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errors were dificult to evaluate, all that can be said at present is
that they are probably protons. If the technique can be signifi-
cantly improved, a similar experiment will be undertaken in order
to obtain more accurate mass determinations.

*This work was supported in part by the joint program of the ONR
and AEC.
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E calculate the frequencies associated with magnetic dipole
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transitions in an antiferromagnetic crystal, extending to
dynamic effects the Van Vleck theory of antiferromagnetism,
which works remarkably well for static effects. The model is that
of two sublattices of magnetization MI, M~ oppositely directed
and each of magnitude M, . The calculation given here is classical;
a quantum calculation following the method used hy Van Vleck'
in ferromagnetic resonance has been made and will be discussed in
a subsequent publication.

The exchange forces are treated as molecular fields Hi= —)I M2,
82———)MI acting on the sublattices 1 and 2. It is known that
there are preferred directions of orientation in antiferromagnetic
crystals, and in analogy to ferromagnetism we introduce an
anisotropy energy density constant IC to describe the energy
involved in turning both spin systems together relative to the
crystal lattice. We may then, for small defiections, say that there
is an anisotropy field Hz=E/3f, acting on each sublattice. We
take the static field Hp and the preferred axis to be in the z-direc-
tion. We suppose that the crystal consists of a single domain and is
spherical in shape, so that demagnetizing effects do not enter.

The equations of motion with a transverse rf field are

dMI/dt =

ADMIX

L(H~ —&M2~) i
+(H&—X3f2II)j+{Hp+Hg+H~) kj;

dM, /d~= ~M, X P(H.—XM, ) ~

+(H~ —ur, ~)j+{H.—H.—HE) ~g;
here HE=&M, =)I%I'= —k%2'. Defining M =M, —j'V„, H
=H —jH„, we solve for the susceptibility:

&-=~I-/H-= 2&Vr,H~/(~ —~p)2

~p/~=Hp~t H&(H&12H&) j&. (1)
Note that HJ.:enters only if Hz&0. For Kp=0 and Hz«Hz, the
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FIG. 2. Momentum and range distribution of stopped mesons. The range
distribution was obtained by transforming the momentum distribution
under the assumption of a mu-meson mass of 216 electron masses.

zero field splitting is cop=y(2HgHg)&=y(2EX)&. The two fre-
quencies in Eq. (1) correspond to diferent directions of circular
polarization, and a linearly polarized rf field will excite both
precessional modes. In polycrystalline specimens the line widths
will be at least of the order of Hp, as only the component of the
static field parallel to the domain axis is fully effective.

In the common antiferromagnetics such as MnO, MnF2, FeO,
and Cr203, we may estimate Hz~1(P oersteds and Hz~10'
oersteds. Then (2K~HE) &~5X 10' oersteds and cop~5 cm ', which
is higher than the experimental frequency 0.3 cm ' used by
MaxwelP et al. and Hutchison. ' The low experimental frequency
is the reason we suggest to explain the observed extinction of the
spin resonance absorption lines in antiferromagnetic crystals on
cooling below the Curie temperature. It would be valuable to work
in intense magnetic fields to pull one of the frequencies into the
usual range, or else to work at millimeter wavelengths.

We note that the anisotropy energy may be quite high even in
cubic antiferromagnetics containing Mn++ ions in a '5 ground
state. Consider a simple-minded model: the Kramers superex-
change interaction4 connecting Mn ions in MnO depends on the
overlap of the wave functions of electrons on the Mn and 0 ions.
With an admixture of orbital moment the overlap depends on the
spin direction. The order of magnitude of the anisotropy energy
per ion on this model may be estimated as ~tg —2~kO~; for
hg 10~ and k0~5X 10' cm ' the anisotropy field can be as high
as 10' oersteds.

With ferrite-type ferromagnetism, according to the Neel theory,
we may set M&'= M„3l&'= —{1—p) M, . The observed saturation
magnetization is 3II'+3I2'= re&, . We let H~= LM „and suppose
for simplicity that Hz has the same value for both sublattices. We
find

~/p =H p
—(rtHE/2) ~$(TAHE/2)'+H~Hg(2 —rt)+Hg']&

The over-all anisotropy field deduced from static deQections at
small angles will dier in ferrites from that deduced from rnicro-
wave resonance experiments by a fractional amount ~Hz/HETl,
which may usually be neglected. The difference should be de-
tectable in weakly magnetic zinc ferrites.
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S part of a computational program of fractional vibrational
transition probabilities for molecular band systems occurring

in upper atmospheric radiations, the results for the first positive
system of molecular nitrogen are here presented in Table I.

The method of calculation employed is similar to that used in
previously reported results, ' and involves a computation of the
overlap integral of suitably modified hermite wave functions. ' It
will be noted that the fractional transitional probability f(v', v") is
so defined that in any v' progression

Z y(v', v") = 1.
97 I

From a 3-dimensional presentation of Table I it will also be
noted that what was formerly thought of as the primary Condon
parabola in the (v', v") array of reported intensities of the first
positive bands' is in fact the limbs corresponding to the smaller v"
values of the primary and a subsidiary parabola. The limb of the


