n„

2s g(s) —g(0) J,&,)

dgeA ($). (4.22)

Xexp is~ 1/($' f') ~ dge—A ~, (4.26)
i

The commutation properties of these operators are
involved in the construction of the transformation
function. As is already indicated in the commutativity
of ((s) and $(0), these commutation relations are greatly
simpli6ed by the special nature of the external 6eld.
Thus to evaluate [x„(0),x„(s)7, we employ Eq. (4.21)
to express x„(0) in terms of x„(s), II„(s), ((s), and g(0).
Now

[f(0), x„(s)]=Q(s) —2snll, x„(s)]=2isn„, (4.23)

and, in virtue of n„C„=n„'=0, we have simply

[x„(s),x„(0)]=[—2sII„(s), x„(s)]=8is (4.24.)
No other nonvanishing commutator intervenes in
bringing X to the form

K=-'s '(x '(s) —2x„(s)x„(0)+x'(0))—2is '

~f(e)

+ dk["A'(5) oF(k)k f]—
g(s) —g(0) "s&o&

&(~) -2

dgeA (g), (4.25)
(~(s)-5(0))

in which a constant added to A($) is without eBect, as
required by the corresponding ambiguity of Eq. (4.11).

The solution of the &liiIerential equation (2.37) is

(x(s)'~ x(0)")=C(x', x")s—' exp[i'(x' x")'/s]—
gl

X —./(g' —g") g[" ' . ;f]—
gl err
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where
I fI lf

$ =n„x„, $ =n„x„. (4.27)

«eA(&)
~

C(x', x")=0. (4.28)
e-&"~:-

The solution of this equation will be obtained in terms
of a line integral which is independent of the integration
path. Again choosing the path to be a straight line, we
find simply

~l

C(x', x")=C exp ie t dx„A„(x) =C4&(x', x"), (4.29)

in view of the antisymmetry of f„„.It is evident that

C= —i(4&r) '. (4.30)

Only the behavior of the transformation function for
x„' x„"is of actual interest in applications to vacuum
polarization phenomena. Now for $'~$",

g&I

«A'(f) , „—i «A(&)
pl (II J 5" "—

s

The function C(x', x") is determined by the differential
equations (2.38) and (2.39), in conjunction with Eq.
(4.26). Thus,

1
i8—„' eA—„(x') f„—„(x' x"—).

~
eA ($')

I II

V. y-DECAY OF NEUTRAL MESONS

In this section we shall apply the results of our
proper-time method to compute the effective coupling
between a zero spin neutral meson and the electromag-
netic field, as produced by the polarization of the
proton vacuum. This interaction manifests itself in a
spontaneous decay of the neutral meson into two
photons.

The lagrange function for a spinless neutral meson
field, in scalar interaction with the proton-antiproton
field, is given by

&= —2L(~.4)'+n'4 ']—
g4 28, 41 (5 1)

To find an approximate expression for the resultant
coupling between the neutral meson field and the elec-
tromagnetic field, we replace 2i[f, P] by its vacuum
expectation value, calculated in the presence of a
homogeneous electromagnetic field. The use of the
latter to represent the photons emitted in the spon-
taneous neutral meson decay introduces a small error,
which is measured by the square of the meson-proton
mass ratio, (n/M)'~1/40. On the other hand, by
ignoring the eGect of the meson field on the proton
vacuum, we obtain only the initial approximation of a
perturbation treatment. Now

(-,'LP(x), P(x)])= i trG(x, x)

= —M)t ds exp( iM's—) tr(x~ U(s) tx)

=—,', (&'-r")*F*L!(~'+&")], (4») = —ax&"(x)/BM, (5.2)

5=0, /=0. (4.34)

We can conclude, without further calculation, that
the physical quantities characterizing the plane wave
held, the components of the energy-momentum tensor
T„„,will be identical in form with those of a constant
field that obeys Eq. (4.34). On referring to Eq. (3.57),
we see that T„„ for a plane wave is just that of the
maxwell field, which may be simplified further to

($' $")'F—' = (x' x")„n„F'n„(—x' x")„—
(x' x")„F„—),Fi„(—x'- x")„, (4.32)

according to Eqs. (4.1) and (4.4). Therefore, for x„' x„"

(x(s)' x(0)") —i(4&r)-'4 (x', x")s '
X exp[i-,'s—'(x' — )x„(g„„+-',(es) 'F„F&,i„)(x' —x"),]

Xex p(-,
' ei0„, F„.s), (4.33)

which is identical with the transformation function for
a constant field, as simplified by the special charac-
teristics of the field now under consideration; namely,

according to Eqs. (2.30) and (2.31).Thus, the effective
lagrange function coupling term between the neutral
meson and the electromagnetic field is given by

2,'( )x= gy(x)BZi'&(x)/BM, (5.3)

Bg &'&/clM~(em/6n2)M ds exp( —M2s)p
0

= (2a/3n) (1/M) S. (5.5)

Therefore the eGective coupling term is

which clearly also follows directly from the proton
field equation of motion,

I y( iB eA)+—M+—gIf]/=0, (5.4)

in the approximation which treats It&(x) as a weak,
slowly varying, prescribed field. If we retain only the
leading term in the expansion of 2&" for weak fields,
Eq. (3.45), we have

T„„=F„&,F„i=n„n„F'($). (4.35)
2'= (a/3x)(g/M)y(H' —E'), (5.6)

Thus, there are no nonlinear vacuum phenomena for a
single plane wave, of arbitrary strength and spectral
composition.

which describes the decay of a stationary meson, into
two parallel polarized photons, at the rate

I/r = (u'/144m') (g'/hc) (&i/M)'(lic'/Ii) (5.7).
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g4 (x—)M ds exp( —iMss)
0

Xtry, (xI U(s) I x). (5.9)

The transformation function (3.20), with —is sub-
stituted for s, yields

2'= —gPM(4~) ' dss ' exp( M'—s)e "4'
40

X trys exp(~senFs). (5.10)

Now, the eigenvalues of 2oIi, as related to those of y~
by Eq. (3.31), give

trys exp(~eaFs) = —4 Im coshesX. (5.11)

In view of Eq. (3.43), we obtain, without further ap-
proximation, simply

2'=gp(e'/4m')M ds exp( —M's)g

= (a/x)(g/M)4E H. (5.12)

This efI'ective coupling term implies the decay of a
stationary neutral meson, into two perpendicularly
polarized photons, at the rate

1/r-(n'/64m') (g'/hc) (p/M)'(pc'/fs). (5.13)

The pseudovector interaction term,

(g/2M)8. 4(*)(1/2 )[4(x), 7 YA(x)], (5 14)

is formally equivalent to (5.8) for the problem under
discussion, in the approximation to which it is being
treated. This is demonstrated by a partial integration,
combined with the use of the Dirac equation (2.1).Yet
it has been found difBcult'~ to verify the equivalence
in the actual results of calculation. Such discrepancies
between formal and explicit calculations may be pro-
duced by insuKcient attention to the limiting processes
implicit in the formalism. We shall demonstrate that,
with appropriate care, the proper equivalence between
the pseudoscalar and pseudovector couplings is indeed
exhibited.

The effective pseudovector interaction between the

' J. Steinberger, Phys, Rev. 76, 1180 {1949).

A pseudoscalar interaction between the spinless
neutral meson fieM and the proton field is described by
the term

g&(x)kN(x), Vs4(x)j (5.8)

in the lagrange function, For our purposes, this is
replaced by

&'(*)=go( )('[k(*),7 k(*)3&

=ig (x) trysG(x, x)

meson and electromagnetic field is given by

2'(x) = (g/2M) 8„$(x)((1/2i)[g(x), y y„P(x)))
= (g/2M) 8„$(x) tryst„G(x, x)

-+—(g/2M) y(x) 8„[tryst„G(x, x)], (5.15)

where the last version represents the results of in-
tegrating by parts. We now remark that this derivative
has the following meaning:

8„[tryst„G(x, x)j= lim [(8„' ie—A„(x'))
x', z"-+x

+(8„"+ieA„(x"))j try5y„G(x', x"), (5.16)

in which the structure of the right side is dictated by
the requirement that only gauge covariant quantities be
employed. We shall verify that the straightforward
evaluation of Eq. (5.16) yields the pseudoscalar coupling
(5.12), without further difliculty.

According to Eq. (3.21)

trygy„G(x', x")

i try, y„y„—ds exp( iM—'s)

X(x(s)'I II,(s) Ix(0)")

i try—„y&y„ds exp( iM'—s)

X (x(s)'I rr, (0) I
x(0)"). (5.17)

The result of averaging these two equivalent expressions
1s

tryst„G(x', x")
F00

=i trys ds exp( iM's)—
J,

X(x(s)'I'(11.(s)—11.(o)) I
x(o)")

—trysa„. ds exp( —iM's)
40

X(x(s)'Ik(ii. (s)+11.(0)) I*(o)") (5 18)

We shall be content to evaluate Eq. (5.18) in the ap-
proximation of weak helds. On referring to Eqs. (3.4),
(3.5), and (3.20), it is apparent that the leading term in
this approximation is

tryst„G(x', x")

= —(e/64m') tryst„~g„(x' —x")„Fg„e(x', x")

X dss —' exp( iM's) ex—p[i,'(x' x")'-/s5—
0

= (e/8w')F„, ~(x' —x")„C(x', x")

dss ' exp( iM's) exp—[i~(x' x")'/s j, —(5.19)
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with the aid of Eqs. (3.25) and (3.27). Since we are
concerned with the behavior of this quantity only for
x'~x") we may evaluate the proper time integral by
an appropriate simpli6cation. For x'~x",

The related operator

V(s) = U0 '(s) U(s),

where

(6.6)

dss ' exp( i3—Ps) exp[i~(x' —x")s/sj
p is determined by

Uo(s) =exp( —i3'.Os), (6.7)

dss-' exp[i ,'(x-' x—")'/s j and

i8,V(s) = Ue '(s)KyUp(s) V(s)

V(0) = 1.

(6 8)

(6.9)

Therefore,

d(s—') exp[i-,'(x' —x")'s g
4o

=4i/(x' —x")'. (5.20)

One can combine Eqs. (6.8) and (6.9) in the integral
equation

e

V(s) =1 i —ds'Up '(s')XqUO(s') V(s'), (6.10)
4p

tryst„G(x', x")
(ie/2x')4 (x', x")F„„*(x'—x")„(x'—x") '. (5.21)

To obtain the quantity of actual interest, Eq. (5.16),
we observe that

[(8„' ieA—„(x'))+(8„"+ieA„(x"))]4(x', x")

F„„*(x' x")„F„g(x—' x")g(x' x—") ', (5—.22)-

according to Eqs. (3.15) and (3.16).But, in view of Eq.
(3.35),

and

and construct the solution by iteration:

V(s) =1—
i~ ds'Uo '(s')K~Ue(s')

p

+( i)') —ds'Up '(s')SC)Ue(s')
p

~1

X ~ ds"Uo '(s")3CgU, (s")+ . (6.11)
4p

On introducing new variables of integration, I,, Ns,

according to

8„[trygy„G(x, x)j=—(es/2xs) g lim C (x', x")
~t~gt t

= —(2a/~) g.

Thus, Eq. (5.15) yields

Z'= (a/x)(g/M)4E H

in complete agreement with Eq. (5.12).

//S =SN1) S =S Q2)

we obtain the expansion
5.24

U(s) =exp( —@Cs)

(5.25)

(6.12)

VI. PERTURBATION THEORY

We shall now discuss the approximate evaluation of

W,"=ip
I'

dss —' exp( ier's) T—rU(s), (6.1)

by an expansion in powers of eA„and eF„„.For this
purpose, we write

fs, 1 ~1

+(—is)" Ng" 'de) d~„
J,

X Uo((1—Nq)s)ÃqU0(eq(1 —N~)s) ~ ~

XUa(eg. ~ u~ )(1 e~)s)—
XGC&Uo(ua ups)+ . (6.13)

3)=XP+3C1)

Ko p

K~———e(pA+ A p) ~2eo F+e'A'—
where

TrU(s) —TrU, (s)
(6 4)

1

= —zs ~ dX Tr[BC~ exp( —i(KO+XK~)s)j (6.14)
Jp

To obtain the expansion of Tr U(s) in powers of K~, we
observe that U(s) obeys the differential equation

48.U(s) = (Geo+Be )U(s). (6.5) and insert the expansion (6.13) for exp[—i(X&+XKg)sj.

Instead of taking the trace of this expression directly,
which would involve further simplification, we remark

(6 3)
that
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Thus)

TrU(s) =Tr Uo(s)+ (—is) Tr[3!qUo(s)]

+o(—is)' dgr Tr[RqUo((1 —Nq)s)3'iUo(grs)]+' ' '

Therefore

2ie'
W&'~= ' dss-' exp( —im's) ~ —is "(dk)

(2.) J. 1

XA„(—k)A„(k) (dP) exp( —iP's)

( zs) n+1

+ Sg dg)' ' '
I+1 4p +2(—is)' 2dv (dk) (dp)2P~A~( —k)

XTr[Kr Uo((1—Nr) s)3C~ ~ ~

XXiUo(gr ~ I s)]+ ~ . (6.15)

We shaH retain only the first nonvanishing 6eld
dependent terms in this expansion:

Xexp( —i(p+kk) "(1—v)s]

X2P.A.(k) exp[ —i(P——,'k) 'g(1+ v)s]

+-'( is)—' ' -'dv (dk) (dp) —' tr-'oF( —k)

W&'&= ,'ie' -dss ' exp( im'—s)
~Jp

is T—r[A' exp( —ip's)]

Xe px[ i(P+—xk)'x(1 v) s]x—o F(k)

Xexp[ —i(p —x2k)'xs(1+v)s] 1 . (6.19)

We thus encounter the elementary integrates

+-', (—is)' $dv Tr[(pA+Ap) exp( ip'$—(1 v)s)—
4

t (dp exp( —ip's) = —is's ', (6.20)

X(pA+A p) exp( —ip'-,'(1+v)s)]

1

+-', ( is)'~I——',dv Tr[-', oF exp( —ip'-,'(1—v)s)
-1

and

= —iv's —' exp[ —i(k'/4)(1 —v')s] (6.21)

Xx2oF exp( —ip'x(1+v)s)7 . (6.16)
~ (dp) p„p„exp[ i(p'+—(k'/4)) s+ipkvs]

For convenience, the variable I& has been replaced by
$(1+v). The evaluation of these traces is naturally
performed in a Inomentum representation. The matrix
elements of the coordinate dependent field quantities
depend only on momentum differences,

(P+-,'k~ A„~ P--,'k) =(2~)~~"(d*)e 'A (,)-

exp( i ,'k—'s)(vs) —'(8-/Bk )(8/Bk )

X (dp) exp( ip's+i—pkvs)

i~'s '( its '8„.—+-'v'k k —)

Xexp[ ir'k'(1 —v')s] —(6.22).

(p ~
A„s

~ p) = (2~)-4&~(d*)A„2(~)

—= (2&) 'A~(k), (6.17) It is convenient to replace the 8„„term of the last jnte
gral by an expression which is equivalent to it in virtue
of the integration with respect to e. Now

j.

I xdv e p[—s-'k'(1 —') ]
—1

= (2v)-4)I (dk)A„( k)A„(k). (6.18)— =1 isx2k' ~ $—dvv' exp[ i,'k'(1 v)—s],-(6.—23)
4 -j.
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so that, electively

(dp)p„p. exp f —i (p'+4xk') s+ipkvs]

The field strength and charge renormalization con-
tained in Eq. (3.48) then produces the finite gauge
invariant result, '

—gv's 'b„„—iv's 'xv~'(k„k „—b„k„')

Xexp f—i4 k'(1 —v') s]. (6.24)

This has been achieved without any special device,
other than that of reserving the proper-time integration
to the last.

A significant separation of terms is produced by a
partial integration with respect to e, according to

4p
dv(1 —v') dss ' exp {—Lm'+-'k'(1 —v')]s}

Jp

On inserting the values of the various integrals, and
noticing that

(k k —b k')A (—k)A„(k) = —s'P„„(—k)F„,(k), (6.25)

we obtain immediately the gauge invariant form (with
s-+—ss)

W&') = — (dk)$F„„(—k)F„„(k) dv(1 —v')
e2

4x' ~ aJ p

IF= — (dk)-,'F„.(—k)F„,(k)

n k' I" v'(1 ——,'v')
X 1———

i dv . (6.30)
4v m' ~ g 1+(k'/4m')(1 —v')

The restriction which we have thus far imposed, that
no actual pair creation occurs, corresponds to the
requirement that 1+(k'/4mn)(1 —v') never vanishes.
This will be true if —k'&4m', for all k„contained in
the fourier representation of the field. Indeed, it is
evident from energy and momentum considerations
that to produce a pair by the absorption of a single
quantum the momentum vector of the latter must be
time-like and must have a magnitude exceeding 2m. We
shall now simply remark that, to extend our results to
pair-producing fields, it is merely necessary to add an
infinitesimal negative imaginary constant to the de-
nominator of Eq. (6.30) and interpret the positive
imaginary contribution to S' thus obtained with the
statement that

(6.31)

represents the probability that no actual pair creation
occurs during the history of the field. The infinitesimal
imaginary constant, as employed in

CO
ta

1

dss-' exp( —m's) —gk' dv(v' —~v')j—3 3
p 0

1 1
lim =P +vib(x)—,

.
'~+0 x—$e x

(6.32)

represents a familiar device for dealing with real pro-

X ds ex { fmQ+ lk2(1 v2)]s} (6 27) cesses. We obtain from Eq. (6.30) that
dp k'

Adding the action integral of the maxwell field, which
2 ImW= 2n dk 4F„„( kF„„(k— dvv'—

is expressed in momentum space by

W"'= — (dk) xP$„(—k)F~(k), (6.28)

( v') k'
Xl 1——}b 1+ (1—v')

3) 4m'

we obtain the modified action integral,

00

W= —1+, dss-~exp( —mns)
12m' ~p

X,t(dk):P„,(-k)P„.(k)

=n ~ (dk)( —-', )P„„(—k)F„„(k)
—k )4m~

4m' ~ I1( 4m' q
XI 1-

} -l 2+ —
} (633)

( k')3 3—& (—k'))

For the weak fields that are being considered, Eq. (6.33)
is just the probability that a pair is created by the field.
It should be noticed, incidentally, that

——,'F„.(—k)P„,(k) = -', f l E(k) l

'—
l H(k) l

'] (634)

v2(1 1v2)

X
4 g m'+xk'(1 —v')

(6.29)

The corresponding result for a spin zero charged Geld is ob-
tained by omitting the spin term of Kq. (6,19), and multiplying
the remainder with (—$). This effectively substitutes ~o' for
(W —V) in Eq (630)
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is actually positive for a pair-generating field. This
follows, for example, from the vanishing of the mag-
netic field in the special coordinate system where k„has
only a temporal component.

An alternative version of Kq. (6.33) is obtained by
replacing the field with the current required to generate
this field, according to the maxwell equations

ik„F„„(k)= —J„(k),
k„F„),(k)+k„F) (k)+kgF„,(k) =0.

time method and that of "invariant regularization. "
The vacuum polarization addition to the action integral
has the general structure

Wi'& = (dk) A„( k)—E„,(k, m')A, (k). (6.42)

The proper-time technique yields the coefficient
K„„(k,m') in the form

Now
kg'F„„(—k)F„„(k)=2k„F„„(—k)kiFi„(k)

(6 36)= 2J„(—k)J„(k),

K„.(k, m2))„=)~ dsexp( im—'s)K„„(k,s), (6.43)
0

so that9

y =4m'/( —k'). (6.38)

It is now appropriate to notice that the integral
(3.49), representing the lagrange function for a uniform
field, has singularities, unless /=0, F)0, corresponding
to a pure magnetic field in an appropriate coordinate
system. This is the analytic expression of the fact that
pairs are created by a uniform electric field. In par-
ticular, for /=0, —2P= 82)0, which invariantly
characterizes a pure electric field, the lagrange function
proper time integral,

2 ImW= (n/8m') (dk) J„(—k)J„(k)
~ a&4 ~

X(1—y)'ys(2+y), (6.37)
where

E„„(k,m'))a= ) d~p(~)K„„(k, a). (6.44)

The "regulator" p(x) must reduce to b(x —m'), in an
appropriate limit, and will produce gauge invariant
results in this problem if the following integral condi-
ditions are satisfied:

where K„.(k, s) is a finite, gauge invariant quantity;
infinities appear only in the final stage of integrating s
to the origin. In eGect, this method substitutes a lower
limit, so, in the proper time integral and reserves the
limit, so—+0, to the end of the calculation. If, on the
contrary, the proper-time technique is not explicitly
introduced, K„„(k,m') will be represented by divergent
integrals which lead, in general, to non-gauge invariant
results. The regulator technique avoids the di%culty by
introducing a suitable weighted integration with respect
to the square of the proper mass, thus substituting for
K„,(k, m'), the quantity

&& fe8s cot(e8s) —1+~s(e8s)'), (6.39) d~p(a) =0, ) d~~p(~) =0 (6.45)

has singularities at

s=s„=ms/e8, ran=1, 2, (6.40)
Expressed in terms of the fourier transformed quan-
tities,

If the integration path is considered to lie above the
real axis, which is an alternative version of the device
embodied in Eq. (632), we obtain a positive imaginary
contribution to Z,

OQ

21m'= —P s -'exp( —m's„) we have

R(s) = dec-~p(e),

E„„(k,s) = (1/2s) ) d~e'"'K„„(k, x),

K„„(k,m'))e= I dsR(s)K„„(k, s),

(6.46)

(6.47)
0'.2 ~ (—em't52 )=—8' Q e ' exp~ ~. (6.41)
~2 as~1 eb )

This is the probability, per unit time and per unit
volume, that a pair is created by the constant electric
field.

We must now consider, in the framework of this
special problem, the connection between the proper

and
K„„(k,s) =0, s&0, (6.49)

while the conditions on p(~) appear as

R(0)=0, R'(0) =0, R(s)~exp( —im's). (6.48)

Now observe that the proper time method yields
K„„(k,m') in the form (6.47), with

A simple example, to which this formula may be applied, is
the creation of a pair in a nuclear j=0—4 transition. J.R. Oppen-
heimer and J. Schwinger, Phys. Rev. 56, 1066 (1939).

R(s) = exp( im's), s—)s,
=0, sgsp,

(6.50)
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This R(s), and all its derivatives, vanishes at the origin,
thus satisfying the regulator conditions as so—4. It
appears, then, that regularization is a procedure for
inserting, into a calculation that does not employ it,
enough of the structure provided by the proper time
representation to ensure gauge invariant results.

APPENDS A

It is our purpose here to use the proper time equations of motion
(2.36) for the computation of the current induced in the vacuum
by a weak, arbitrarily varying Geld:

F„,(x) =» I/(2&r)o5f (dk)e'o'F„, (k). (A.1)

In the absence of a Geld, the equations of motions are solved by

II„(s)= II„(0), x„(s)=x„{0)+2H„(0)s. (A.2)

As a first approximation for weak fields, we accordingly write

dII„(s)/de= Le/(2&r)o5f (dk)F„,(k)»e&"&o&'&+'n&'&o&, II„(0)»

+e/(2v)of (dk)ok l&(rg„Fg„{k)e'"&o&o&+on&o» (A 3)

On integrating with respect to s, one obtains

II„(s)—II„(0}= Lej(2(r) '5f (dk}F„,(k)

Xf' dsr»e'o«o&+orr&o»" H„(0)»

+e/(2 v )'f (dk)ik&r)(r&(„F& o(k)

X gs'e'~( (0)+~o(0)") (A 4)
0

A second integration yields

=II„{0)+e/(2 )'f(dk)F„„(k)

Xf dsr{1 sr/s) {e&o&o&o&+oII&o&o'& 11 (0)»

+,f(dk}ik„ls&&F(k)

I

(gs 1 —es&(z (0)+&G(0)s') {A $)
0 s

and therefore

${rr„(s)+II„{0)

+,f(dk)F„„(k)

I

Xf o,
*

&)(...,.'r, o,.r rr(o&(

+,f(dk)ik„t&aF(k)

xf o -*-&).' »'"o*r»". (A.o&

The induced current is equivalently expressed by

{j„(x))=etry„x) {yII—m) ds exp(-im's) U{s) x

= ef ds exp( io&oss) try„—y„(x(s)'» II„(s)»x{0)")5,
{A.7)

and

{j„(x)) =e try„x ds exp( —ing~s) U(s) {yII—m) x

=ef dsexP( io&oos) try„y—e{x(s)'»II„(0}»x(0)")5o,,
(A.8)

On averaging the two forms, we find that

(j„(x)}= e—f ds exp( —io&oos)

X tr(x(s)'
» $(II„(s)+II„(0))»x{0)")5, „

—ie ds exp( —imps)
0

X trrr„.(x(s)'» $(II„(s)-II.{0))»x(0)")5.;,- .. (A9)
It may be noted here that no current exists in the absence of a
Geld, since

lim (x(s)'»x„(s) —x„(0)»x(0)")=0,
z'-z "~+0

(A.10)

and, therefore, only the transformation function in the absence
of a Geld is required for the first-order evaluation of Eq. (A.9).

Now

tr „,(x(s)'!k(11„(s)—II.(0)) 1*{0)")

= $2e/(2&r) o5f(dk) (SF„„/Bx„)(k)sf $dv

X(x(s)'»expLi(kx{s)f(1+v)+kx(0)$(1 —v)5»x(0)"), {A.11)

in which the variable s' has been replaced by v, according to

s'= s(1+v)/2. (A.12)

The operators kx(s) and km(0) do not commute:

Lkx{s), kx(0) j=2st kII(0), kx(0) j=—2isk'. (A.13)

We may, however, employ the easily established theorem,

eA+B—eAeBe-)[A, B] (A.14)

for operators A and B that commute with their commutator
EA, Bj.Thus,

expt i(km(s)$(1+v)+kx(0)$(1 —e)))
=expI ikx(s)$(1+v) j expLikx(0) $(1—v) j

Xexp| —ik'J{1—v') sj, (A.15)

and

trrr„„{x(s)'»$(II.(s) —H„(0))» x(0)")5, , -,
=[2e/(2&r)o5f (dk)e'o (SF&(„/&&x„)(k)sf &dv

Xexp) —ik'$(1 —v')s j(—i)/(4 )'s'. (A.16)

A similar treatment applies to

tr(x(s)'»k(11„(s)+II„(0))»x(0)")5*„"„,
,f(dk) F„,(k)s / $dvv(x(s')'»» exp/i(kx(s)$(1+v)

+kx{0)$(I—v))5, (x.(s}—x„(0))/2s»»x'(0)}5. . . (A.17)

With the aid of the commutation relations,

I
eikz(0)$(1-tt) & (s)j k (1 p)setkz{0)$(1—v)

Le'~{')&{'+") x (0)j=k {1+v)se'~ {'')&{'+'), (A.18)

this reduces to

tr{x{s)'( ({II„{s)+II„(0))~
x(0)")j...-„.

$2ie/(2v) o5f—(dk)e&o'(SF„„/i&x„)(k)sf $dvvo

Xexpt —ik'$(1 —&')sj(—')/(4 )'s'. (A.19)

We have thus obtained

1

{j„(x})=—(er/2&r)(2or) 'f (dk)e&o*(SF„„/Bx„)(k) dv(1 vo}—
Xf, dss ' exp» —

»
o&oo-,'+(k1o—v )5»os(Ar. 20)

in which the substitution s~—is has again been introduced. This
is precisely the current derived from the action integral W{') of
Eq. (6.26), and further discussion proceeds as in Sec. VI.
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APPENDiX 8
An electron in interaction with its proper radiation Geld, and

an external 6eld, is described by the modified Dirac equation, "
7 ( p—b e—A (»))p)(»)+f(d»')M(x, x')tb(»') =0. (8.1)

To the second order in t,, the mass operator, M{x, x'), is given by

u(x, x') =m, ~(x—')+i~ &„G(x)x')&„D,(x—x'). (B.2)

Here G{x)x'} is the Green's function of the Dirac equation in the
external 6eld, and D+(x—x') is a photon Green's function, ex-

pressed by

D+(x x'}= {4—)pr'f dtt P exp[itp(» »')—P/t j .(8.3)

We shall suppose the external 6eld to be weak and uniform.
Under these conditions, the transformation function (x(s)

~
x(0)'),

involved in the construction of G(x, x'), may be approximated by

(x(s) ~x(0)')——i(4pr) '4(x, x')s '
Xexp[itp(» —»')P/s] exp(i)eprF); (8.4)

that is, terms linear in the field strengths enter only through the
Dirac spin magnetic moment. The corresponding simplification of
the Green's function, obtain by averaging the two equivalent
forms in Kq. (3.21), is

G(x, x')—(4pr} %(», x')f dss ' exp( im's—)
—y(x —x')

XPI ' —')'/]k
2

+ xP('k ) ( . )
2$

which gives

M{», x') =mpb{» —x'}+[e'/(4pr}P jf dss ' exp( —im's)

Xf dw[2m(2 w—/s)+(2w/s)(y( i—b eA—)+m)
—2mm{1 —m/s}i/ca F—im(1++/s)

X Iy( ib—eA—}+m, feeF)](x(w) ~x(0)'), (8.11)

in virtue of the relation

[v( ib—eA—), ttoF]=2iyF( ib —eA)— . (8.12}

We now introduce a perturbation procedure in which the mass
operator assumes the role customarily played by the energy. To
evaluate J'(dx')M(x, x')P(x'), we replace P(x') by the unper-
turbed wave function, a solution of the Dirac equation associated
with the mass m (we need not distinguish, to this approximation,
between the actual mass m and the mechanical mass mp). The x'
integration can be effected immediately,

f(*(w) I
»(o)') (d*')pt(*') =f(*I&(w) I*')(d*')O(x')

=exp(im'ur) P{x), (B.13)

since P(x) is an eigenfunction of K, with the eigenvalue —m'.
Therefore, on discarding all terms containing the operator of the
Dirac equation, which mill not contribute to

f(d») (dx') d (»)M(», x')d (x'),

we obtain

The mass operator is thus approximately represented by fy( —i8—eA)+m —p'$g F5/= 0, (B.14)

M(x, x')=mpb(x »')+[is—s/(4pr)4]4(x, x')f dss 'f dtt '
1 1

Xexp{—im's} exp i~(x—x')' -+-
s t

—7{x—x')
+m, exp{igeeF) y)„(B.6)

2$
01

M{», *')=mpb(» —x'}+[ies/(4pr)pj4 (x, x')
cr) 8

dss ' exp( —im's), Ann ' expLi-,'(x—x')'/m5

X l
—4m —s 'y(x —x')+)i I y{x—x')) )ecrF I 5, (B.7)

in which we have replaced t by the variable m,

1—S
—1+t—1 (B.s)

and employed properties of the Dirac matrices, notably

Y) ~'Pb 'YX (B.9)
We shall also write

(x—x')„c(x,x') expl z, (x—x') /m5
=2m{—i8„—eA „(x)—)eF„„(x—x'},)C (x, x') expI i~~(x—x') '/u 5
~$2uJ( —i ay —eA p(x)) —2m~SF p„(—ia„—eA p{x})5

XC'(x, x') expl i&{x—x')~/m5, (B 10)

'0 The concepts employed here will be discussed at length in
later publications.

where

m= mp+(a/2~}m dss ' dms
—'{2—~/s}

0 0

Xe~f—zm~(s —~}j (B.15)

represents the mass of a free electron, and
ce) e

p,'= (a/2m)emi ds (dm/s}(m/s)(1 —m/s}

Xexp[ —im'(s —w) $ {8.16)

describes an additional spin magnetic moment. Both integrals are
conveniently evaluated by introducing

u= 1—m/s, (B.17)

and making the replacement s~—is, which yields

1
m=mp+(a/22r)m dss ' du(1+u) exp( —m us)

0 0

=mp+{3pr/4»)m f dss ' exp{—m's)+p, (B.18)

and
1p'= (a/2x}em ds duu(1 —u) exp( —m'us)

0 0

1= (a/2m) (e/m) du(1 —u) = (a/22l) (ek/2mc). (8.19)

We thus derive the spin magnetic moment of a/2x magnetons
produced by second-order electromagnetic mass eBects.


