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A new approach to the treatment of the interactions in a collection of electrons is developed, which we
eall the collective description. The collective description is based on the organized behavior produced by
the interactions in an electron gas of high density; this organized behavior results in oscillations of the
system as a whole, the so-called "plasma oscillations. "The collective description, in contrast to the usual
individual particle description, describes in a natural way the long-range correlations in electron positions
brought about by their mutual interaction. In this paper we con6ne our attention to the magnetic inter-
actions between the electrons; the coulomb interactions will be discussed in a subsequent paper.

The transition from the usual single-particle description to the collective description of the electron
motion in terms of organized oscillations is obtained by a suitable canonical transformation. The complete
hamiltonian for a collection of charges interacting with the transverse electromagnetic Geld is re-expressed
as a sum of three terms. One involves the collective 6eld coordinates and expresses the degree of excitation
of organized oscillations. The others represent the kinetic energy of the electrons and the residual particle
interaction, which is not describable in terms of the organized oscillations, and corresponds to a screened
interparticle force of short range.

Both a classical and a quantum-mechanical treatment are given, and the criteria for the validity of the
collective description are discussed.

I. INTRODUCTION

KCAUSK of the long range of the coulomb force,
the interactions in a collection of electrons involve

many particles simultaneously. However, the usual
description of these electron interactions is based on a
free-particle approximation. In a metal, for instance,
the motion of a given electron is assumed. to be inde-
pendent of the motion of all the other electrons in 6rst
approximation. The effect of the other electrons on this
electron is then represented by a smeared-out potential,
which can be determined by using the self-consistent
6eld methods of Hartree and Fock. This means that
the effects of the correlations in the positions of the
electrons brought about by the long range of the
coulomb force are almost entirely neglected; we can
therefore expect that in any problem in which the
electron-electron interactions are important, as, for
example, the calculation of the cohesive energy or the
electronic contribution to the specific heats at low
temperatures, the free-particle model may not be
adequate. In order to obtain a better mathematical
treatment of this problem, we have adopted a new
approach based on a collective description of the
motion. This collective description is most appropriate
for systems of high particle density.

It is weH known that an electron gas of high density'
can undergo organized oscillations resemblmg sound
waves. "These oscillations, the so-called "plasma oscil-
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lations, " represent the effects of the long-range correla-
tion of electron positions brought about by coulomb
interactions. A description in terms of these organized
oscillations therefore provides a natural way of treating
the long-range electron interactions, and leads to greater
insight into the dynamical behavior of the electron gas
than is afforded by the free-particle approximation.
Thus, it may be expected that such a collective descrip-
tion will make possible a better understanding of the
interactions between the electrons in a metal.

In a treatment of these organized oscillations, ' one
considers a particular fourier component of the average
field, proportional to

expLi(k x—(ut)].

For small amplitudes (which are of interest to us here),
the linear approximation is valid, and an arbitrary 6eld
can therefore be expanded as a sum of such trigono-
metric terms. In response to this oscillating field, each
electron undergoes a small corresponding trigonemetric
change in its velocity and in its contribution to the
mean charge density. Owing to the long range of the
coulomb force, the mean 6eld at each point can become
quite large as a result of the cumulative effects of small
contributions arising from each particle. The condition
for sustained oscillations is that the 6eld arising from
the response of the particles must be consistent with
the field producing this response. This requirement leads
to a dispersion relation connecting co and k. For longi-
tudinal waves the approximate dispersion relation, good
for Iong wavelengths, is'

res = (4wtsse'/ra)+ 3k'aT/m, 0)
where no is the electron density, T the temperature, and
x is Boltzmann's constant. For infinite wavelength,

(1949); Paper A discusses the origin of mediumlike behavior;
Paper B deals with the excitation and damping of osciHations.
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this reduces to the well-known plasma frequency,

Cd& =41ISp's /iit

There are, however, certain limitations on the col-
lective description of the electron gas in terms of
organized longitudinal oscillations which arise from the
fact that these oscillations cannot be sustained for
wavelengths shorter than a critical distance known as
the Debye length,

Xn = (ccT/4tcn pe') & V/—cd p (2)

This length is of the order of the distance traveled
during the period of an oscillation by a particle moving
with the mean thermal speed, V, and thus might
reasonably be expected to constitute a limitation on
organized oscillation. It may be shown, furthermore,
tha, t whenever there is a static field in the electron gas,
either externally imposed or arising from a lack of
charge neutrality, the electrons redistribute themselves
in such a way as to screen out the 6eld within a distance
of the order of a Debye length. '

Screening and organized oscillation are different but
related manifestations of the collective behavior of the
electron gas, brought about by cumulative responses of
the particles to the average force; and the Debye length
determines the smallest distance for which this collective
behavior is significant. Thus, one electively obtains a
separation between the long-range part of the force,
which is best described collectively, and the short-range
part, which is best described in terms of the coordinates
of the individual particles. The higher the density, the
shorter the. distances at which the collective description
applies, and the more useful this description becomes.
For a metal, the Debye length is of the order of 10 '
cm; and therefore, the collective description is applicable
practically down to interparticle distances.

Organized transverse oscillations of an electron gas
are also possible. These oscillations are electromagnetic
waves strongly modi6ed by the fields arising from the
collective particle response. Such oscillations are ob-
tained in the transmission of radio waves through a
highly ionized medium, such as the heaviside layer.
The organized transverse oscillations can be given a
treatment similar to that of the longitudinal oscilla-
tions. ~' The dispersion relation for these waves is

Cd~Cd p'+ C'k'.

The minimum wavelength for which the collective
behavior is important is, in this case,

This distance is clearly much longer than the Debye
length.

4P. Debye and E. Huckel, Physik Z. 24, 185 (1923). This
phenomenon was Grst studied in connection with highly ionized
electrolytes.

~ For a treatment along the lines of Bohm and Gross, reference
3, see D. Pines, PhD. thesis, Princeton University (1950).

pert+&sec+&pert intr (4)

where H&op & corresponds to the kinetic energy in
these new coordinates and H„, is a sum of harmonic
oscillator terms with frequencies given by the dispersion
relation for organized oscillations. Hp„~,„~ then corre-
sponds to a screened force between particles, which is
large only for distances shorter than the appropriate
minimum distance associated with organized oscilla-
tions. Thus, we obtain explicitly in hamiltonian form
the e6'ective separation between long range collective
interactions, described here in terms of organized
oscillations, and the short-range interactions between
individual particles. e

In our treatment, certain approximations must be
made, which are discussed in detail in Sec. II, in
connection with the collective approximation. These
approximations reQect the fact that while the effect of
the average 6eld on an individual particle is small,
these cumulative small contributions from each particle

6 In the case of longitudinal oscillations, this model for electron
interactions provides a physical basis for the hitherto empirical
use of a screened coulomb force to represent correlation effects.
Furthermore, it predicts a screening radius which produces
agreement with the experimental results for both the electronic
contribution to the speci6c heat of a metal, and the width of the
tail of the soft x-ray emission curve for sodium. D. Bohm and
D. Pines, Phys~ Rev. 80, 903 {1950).

In order to obtain a collective description of the
electrons in a metal we must use a quantum-mechanical
treatment, since the electron gas is highly degenerate.
Previous treatments of the organized oscillations of an
electron gas have been comparatively unsystematic in
that hamiltonian methods were not employed, so that
the results were not extensible to quantum theory. In
our treatment of the collective description hamiltonian
methods will be employed throughout.

Let us consider the hamiltonian for a collection of
charges interacting with the electromagnetic 6eld, the
particles and the Geld being described by appropriate
canonical coordinates. This hamiltonian may be repre-
sented schematically as

+D +pert++inter++field

where Hp„& represents the kinetic energy of the elec-
trons, H;„~„represents the interaction between the
electrons and the electromagnetic field, and Hf;, M

represents the energy contained in the electromagnetic
field.

Our program is to find a canonical transformation to
a new set of variables which will provide a collective
description of the system leading to results classically
equivalent to those obtained in the noncanonical
treatment. Thus, we shall require that the new field
variables oscillate independently of the new particle
variables with the characteristic frequency of organized
oscillation. When we do this we 6nd that the hamil-
tonian in the collective description can be represented
schematically as
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to the average Geld may produce a large change in
these 6elds relative to what they wouM be in a medium
of low charge density. Thus, perturbation theory is
applied to the solution for the motion of each particle
in the average 6eld of all the others, but cannot be
applied in similar fashion for the solution of the field
equations of motion. On the other hand, because of the
high density of particles, we may assume that only the
response of a particle which is in phase with the field
producing it will be important and that other responses
which depend on the position of the particle can be
neglected.

We confine our attention in this paper to the collec-
tive description of the interactions between electrons
brought about through the medium of the transverse
electromagnetic 6eld. These magnetic interactions are
weaker than the corresponding coulomb interactions
by a factor of approximately s'/c' and, consequently, are
not usually of great physical interest. However, the
canonical treatment of the transverse 6eld is more
straightforward mathematically than that of the longi-
tudinal 6eld; and since we would like to illustrate
clearly the techniques and approximations involved in
our methods, we therefore investigate 6rst the role of the
organized transverse oscillations in a description of
electron interactions. In Sec. II, we give a classical
treatment and discuss in detail the collective approxi-
mation and the effective residual interparticle force.
In Sec. III we give the analogous quantum-mechanical
treatment of the collective description. The longitudinal
oscillations wiB be treated in a subsequent paper.

Then, following the usual treatments, ' it can be shown
that our hamiltonian (5) becomes:

H =g(pP/2m)+g(4s e'/L') &[(p; ei,„)/m jql,„exp(ik x;)

+ P (2we'/mL')qi, „q(.eI.„s(.exp[i(k+1) x;j

+2+(p-l„p pl, +c'k'qg„q p„). (8)

Here pq„ is the canonical conjugate to qq„, and we also
have

p"=(p ~»)*.

We 6nd it convenient, for reasons which will become
clear later, to split up the term

(2xc2/mL') P qq„q~„eq„e~„exp[i(k+1) x;j

H p.„PpP/2m——, (10a)

H;„t,„=g(4xe /m2L')&(p, 'sl, „)qz„exp(ik x;)

P(2xe/mL') P q&„q&„s&„s&„
kbixv

lW —k

)&exp[i(k+l) x~j, (10b)

+~4~~ 2E[p~PP ~F+ (c k ++% )q~Pq (10c)

in those terms for which 1=—k and 14—k. When this
is done, our hamiltonian corresponds to the schematic
hamiltonian of the previous section, with

II. THE CLASSICAL CANONICAL TRANSFORMATION
TO THE COLLECTIVE DESCRIPTION

(A) Generating Function for the Transformation

The hamiltonian for a collection of charges interacting
with a transverse electromagnetic field may be written

H =g [y;+eA(x;)/cg'/2m

+ ([E'(x)+8'(x)g/Sx)dx. (5)

We expand A(x) in a fourier series in a cube of volume
I, , and impose periodic boundary conditions. Thus,

A(x) =g(4 /sLc') &qg„eg„exp(ik x),

where a~„ is a unit polarization vector, and for this
transverse Geld, p takes on values 1 and 2, representing
the two possible values of polarization perpendicular to
the direction of propagation. The wave number vector
k is assumed to take on both plus and minus values,
i.e., k =2xn, /L, where' = —~ . +00, etc. Toensure
that A(x) is real, we take

VII = ig-&~i ~

We will now show that a canonical transformation to
the new coordinates (X;,P;; Q~, IIL), which is generated
by S(x;, P;;qq, II~) as given below, constitutes the
desired transformation to the collective description.
This generating function is

S(x;, P;; qg, Iig) =Qx; P;+Pqg„lip„

where
+F(x;, P;; qp, Ii),), (11)

F(x;, P;; qa, IIg) =QPg„(P~)qg„lip„—(4xc'/m'L') 4

[(l P,/m)q, .+iIr,„j
XP(P; er.) expil x, (12).

(a' —(l P~)'/m'

b„(P;) depends only on the particle momenta and is of
the order w'/c', it will be determined in the course of
working out the consequences of this transformation
(see Eq. (25)); co represents the frequency of the
organized transverse 6eld oscillations. With this gener-

7 See, for instance, G. Wentzel, The Q24uetum Theory of Iiklds
(Interscience Publishers, Inc. , New York, 1949), Chapter IV.

It will be seen that au depends on the momentum P;. However,
this dependence is of the second order (in e/t, ), and the corre-
sponding changes in the transformation equations may be neg-
lected.
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ating function we obtain the following equations
relating the old and new coordinates:

aS (4zre ) &

pa= — =&,~+ (

axe, L mLzz) & lzoz —(1 P;)'/m'

P; a)„

X I (l P;/m)q&„+iII&, Ilz exp(z1 x~), (13)

Xo,= a5/aP;), —x,),+ (4—~e'/mzLz) &

XZ I [z(«.)~/[~' (1—P') /zm]]
lv

X[[(l P,)/m]q(. +zII ),]
+[(P,"e(,)lg/[zzz —(l P~)z/m, ']]
X[[aP+(1 P;/m)z]qg, +2i(l P;/m)II („]I

Xexp(il x;)++II»q»(ap»/aP;&), (14)

P„„=as/aq, „=n,„(1+g.„)
—(4 ~/ 'L')'ZI(»' .)(k P,)/

%'e see that there is a rather complicated interrelation-
ship between the old and the new coordinates defined

by these equations. %e will not be able to solve these
equations exactly to obtain the oM coordinates in terms
of the new coordinates or vice versa. Ke could obtain
approximate expressions for the old coordinates in

terms of the new, and then determine what form the
hamiltonian will take in terms of the new variables.
However, we feel that the nature of the collective
approximation will be revealed more clearly by a some-

what di8erent procedure. Ke will substitute the
"mixed" expressions for p;, p», and q» [(13), (15), and

(16)], into our old hamiltonian and thus obtain a
hamiltonian in terms of both old and new coordinates.
However, this hamiltonian can be simpli6ed consider-

ably with the aid of the collective approximation, and
after achieving this simpli6cation, we then express the
hamiltonian entirely in terms of the new variables.

B. Nature of the Collective Approximation

The approximations we find it necessary to make, in
order to apply the collective description to the electron.

gas, have been grouped by us under the general heading
of the collective approximation. The collective approxi-
mation involves the following requirements:

(1) The short-range electron-ion and electron-electron collisions
are neglected. This assumes that we are dealing with an electron

m[aP —(k P~/m)z]I exp(ik x,), (15)

Q»=aS/aII z„=q»(1+&»)—(4zre'/mzLz)&

X+I(P"ez )/[oP —(k P./m)']I exp(zk x.). (16)

gas in which the mean free time for such collisions is considerably
longer than the period of an organized oscillation. Actually, such
collisions tend to disrupt the organized osciOation of the system
as a whole; but if they are not too frequent, they lead only to a
small damping of the oscillations. ' The long free path needed for
the validity of this approximation actually occurs because of the
screening of the long-range part of the force, which leaves only
the short-range interactions to be accounted for in terms of
collisions.

(2) The organized oscillations are assumed to be of suKciently
small amplitude that each particle suBers only a small pertur-
bation in its straight line motion due to the combined fields of all
the other particles. Thus, we will neglect quadratic Geld terms in
the electron or field equations of motion and apply perturbation
theory to the particle motions. This is the customary linear
approximation, appropriate for small oscillations.

(3) We distinguish between two kinds of response of the elec-
trons to a wave. One of these is in phase with the wave, so that
the phase difference between the-particle response and the wave
producing it is independent of the position of the particle. This
is the response which contributes to the organized behavior of
the system. The other response has a phase diGerence with the
wave producing it which depends on the position of the particle.
Because of the general random location of the particles, this
second response tends to average out to zero when we consider a
large number of electrons, and we shall neglect the contributions
arising from this. This procedure we call the random phase
approximation. "

(4) We shall assume the smallness of (k.v)/~. In our case,
~/k~~, so that the smallness of gr v)/co follows from the smallness
of o/c. For longitudinal oscillations, however, we can have small
(k v)/co only for wavelengths appreciably longer than the Debye
length, XD. This follows because Xz is essentially f /ao, where P
is a suitable mean speed. Thus, the collective description is
applicable only for long enough wavelengths. This result agrees
with the general conclusion cited previously that both statically
and dynamically a dense ion gas exhibits organized behavior only
for wavelengths longer than X~ or 'Ag.

The collective approximation is similar to a complete
perturbation theory treatment in that perturbation
theory is applied to the particle motion. The diBerence
between the two approaches lies in the assumptions
made regarding the Gelds produced by the particles.
For instance, in Eqs. (15), and (16) we see that the
old and new field coordinates and momenta di8er by a
series of terms summed over all particle coordinates. A
complete perturbation theoretical treatment would
require that this sum be small, but we do not make this
assumption here. Instead we note that the small
modifications of the net Geld arising from each particle
may add up to a large change of the average field.

The principal advantage of the collective approxima-
tion is that it does not require a small cumulative
response to the fields. Thus, in this approximation we
shall retain terms in the hamiltonian proportional to
the square of the vector potential, whereas in a pertur-
bation treatment these would be discarded, since they
are formally of second order in the perturbing potential.
As we shall see, in the case of high particle density,
these can bring about a signi6cant modification in the
behavior of the electromagnetic field.

NThis damping is discussed in detail in Bohm and Gross,
reference 3.
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Hi;.ia=E{(IIa,+8F/8q», )(II ~,+8F/8q ~,)

C. Results of the Tranaformation; the Hamiltonian follows:
for the Collective Description

Let us now see what eGect the transformation has on
the various terms in our hamiltonian. Using Eq. (13)
we have

H».„——PF;2/2m+ (4~e'/m'L') &P [(I P,)/m]

{[(lP;)/m]qi„+iII i„}
X [P,"ai,] —exp(il x;)

ce' —[(l P;)/m]'

2~e' (P,"ai,)(P; aa„)(k l)/m
+

mL' ~i»- [i0'—(l.P./m)'][co' —(k.P./m)']

X {(l P,/m)qi„+iII i„}{((k P;)/m)qg„+iII k„}

Ke consider the terms for which 1=—h, and 14—h,
separately in the quadratic Geld terms in (17). When
1=—h, this quadratic term reduces to

2s.e' (P; aa»)'k'

mL' ~» |m[~e' —(k P,/m)']

{(k P;/m)'qi»q i»+II&»II &»} (18)

provided we assume an isotropic distribution of the P;.
Using Eq. (13) we may write the terms arising from
+1IlteF as

H;„„,= (4s e'/m'L') &Qqi»(P, ai») exp(ik "x,)

4ae' (1 aa„)(P; ai„)
+

m, 'L' is&». aP (l P,/—m)'
lg-A

X[(1 P;/m)qi, q &»+iII i,q&»]

+-,'(a»„ai„)q»„qi„exp[i(k+ I) x;], (19)

where we have split up the terms for which 1=—k,
and 14—k, and applied the transversality condition
P„k ai» ——0. It is convenient to group the terms arising
from the application of (15) and (16) to Hi;, ie as

—(4a e'/m'L') &Pgg„(P,"a»„)

{ie2qi, »+i(k P,/m)II i„.}
X

~02—(k P;/m)'
exp(ik x;). (22)

But this term is of order v'/c' smaller than our original
H; i„, Eq. (10b). We could devise a further canonical
transformation which would eliminate terms of this
order too, but this would only introduce corrections of
order a4/c' in the interparticle force. Since we will

confine ourselves to the terms of lowest order (a'/c') in
the interaction between particles, we can neglect this
small term (22) entirely.

Let us now investigate the quadratic 6eld terms
resulting from the sum of (17), (19), and (21). These
fall into two categories, which are given in (23) and
(24) below:

+ie'[Qi, „Q i,„2q»„—(8F/8II, „)
—(8F/81ii, „)(8F/8II k„)]}

+-',Q(c'k'+co„' —co') qi„q g„. (20)
kis

This particular combination is taken because P is a
function of qI„-. We then obtain

H „.„=-,'P {11,„11,„(1+2g„„)
kp

+& (Qk»Q &» 2—6»q&»q k»)+(i—e» +c k i0 )&»q—&»}

(47re' )» -P,"ap»(1+pi, »)

Lm'L')» ~' —(k P /m)'

X {—i(k P,/m)II i„+is'qi„}exp(ik x,)—(2ae'/m'L')

{(P; ai„)(P,"ai„)[(e—(k P;/m)(k P,/m)]}
XZ

i» [~e'2—(k P,/m)'][41' —(k P,/m)']

Xexp[ik (x,—x;)]. (21)

In (21) we have neglected terms involving $i»', since
these are of order v4/c', and for the particles with
which we will be concerned a'/c'(&1.

The sum of the expressions (17), (19'), and (21) will

give us our hamiltonian (8) expressed in terms of a
mixture of the old and new coordinates. When we add
these expressions, we find that those terms which are
linear in the field coordinates are reduced to

27( 8

F13 iklpv
k~ —l

(P; a&,)(P,"aq„)l k[(l P;/m)(k P;/m)qigi, „Iiq„iii„+—2i(k P;/m)q~„II i„]

m'[ce' —(k P,/m)'][aP —(I.P,/m)']

2(l ag»)(P; ai„) f 1 P„.i
+ { }qi»q i»+iII igi» +qa„qi, (ai,„ai„-) exp[i-(k+1) x;],

m[aP —(l P,/m)']. ( m j (23)
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(P,"ek„)'P ~k P;~ '
qkpq kg+—IIkg II kp—

mL' kk' m'[aP —(k P,/m)']

+~+ f(ekk&+co, '—~k)qk„q k„+2)k„(IIk„rI k„—~'qk„q k„)}+-,'E(ilk„il k„+w'Qk„Q k„). (24)

The terms in (23) are all quadratic in the field

variables, and in addition have a phase factor
exp[i(k+ I) x,], the argument of which never vanishes.
In order to discuss these terms, we transform from the
old coordinates x; to the new coordinates X;, according
to Kq. (14). We will then have two types of terms;
those in which x, is replaced by X;, and those which
arise from the difFerence between x; and X;. Now the
X;, because Hp„t, , ~ is a screened short-range inter-
action, behave to a good degree of approximation like
the coordinates of a free particle. We may then assume
that these are distributed at random, as in a perfect
gas. Since we have a very large number of particles,
the nonvanishing argument of the phase factor,
exp[i(k+I) X;], will cause the contribution of those
terms in which it is present to average out to zero.
This is essentially the random-phase approximation.

The efFects of the correlations in the x; are represented
in the di8erence between x; and X;.However, the terms
arising from this difFerence multiply quadratic 6eld
terms; and it may be shown that the resultant products
either make nonlinear contributions to the equations
of motion, which we neglect in the linear approximation,
or average out to zero because they contain a phase
factor with nonvanishing argument. ' Thus, in general,
terms which are quadratic in the field variables and
contain a phase factor with nonvanishing argument
may be neglected in the collective approximation.

When we consider the terms in (24), we see that if
we take

gk„———(2we'/mL') Q 8(P,"ek„/m)'/

[ '—(k P'/m)'] (25)

then the quadratic terms in G»II », reduce to
xgk„ II»II ». We similarly see that with this choice
of gk„, the quadratic terms in qk„q k„become

2kgqk„q k„c'Ic'+~~'+(4w—e'/mL')

dispersion relation for transverse plasma oscillations. "
Thus we see that we have reduced the field terms
represented in (24) to

kZ(ilk, iI-k, +co'Qk, Q k,). (2g)

The remaining terms are given by

2xe' (P, .ek„)(P,"ek„)[c0—(k P,/m)(k P,/m)]

m'L' cikl [cd' (k Pc—/m)'][ce' —(k Pg/m)']

Xexp[i1c (x;—x;)]. (29)

We now wish to express this term entirely in terms of
our new coordinates. One can show, using the linear
approximation and the random-phase approximation,
that the lowest order (in s/e) field term resulting from
substituting our expression for x;, (14) into (29), is

H&" =+(Pp/2m)+-, '+ilk„li k„

+co'Qk„Q k„(2n.e'/mkL'—)

I (P,"e»)(P; ek„)[co' (Ir P,/m)—(k P,/m)]}
X

[a)'—(k P;/m)'][ca' —(k P./m)']

)& exp[i k(X;—X;)]. (31)

(4~e ) 4k~ (Pc'eke)qkP
exp(ik X,). (30)

EmkLk) 'kc (yk —(k P,/m)k

This term, which is of the same sort as (22), may be
neglected for the same reason —that its inclusion will
lead to fourth-order terms in m/c in H„,c; c."Thus, we

obtain, to this order of approximation, only the above
term (29) with x; replaced by X,.

Our transformed hamiltonian, expressed entirely in
terms of the new coordinates, the "collective" variables,
thus takes the form:

{P(P,".ek„/m) [kP+(k P,/m)']}

[cd'—(k P;/m)']' H &"p„c——QP,k/2m, (32a)

This is just the hamiltonian we sought, as discussed in

(26)
Sec. I, with

but, if we take

ca'= c'Ic +co '+ (4m e'/mL')

}(P,"ek„/m)'P[aP+(k P;/m)']}xZ, (»)
[co'—(k P;/m)']'

then this term vanishes. This choice of aP is just the

't' This difFers from the dispersion relation quoted by Langmuir
in the terms of order o'/c2 which he neglected. It may be shown,
using methods similar to those of Langmuir, that the above
dispersion relation is obtained when these terms are not neglected—see D. Pines, reference 5.

"The term in Eq. (14) involving 8&/8I'; leads to quadratic
field terms multiplied by phase factors which do not vanish.
According to the general properties of the collective approximation
this term can be neglected.
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+ose = gpff kyle-kg+ & QkyQ —key
kp,

e,.„;„,= (2—~e'/m'L')

(P; e)„)(P"eg )[co'—(k P~/m)(k P;/m)]
X

[g'—(k P;/m)'j[oP —(k P;/m)'j

(32b) the interaction is greatly reduced for small values of k,
or to put it another way, screened out for sufFiciently
large interparticle distances. To see this in more detail,
let us evaluate Hp„t;„t in terms of the interparticle
distances. First, we carry out the sum over polarization
directions, obtaining

Xexp[ik (X,—X,)j. (32c)

We see that the new field and particle variables no
longer interact. The new field coordinates carry out
oscillations of frequency or given by the transverse field
dispersion relation, Eq. (27), and thus correctly describe
the organized transverse oscillations. The new particle
coordinates act like those of a free particle, to the extent
that we are able to neglect H peart &nt which represents
an effective residual particle interaction.

D. Effective Residual Particle Interaction

Let us now investigate H„,t,. t in some detail. It
e6'ectively corresponds to that part of the magnetic
interaction between electrons which is not describable
in terms of the organized transverse oscillations. Since
cv'~&c'k', we see that this term will be at least of order
v'/c' smaller in magnitude than the corresponding
coulomb interaction between the electrons, which is
given by

(2s.e'/L')P(1/P) exp[ik (x,—x. ,)j.
Hence, we shall consider only the lowest order (in v/c)
terms represented in (32c), neglecting those terms of
order e4/c4 as compared with the coulomb term. The
lowest order terms may be written:

e„„;„~—(2~e'/m'L')

(P' s~.)(P"e~.)
X P exp[ik (X,—X,)]. (33)

*'i~~ co'—(k P;/m)'

Now to this order of approximation, we may write
z'=c'k'+co„', so that we have

2s e' (P,' eg„)(P,"ep„)

m'L' ~i&l c'k'+re„' (k'. P;/m)'—

Xexp[ik (X;—X,)]. (34)

We now compare the above expression with the analo-
gous term in the hamiltonian from which may be
derived the Biot-Savart law for the magnetic interaction
between particles. This may be shown to be

H,s„,.g
———(2x e'/m2L')

(P; ea,)(P;.ea,)
exp[ik (X,—X,)j. (35)

'i~~ c'k' —(k P,/m)'

Because of the presence of or„' in the denominator in
Eq. (34), we see that when the ion density is large,

Hpart int

Xexp[ik (X;—X;)g. (36)

For simplicity we consider only the first term in Hp
and we neglect (k P,/m)' in the denominator, since it
will always be order v'/c' smaller than c'k'. We replace
the sum over k by an integral, multiplying by the
density in k space, (L/2s)'. We thus have:

H&" p.„t;.t ———[2~e'/m'(2s-)'j+P, "P, dk

X {[1/(o '+c'0'1 exp[ik (X;—X,)j}. (37)

The integral over k yields just

2s.~[exp {—[cd„/c] (
X;—X,

) }7/ } X;—X, },
so we have

H "„„t;„i=—(e'/2)g(P, "P,/m')

X[exp{—(cd,/c) } X,—X;}}]/}X;—X;}. (38)

This leads to a screened Biot-Savart law of interaction
between the particles, with the interaction being
screened out at distances c/cv„. For a metal, where
sp 10 ', this screening distance is 3X 10 ' cm.

III. QUANTUM-MECHANICAL TRANSFORMATION TO
THE COLLECTIVE DESCRIPTION

A. Generating Function for the Transformation

We now carry out a quantum-mechanical treatment
of the preceding classical material. We shall see that
the quantum-mechanical calculation yields essentially
the same results as the classical treatment in the
preceding section.

We find it convenient to work in the following repre-
sentation. We expand in terms of the creation and
annihilation operators for the transverse field, aj,„and
(a~.)*,

A(x) =g ( sr2k /cLid') &[a~„e px(ik x)

+aA,„*exp( ik x) jei,—„(39).

a~.= (~/2&)'[if~. +i(P ~./~) j,
a~,*=(~/2&)'LC ~. i(P "/~) j, —-

g~„——(h/2') &[ay„+a p„*j,
pg„———i(ka)/2) &[a~„—a a„*j.

(40)

These are connected with PI,„and q~„by the following
relations:
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Using these, one can show that the classical hamiltonian rules as the (x;, p;) by
(8), which is equally valid in the quantum-mechanical
case, leads to the following hamiltonian. " in this x;= {exp(—iS/h) } X;(exp(iS/h) },
representation: p;= {exp(—iS/h) j P;{exp(iS/h) },

(44a)

H =p (p,k/2m)+ (e/m) Q (2grh/kgL') &(p; ek„)

X(ag„+a g„.„*)exp(ik x,)+(2ire'/mL')

X P (h/kg)(ek, «„)(ak„+a k„*)(ag„+a g„')
klan, vi

lW —k

Xexp[i(k+1) x;)+kkPhkg(ak„ak„*+uk„*ak„)

+kp[h(rug'+C' h' cd' )/-kg)—[ak„ak„'+uk„*a»

and similarly

ak„(exp(———iS/h) }Ak„(exp(iS/h) }. (44b)

We may consider (44a) and (44b) as operator equations,
and take S to be a function of the new operators
(X;, P, , A», A»~) only. 5 will be the quantum-
mechanical analog of our classical generating function.
The relationship between the old and the new hamil-
tonians may similarly be viewed as an operator equa-
tion:

krak

+a—kpakgg+a —kk akk ) (41)
H= {exp(—iS/h) }a{exp(iS/h) } (44c)

We may adopt the schematic notation of Sec. I, with

H...g
——p(p /2m),

H;„g„——(e/m)p(2xh/cvL')&(ak„+a k„')(p, ek„)'

where 3C represents the hamiltonian expressed in the
new coordinates.

The desired canonical transformation to the "col-
lective" representation is then defined by the following
generating function

S=—(ei/m)g(2grh/kgL') ~

+-gp[h(co„'+e'h' —cek)/co)[a „a „*+a„*a„

+a „a „+a „*a „*). (42c)

The order of factors in (42b) is not essential because,
due to the transversality condition, y;. e» commutes
with exp(ik x.;). We are working in the Heisenberg
representation and our operators satisfy the usual
commutation rules:

Sky p Clv

+kis ~lv

[p;» x ]

ikey

jib

= [ak„, ag„)=0,
= (h/i) f'g,,f'gg„,

(43)

Just as we did in the classical case, we now seek to
find a canonical transformation to the collective de-
scription, in which the held coordinates describe the
organized transverse oscillations. The transformation
theory most suited to our purpose is briefly as follows. "
We define new operators (X;, P,) which possess the
same eigenvalues, and satisfy the same commutation

'~ This hamiltonian differs from the customary one, because ~ve

have expanded in terms of an arbitrary oscillation frequency co,
rather than taking oy=ck.

"Quantum-mechanical transformation theory is developed in,
for instance, P. A. M. Dirac, Pr~ecip/es of Quuntues 3fechanics
(Oxford University Press, London, 1935), second edition.

Xexp(ik x;)+(4ire'/mL') p (h/2cd)(ek„«, )
klpcvi

lW —k

X(ak„+a k„*)(ag,+a g„*) exp[i(k+1) xg], (42b)

Hgiegd= kphca(akggakk +akgg akk)
»

X ([(P; sg.)Ag, /(cd —(1 P,/m)+hP/2m)] exp(il X,).
—[exp( —zl X;)][Ag,*P,"eg„]/

(co—(1 P,/m)+ hP/2m) }. (45)

B. Consequences of the Transformation

In working out the consequences of this transfor-
mation, we shall expand the exponentials, exp(&iS/h),
so that (44c) may be written:

H =K (i/h) [S,K)—(1/2—h') [5, [S,K))
+(i/6h')[5, [5, [S,se)))+ . (46)

We will classify terms according to the power of S they
contain —i.e., [5,3C) is the first-order commutator of
S and X. We shall see that the terms arising from

[S, [5, [5,BC))), and higher order commutators can
be neglected if we restrict our attention to the lowest

order terms in gg/c.

The following relationships are useful in applying

(46):

p;k
——P,k

—(i/h) [S,P;g,]+.
=P,k+ (e/m) p(2s h/kgL') glk

X {[(P; sg,)Ag./(&a —(1 P;/m)+hP/2m)]

X[exp(jl X;)]+[exp(—il X;)]

[A,„*P; eg„/(c0 —(1 P;/m)+M'/2m)] j, (47)
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exp(ik. x;) =exp(ik X;)—(i/h)[S, exp(ik X,)]+
=exp(ik. X;)—(e/mh)Q(2s h/coL') &

H;„~, which we denote by

X'; c„——(e/m)g(2s h/ceL') &(Aa„+A a„*)

y, {P;.ac„A c,[I/(ce —(I P,/m)+ AP/2m')

—1/(ce —(I P;/m)+ (AP/2m) —hl k/m)]

yexp[i(k+I) Xc]+[exp[i(k—I) X;]]
y P; rc„A c.'[1/((u —(I P;/m)+ (AP/2m)

—hl k/m) —1/(ce —(I P,/m)+AP/2m)]

+hk ec,[(exp(ik X;))(Ac„/(ce—(I P,/m)

+AP/2m)) exp(il X,))—(exp( —il X,))

X(Ac„a/(ce —(I P,/m. )+AP/2m))

X(exp( —ik X;))]}, (48)

cc» Aa„———(i/h) [S,A a„]+
=A a„—(e/mh)Q(2s h/cdL') &[exp(—ik X;)]

X(P; ea„) exp(ik X;). (53)

Thus, there are no interaction terms of this order (in
s/e) in the new hamiltonian. The vanishing of the
linear 6eld terms in this order is one of the desired
properties of the hamiltonian appropriate for the
collective description.

When we consider the terms arising from the second-
order commutators in P», c and -', Pa„Ace(aa„ca»*
+ca»aa»), we see that they will yield just minus
one-half the terms given by the 6rst-order commutator
arising from 3'.~; ~„, and that all of the terms arising
from the higher order commutators in these two terms
will bear a similar simple arithmetical relationship to
the terms in the next-lower order commutator in
K; t,„.The 6rst-order commutator of 5 and 3'. ;„t,„is:

—(i/h) [S,K';~c„]= —(ei/mh)Q(2s h/ Lce') &

X[(P;.s,)/( —(k P'/m)+Aha/2 )] (49) X {[S,(I'; „)](A „+A „*)(e p('k X,))

The calculation of the commutators for (47) and (49)
is trivial. In obtaining (48) one encounters commutators
like

[{1/(ce—(I P;/m)+AP/2m) },{exp(ik X;)}].
Such a commutator may be easily calculated, provided
one notices that:

{I/[ce I P,/m+—AP/2m]} exp(ik X,)
=exp(ik X;){1/[ce—I P;/m+AP/2m

—hl kb;;/m] }. (50)

That (50) is true, may be seen by multiplying both
sides by (ce I P /m+ AP—/2m) and commuting this with
exp(ilt X,) on the right-hand side. Using (50), we see
that:

[{I/(ce —(I PI/m)+ AP/2m) },exp(zk. Xc)]
= {exp(ik X;)}{1/(ce—(I P;/m)+(AP/2m)

hbgI k/—m) 1/(ce —(I P;/m—)+AP/2m)} (51).
W'e now consider the 6rst-order terms arising from Hp t,

and &Pa„ha&(cca„cca„+a»*caa„) These are g. iven by

—(i/h)[S {E(&'/2m)+kZA~(A»A»*+A»'A») }]

= —(e/m)P(2~A/~L') a{(A,„+A,„*)

X(Pc s») exp(ik X;)}, (52)

as may be verified using the commutation rules anal-
ogous (43) for the new coordinates. But these terms
thus cancel one of the zero-order terms arising from

+(P,"sa„)[S, (Aa„+A a„*)](exp(ik.X,))

+(P; „)(A „+A „*)[S,(exp(ik Xc))]}. (54)

It is quite straightforward, but tedious to show that
this reduces to

—(4 ~/ 'L') 2 {(P',)(P' .,)/
[ga —((k P;/m)+hh/2m) ]}exp[ik (X,—X,)], (55a)

4me' (hh'/2')(P;. s»)'
+

maL cac [ce—(k P./m)]' —h'hc/4m'

X {Aa,Aa, *+Aa,'Aa, +Aa, A a,+Aa,*A-a,*} (55b)

In reducing (54) to (55a) and (55b) we have neglected
a number of terms which are quadratic in field variables
and are multiplied by a phase factor with nonvanishing
argument, exp[i(k+I) X;]. This is the same approxi-
mation we made in the classical case, when we neglected
the corresponding terms (23). The justification used for
the classical approximation may be directly applied to
this case. Since, as we have noted, the second-order
commutators arising from H~, c and saba„hca(ca»caa„*
+u»*a») yield just —as{ —(i/h)[S, Kr;„c„]},then the
combined contribution of these terms and the first-
order commutator with 3'.~;„t,„to our hamiltonian will
be —(i/2A)[S, K;,c„] or one-half the sum of (55a)
and (55b).

In addition to the unconsidered higher order commu-
tators in the terms we have already discussed, there are
two terms we have not yet investigated. One is a
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quadratic term in the 6eld variables in II; t„,
(4sca/mL') P (h/2aa)(ea„si, )(aa„+a a„*)

X(a~.+a ~,*) exp[i(%+I) x~].

aa'= (a,'+c'k'+ (47re'/mL') P (k'/P; sa„)'/re'}

X }1/(a0—k P;/m)' —h'k'/4' I. (57)

This is our quantum-mechanical dispersion relation for
the organized transverse oscillations. It is almost
identical with the analogous classical dispersion relation

(27), and reduces to the latter as h—4.
When we combine all of the terms we have considered

thus far, and assume that the frequency of the organized
oscillations is specified by (57), we obtain

3C= Q(P,2/2m)+ —,'Qh(o(A a„A a„*+Aa„*Aa„)

2%8 (P; ea„)(P,"ea„)

m'L' '~a~ aP —[(k P m/) +h'k/m2]2

Xexp[ik (X;—X;)], (58)

where we have used Kqs. (55a), (55b), (56), and (57),
and taken one-half of the sum of the terms in (55a) and
(55b). This is just our desired hamiltonian for the
collective description. It reduces to the classical hamil-
tonian (31) as h—ao. H~„&;« is here given by

27( 8 (P; sa,)(P; sa,)
Hpsrt int

maLa '~'a~ u)a [(k P;/m)—+hk'/2m]a

Xexp[i(k (X; X;)].. (5—9)

This term may be neglected because it is quadratic in
the 6eld variables and contains a phase factor
exp[i(k+1) x;]with nonvanishing argument. The other
term is from H fipple, and is, to 6rst order,

-'Q(&o '+c'k' —oP)(h/co) fAa Aa *+Aa *Aa

+Aa,A a,+Aa, *A a,* (i/h)—[S', (Aa,Aa„*

+Aa,*A a,+Aa,A-a, +A a,*A-a,*)]}. (56)

On comparing the zero-order terms in (56) with the
quadratic fiel terms resulting from —(i/2h) [S,Kr; &„]
obtained from (55), we see that the sum of these will

vanish if we take:

It is essentially the same as our classical result (32c)
since the hk'/2m term is unimportant for most cases
of interest.

We may neglect the terms arising from the higher
order commutators we have not yet considered, for
the higher order commutators in that part of Hf;, i~
given in (56) are of the same character as those resulting
from (55b). Thus, we see all of the higher order commu-
tators will be arithmetical fractions of those resulting
from [S, [S,Xr;«„]]. But as may be seen from
(55a) and (55b) the lowest order term arising from
[S, [S,X;«„]]will be a factor of w%' smaller than
H;««, and may be neglected, just as (22) was in the
classical case, since its inclusion would lead to a fourth
or higher power of s/c in H, «a;~t, .

Thus, in all respects the quantum-mechanical results
are essentially the same as those obtained with our
classical treatment of the previous sections. We 6nd
that we must carry out the same approximations for
this case, and the analysis of H„,t i„t will yield results
similar to those of Sec. II.

IV. CONCLUSION

In conclusion, we should like to point out that we
have verified, both classically and quantum-mechani-
cally, our qualitative picture of the role of organized
transverse oscillations in electron interactions. We have
seen that, by a suitable canonical transformation to the
collective variables, we can show that the effects of
magnetic interaction are divided naturally into the two
components discussed earlier:

{1) The long-range part, {)&c/co„). This is responsible for the
long-range organized behavior of the electrons, leading to modified
transverse Geld oscillations. We may interpret these interactions
as being redescribed in terms of the coordinates of the modified
transverse oscillations.

(2) The short-range part, (X&c/~~), given by Hp„t; t, which
does not contribute to the organized behavior, and represents the
residual particle-interaction after the organized behavior of the
system has been taken into account.

Furthermore, in those regions in which organized
behavior is unimportant (i.e., X(c/co~), the new hamil-
tonian reduces to the appropriate particle hamiltonian,
in which the electrons interact according to the Biot-
Savart law, and the transverse 6elds oscillate with
frequency co=ck. For, as we have seen, Hp t ' t de-
scribes the Biot-Savart law for short wavelengths, and
in this limit our dispersion relation becomes co'= c'k'.


