
PARTICLE SPIN AN D ROTATION 62i

serious is the assumption that the ejected electron 6nds
itself in the 6eM of a purely neutral chlorine atom, or in
reality, of four such atoms. Another potential source
of error may occur in the approximation leading to the
additive result in Eq. (1).It was estimated by Petersen"
that a double summation, quite laborious to evaluate,
which takes account of molecular con6guration, could
be neglected, leading to this additive result.

Digermane represents an interesting case in that one
would expect to see results similar to the Kossel
structure peak of GeH4 and at the same time at least
a single Kronig structure peak as found for Cl2 or Br2.
The experimental curve shows a peak at the same
energy position as found for GeH4, but it is of greater
width with two "steps" suggesting a washed out
structure. Any Kronig structure contribution can only
be a small, wide maximum.

Structure for the two germanium halides presents
similar features; but the positions of the structure are
closer together for the tetrabromide (Table II), and the
amplitudes for the latter are in general smaller. %'bile

it is true that the more massive bromine atoms ought to
scatter more e6'|;ctively, the increase in internuclear

distance leads to the reverse effect. Until the correct
fields of the bromine atoms in GeBr4 are know+, the
fine structure cannot be calculated and so the experi-
mental results are not compared with theory.

In view of the results obtained, it appears that the
theory needs revision before it can be relied upon for
quantitative predictions. The theoretical value of the
ratio of the average absorption coeS.cient of Ge in the
polyatomic molecule, GeC14, to that of the isolated
atom is too high; the number and positions of the
theoretically predicted maxima and minima are not in
agreement with experiment. In addition the correct
location of the position of the Ge edge and the deter-
mination of its width require 6rst a resolution and
analysis of the experimental curve.

The author wishes to express his gratitude to Pro-
fessor J. A. Bearden, under whose direction this work
was carried out. It is a pleasure to acknowledge helpful
discussions with Professor R. de L. Kronig, Dr. G. L.
Rogosa, and Dr. G. Schwarz. Thanks are also due to
Dr. T. H. Berlin for valuable suggestions regarding the
manuscript.
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It is proposed to treat the spin of a particle phenomenologically by considering the particle as a small
rotating sphere, the rotation of which is described by euler parameters. If the rotation is quantized in the
space of the euler parameters, one obtains both integral and half-integral values for the spin. In this way
one arrives at a formalism in which the spin components can be represented as differential. operators in the
Schroedinger representatien.

ROM the standpoint of group theory, the spin of an
electron is connected with the two-valued repre-

sentations of the rotation group in three dimensions.
In the present paper an attempt is made to investigate
some properties of a model in which this connection is
used.

1. ROTATION PARAMETERS

Let us consider a free particle with spin as a small
rotating rigid sphere. Let us take two cartesian coor-
dinate systems with origins at the center of the sphere,
one, XI'Z, with axes having 6xed directions in space, the
other, X'Y'Z', rigidly attached to the sphere. To
describe the rotation of the sphere one can make use of
the euler angles 8, p, f, where 8 is the angle between the
Z and Z' axes, y is the angle between the F axis and
the intersection of the XF and. X'I"planes, and f is the
angle between the latter and the F' axis. However, for

the present purpose we shall introduce instead the
euler parameters' de6ned by the relations

g= sin-,'8 sin~(f —q),
g= sin28 cos~~(P —q),
f= cos~28 sins'(P+ q ),
y= cos-', 8 cos-', (P+ q),

so that
$2+ ~2+ f 2+ X2

In terms of these parameters, the direction cosines of
the X'Y'Z' axes relative to the XYZ axes are homo-
geneous quadratic functions, ' so that changing the
signs of all the parameters leaves the orientation of the
sphere unchanged.

For the sake of greater generality and convenience,
let us now take four new parameters (~ (k=1, 2, 3, 4)

E. Y. Whittaker, Analytical Dynamics {Cambridge University
Press, London, 1987, or ¹wYork, 1944), pp. 8-10.
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defined by To quantize the system in the $-space, one introduces
commutation relations

where kk'rl 7—r~kk= &Mkl. (16)

Summations, unless otherwise indicated, are to be taken
over the values 1 to 4. The space spanned by these
parameters will be referred to as $-space.

From the properties of the euler angles and param-
eters' it is found that the components of angular velocity
of the sphere with respect to XYZ are given by

where the relation (ikl)=(123) means that (i, k, l)
form a cyclic permutation of (1, 2, 3) and a dot denotes
differentiation with respect to the time. Similarly, the
components of angular velocity with respect to X'V'Z'
are given by

~ '= 2(«6 46 —46+—6ik)/P' (i@)= (123) (6)

It follows from this that the p, ;,. obey the usual com-
mutation relations for angular momentum

PjkPlm PlmPjk 'kh(Pjlbkm+Pkm8jl Pjm5kl Pkl8jm) ~ (17)

From Eqs. (14) and (17) it follows that the components
M, satisfy the usual commutation relations

M;Mk MkM—,=ihM(, (jkl) = (123). (18)

On the other hand, for the components M one obtains
commutation relations of the form'

M/'Mk' Mk'M,—' = ih—M&', (jhow)
= (123). (19)

The components M, and M~' commute, for all values of

j and k.

2. POLAR COORDINATES

The square of the angular velocity is then given by

~'=4 Z(«pk 4$ )'Ip'—
a&k

=4(Z 5" p')I p'—

To investigate the quantization of the rotation in
g-space it is desirable to introduce polar coordinates.
Several diferent polar coordinate systems suggest
themselves, but perhaps one of the most convenient is

(7) given by the relations:

If the sphere representing the particle is assumed to
have a moment of inertia I about any axis through its
center, then its kinetic energy is given by

7'=V~'=2I(Z k" p')I p'— (8)

The generalized momentum components are given by

~'= ~7'/~$*=4I(pt' k*p)/p', — (9)
whence

~ 2 —4I2~2/p2

The angular moment components of the sphere
relative to XYZ and X'Y'Z', respectively, are

M;=I(a;, M =I(a,' (i=1, 2, 3), (11)

so that the square of the angular momentum is given by

$k= p sinu cosP,
$k ——p sina sinP,
$~——p cosa sing,
«= p cosa cos+,

(20)

where 0~&as s/2, 0&~/ &2~, 0&~y(2s.. Comparing
this set of equations with Eq. (1), we see that

a=tl/2 &=5(v 4'+~), v=—2(v+0) (21)

(22)

From this, by the usual procedure for the case of curvi-
linear coordinates, one obtains as the Schroedinger
equation

The substitution of (20) into (8) gives for the classical
kinetic energy

T=2I(a'+P' sin'a+j' cos'a)

M2 I2~2 1p2 P ~ 2 (12)
wht:re

(23)

On the other hand, one can define in the P-space
generalized angular momentum components

K'=8IT /h'=4(M') lh' (24)

uv = h.~~ L~~ =4I—(k'k~ 4k*)/p"—
the subscript e indicating the eigenvalue of the quantity

(13) in question, and

so that Eqs. (5) and (6) can be written

~.= ( k.+ski)/2I,
co = (p4, pk()/2I, (ikl) = (—123).

V'0 =
(5a)

j. 8 f' 8%')
sino, coso. —

sinacosn Bn 0 aa)

It follows then that

M*=k(p4.+kkk&) &'
M =g(p4; @kg), (ikl)=(123),—

and
M'=kk Q p,p.

&&i

(14)

82%' 8~'0
+etna +tana

QP2
(25)

8"f

~ O. Klein, Z. Physik 58, 730 (1929}.

Separating variables and imposing on + the con-
ditions of finiteness, continuity, and single-valuedness
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in the $-space, one gets as a solution

O'= G(n) sin~ "~a cos~"~ne'&~+"»,

where m, n=o, ~1, ~2, , and

G(a) =F(u, b; c; sin'a),

where Ii is the hypergeometric function,

a=-'[ m + n +1+(IV+1)&],
b=2[ m + n +1—(E2+1)&]
c= lml+1,

eigenvalues are essentially the same as those obtained
in the "symmetrical top" calculations' for the sphere.

The fact that, for S a half-odd-integer, the wave
functions are double-valued functions in ordinary space
does not appear to cause any difBculty. 4 It can be

(27) readily shown that if one operates on a wave function
characterized by L, M„M,' with a component M, one
obtains a linear combination of wave functions with
the same L and M, ', but various values of M, . Hence

(28) the criterion of acceptability proposed by Pauli is
fulfilled.

and where, to make 4 well-behaved, one must have 3. CASE S=~
b= —p (p=01 2, ),

or, setting I= lml+ l nl+2p,
%2=1.(1.+2). (30)

As a simple example, consider the case (say that of
the electron) 5=-,', for which M. , M, '=&22. One
readily obtains for this case the following four wave
functions:

+-'
+ ~

Writing I.= 25 and using (24), we get 4'& = cosae'~/2r,
+2=i sinne 'e/2r,
4'3= i sinae'e/2r,
44= c osen-'~/ r, v

+2,
1

+27
1
27

(31)(M'), = h'S(5+ 1), 12'
2where S=o, -'„1,—,', . If the value of S is given, then

m and n must satisfy the condition

5—l(lml+ lnl) =p.

Representing the p,,~ by operators, we have
2M,/h= o;= iakn—(, (jkt) = (123), (40)

(33)4422% = 2kB%'/—Bp =mh4,

p43@= i hB%'/By =nh+—,
the 0's being the doubled Pauli spin matrices and the
n's the Dirac matrices. VVith these functions one 6nds
that the matrices of the M are given byso that, by (14),

where the functions have been normalized and the
(32) phases chosen so that the matrices of the angular

momentum components are given by

M,+=ash(m+ n) 0 (34)

If, for (M.)„the eigenvalue of M„we write M,h, then
it follows that

M, =-', (m+n).

Similarly, if for (M, '), we write M. 'h, then

M, '=-', (n —m),
so that

From (32) it follows that for a given value of S
M. , M.'=S, S—1, , —5+1, —S. (38)

There are 25+1 different values of M„and for each
such value there are 25+1 different states characterized
by different values of M, ', giving a total of (25+1)'
states.

If one changes the signs of all four g-coordinates,
the orientation of X'Y'Z' relative to XFZ is left
unchanged. Such a change of signs is brought about in
the polar coordinate system by changing P to P+2r, p to
y+m. Now, if S is zero or an integer, m and n are both
odd or both even, and 4 remains unchanged; if S is a
half-odd-integer, either m or n only is odd, and 4
changes sign. Hence 0, as a function of ordinary space,
is single-valued in the 6rst case and double-valued in
the second. In the 6rst case the wave functions and

4. EXTERNAL FIELD AND PARTICLE MOTION

Let us assume that the particle has a magnetic
moment associated with its spin, so that the magnetic
moment is given by XM. If it is situated in a uniform
magnetic Geld gt, then the hamiltonian describing the
rotation of the sphere in this Geld will be

a=r —xM g,
or, if one takes the Z axis in the direction of @,

(42)

(43)

It is evident that, if one sets up a Schroedinger equation

' F. Reiche and H. Rademacher, Z. Physik 39, 444 (1926).
4 E. Schroedinger, Ann. Physik 32, 49 (1938); W. Pauli, Helv.

Phys. Acta l2, 147 (1939).

2M@ /h 2nln2n3y 2M3 /h nln2n3n4y (41)
2M, '/h= n4

If one is concerned only with the components M;,
then one can take a set of states associated with a single
eigenvalue M, '. For instance, one can take only +& and
4'2 and thus obtain the two-rowed Pauli spin matrices.
On the other hand, if one takes all four 4's, then one
can form the above six four-rowed matrices which,
together with their products, formally give the full set
of Dirac matrices.
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(M,+iM„)+=
—fk

gt'(p+y)

t
8% 8% 84'~+—i ctnn i —tan—n

E8n 8P 8y i '

(M,—iM„)% =

t8% 84 8% y

X (
i c—tnn——+i tann

L. 8n 8P 8y 3

for this case, the solution for 0 will be the same as was
obtained above in the absence of a 6eM and the change
in the energy due to the Geld will be given by —Xk@M,.

Thus far we have considered the sphere as rotating
about a 6xed center, i.e., the particle as being at rest.
To take account of the motion of the particle, one sets
up a Schroedinger equation with a hamiltonian that
includes both translational and rotational kinetic and
potential energy, associated with the position and
momentum of the particle as well as its spin. The dif-
ference between the present procedure and the usual
one (Pauli) lies in the fact that spin components are
here represented by differential operators instead of
matrices. Substituting we = i7i8—/8ge in (14), one
obtains the spin components in the operator form. Alter-
natively, in terms of the polar variables n, P, & one finds

S. DISCUSSION

In discussing the rotating sphere model of the elec-
tron, mention might be made of the work of M. H.
Payne, ' in which the electron spin is treated by means
of bipolar coordinates, the electron being regarded as a
point mass moving on the surface of a sphere. However,
not only the model, but also the point of view there are
quite diGerent from those of the present work.

The chief purpose of considering the spin as a rotation
described by variables in the (-space is to enable one
to represent the spin components by operators (in the
Schroedinger representation) as well as by matrices.
From the formal standpoint this appears desirable,
since it permits one to treat all physical variables in a
uniform manner. On the other hand, it is well known'
that in the case of an electron the rotating sphere model
leads to serious diKculties if the sphere is taken to have
the classical electron radius. These difhculties may be
associated with the necessity for changes in some of our
physical concepts when we are dealing with very small
dimensions. It is possible that, after such changes, the
rotating sphere model may nevertheless retain an
approximate validity. For the present, at any rate, the
spin description considered here has to be regarded as a
phenomenological one.

In conclusion, the author wishes to express his in-
debtedness to Professor E. L. Hill for helpful advice.

APPENDIX

(M.'+iM„') 4 =
—i/i

gt(P—v)

—ik (8'0 84' )M+=
(

—+—),
2 E8P 8y i '

(44)

If one takes a polar coordinate system defined by

$1 =P S1Ilu S1Il'e COsie,

b =p sinu sine sine,
$3=p sinu cose,
$4= P COsus

where 0 & u ~&x, 0~& e ~& x, 0 ~&m&2m, then in Eq. (23) one has

i'84 84 8'0)
X

~
+i c—tnn —+i tann —(,

(8n 8P 8y i '

1 8 . 8'k 1 8 . 8'0—sinmu —+ . . —sine-
sin'u Bu Bu sin'u sine Be Be

1 82%'

sin'u sin e Bm'

(M.' iM„')+—=
2

~8%' 8% 8%'y
X

I
i ct.nn

(8n 8P 8p i '

—ih, It'8%' 8%')

2 (8y 8P i
The wave function for a given state will consist of a
single component which, however, will depend on the
g s, in addition to the position coordinates.

In this case the well-behaved solutions of the equation are found
to be

0 =R(u)EI(cose)e' "
where l=O, t, 2, , ~m~ =l, l t, , and—

R(u) = (sinu) O'I, +~'+&(cosu)

in terms of an associated Legendre function with L=l, l+1, ~ ~ .
This can also be written sin'uQ(cosu), where Q is a polynomial of
degree L—l. In terms of L, E is again given by (30), and the
total number of states for a given value of L is readily counted
up to be (L+1)'=(2S+1)'.

~ M. H. Payne, Phys. Rev. 65, 39 (1944).' G. E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, 953 (1925).


