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Electron-Neutrino Angular Correlation*
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Angular correlation functions are calculated for allowed and first forbidden beta-decay transitions
including the effect of the nuclear coulomb field. The process of beta-decay is viewed as a kind of scattering
in which an incident negative energy neutrino is transformed by the Fermi interaction in to scattered
electron in a positive energy state. The outgoing electronic wave function is calculated, and the angular
correlation functions are determined from the angular dependent electron probability current through
sections of a sphere at large distances from the nucleus. For allowed transitions, the angular correlation is
found to be independent of atomic number and identical with the results of previous calculations which
assumed Z =0. The Z =0 approximation is shown to be unreliable for first forbidden transitions in which cor-
relation terms proportional to the first and second powers of the potential energy of an electron at the surface
of the nucleus appear. This efFect is important even for moderately heavy nuclei.

I. INTRODUCTION

HK relation between the directions of emission
of the electron and neutrino emitted by a P-active

nucleus depends on the type of light particle-nucleon
interaction assumed in the Fermi theory. ' This was
first pointed out by Bloch and Mgller. ' More recently,
the electron-neutrino angular correlation was inves-
tigated theoretically for the five diferent types of
P-decay coupling' by Hamilton. ' His results, for
allowed and first forbidden transitions, were based on
the Z=O approximate treatment of the Fermi theory.
Rose' considered the eGect of finite nuclear charge on
the allowed transition p-neutrino angular correlation
functions. %e not only confirm his concludion that the
effect is small, but also, as is shown in Sec. III (A),
treat the problem more exactly and conclude that,
aside from the appearance of the usual Z dependent
Fermi function, the allataed correlation fzzmcti, ons are
identical with those obtained by Hamilton.

In all previous work on P-neutrino angular correlation
that has come to our attention, the eGect of the nuclear
coulomb field on the outgoing electron has been either
neglected or, as in reference 5, been treated approxi-
mately. The shapes of forbidden transition energy
spectra may depend strongly on the nuclear charge. In
Sec. III (8), the Z dependent angular correlation func-
tions for first forbidden transitions are computed and
are shown to diBer from the Z=O results of Hamilton
in just those cases where the energy spectrum also
exhibits a strong Z dependence.

II. ANGULAR DEPENDENT DECAY PROBABILITY

heavy nucleon. The usual negatron decay process' can
be described as the scattering of a light particle from
its vacuum neutrino state of negative energy by a
nucleon into its positive energy, negative charge, elec-
tron state. Charge is conserved in the process by the
transformation of the target nucleon from its neutron
into its proton state. The electron and neutrino are
considered as two possible states of a light Dirac
particle, diGering as to charge and rest mass.

The interaction hamiltonian between nucleon and
light particle is presumed to be some linear combination
of the five Lorentz invarient operators designated as
scalar (S), polar vector (V), axial vector (A), tensor (T),
or pseudoscalar, (P).

EE»=G(OH'Oz)»(~zz~z+rzz*~z*)5(xzz xz)) (&)

where
X=S, V, T, A, orP.

The strength of the interaction is determined by the
Fermi constant G; H and I. refer to nucleon and light
particle operators, respectively; ~~ transforms a neutron
into a proton; v I. transforms a neutrino into an electron;
7~* and 7-1.* are the inverse operators making positron
decay possible. The diferent coupling operators,
(OH. Oz)», are constructed by the contraction of the
usual contravariant light particle Dirac operators with
their covariant heavy particle analogs. '

(A) Asymptotic Wave Function

We specify the initial system, P-radioactive nucleus
plus incident vacuum neutrino of spin s, and momentum
—q, by the wave function,

It is helpful to visualize the P-radioactive processes
as a kind of scattering of a light Dirac particle by a

~ Part of a thesis by M. L. Necks submitted to the Graduat
School, Duke University, May, 1950, in partial fulfillment of th
requirements for the Ph. D. degree.

t Now at Clemson College, Clemson, South Carolina.
E. Ferlm, Z. Physlk 88, 161 (1934' F. Bloch and C. M/lier, Nature 136, 912 {1935).' E, J. Konopinski, Revs. Modern Phys. 15, 209 (1943).' D. R. Hamilton, Phys. Rev. 71, 456 (1947).

~ M. E. Rose, Phys. Rev. 75, 1444 (1949).

gz=Pz(xzz xz) exp( —iEzt),
'To apply our results to positron decay, it is only necessary

e to change the sign of Z for the product nucleus where it appears
e in Eqs. (22) and (37) of Sec. III (B).

~ The five operators, (0& OL,)x, as given explicitly in terms of
P, e, e, and p& by J. Tiomno and, John A. Wheeler, Revs. Modern
Phys. 21, 144 (1949), were found most convenient. See also
reference 3.

All quantities are made dimensionless by using the usual
relativistic electron units of energy (wc~), time (k/wc~), and length
{k/mc).
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where

Pz = U(xzz)8, (q) exp( —iq xz.),
(2) and

Er =Er+W; Er = energy of final nucleus.

and EI=Ep—E; EU=energy of initial nucleus. The
neutrino rest mass is assumed to be zero; thus, the
anti-neutrino emitted in the i«-decay has an energy
E=q~&0. The spinor amplitude 8, is normalized to
unit incident neutrino current density. We designate
the initial and final nuclear isobars by U' and V, re-
spectively. The interaction (1) transforms one neutron
of U into a proton of V. These nuclear states are
orthogonal.

Possible 6nal states of the system involve the con-
tinuum positive kinetic energy (W~&1) electron wave
functions in the coulomb potential field of the product
nucleus. These Dirac functions are conveniently tabu-
lated by Rose. ' We use his notation with one exception.
The radial functions f and g are given a more appro-
priate subscript »= +(j+-,), where j is the total angular
momentum. The angular dependent functions are
spherical harmonics, their order depending only on the
pa ir of quantum numbers, » and m =[—j, —(j—1),

+j).
For our purpose, it is convenient to factor the electron

wave functions into radial and angular dependent parts.

The subscript Iz differs from f in that it includes the
continuum eigenvalues S' for the electron. The func-
tions «pz(W, xz) are normalized to one electron per unit
energy range

~

i.e. dxzlgf (W, xz,)«t; (W', xz,)= b(W W')—b„„.b„„(.

If the system is initially in the state I, we obtain,
upon applying the usual 6rst-order time dependent
perturbation theory, subsequent states of the system
as a superposition of the wave functions (2) and (6).

g(xH, xz. , t) = Pz+Qz)I dW(fl&l s)

exp[ i (W—O W——E)t]—1
X «br exp( —iEzt), (7)

5"p—TV—E
where the nuclear energy difference is 8 p=Eg —Ey,
and the matrix element of the perturbation, Eq. (1),
reduces to the time independent expression:

y, =If„(W, r)a, (e, «). (3)

'JF, 0

0 0
,0 0

0 0'
0 0
g.
0 g„

and the angular dependent spinors are:

(»+m —
2 ) «

i (V „--«V„,--')
4 2»—1 J

The subscript f stands for the discrete pair of eigen-
values x and m. In our notation, R is the diagonal
matrix:

(f~&~s) =G ) dxzz(V*OHrzzU)gz*(xH)

)(exp( —iq xzz) 'OzB, . (8)

We obtain from Eqs. (7) and (3), since V and U are
orthogonal, the time dependent superposition of
electron states resulting from the "scattering" of a
neutrino by a nucleon. We call this scattered wave
function resulting in the product nucleus V,

«t,.exp( —iEzt)= "dxzzV*g(xH, xz, , t),
(»—m —s) «

~
(V m+«V m+«)

2»—1
(3)

where «b Qf) dW(f
~
jzz

~
s)~z(««, «o) =

(»—m+s ) '

I (V,m—«V~—
«)

2»+ 1
exp[ —i(WO —W —E)tj—1

]X R„Ag.
W, —W—Z I"

)»+m+-,'q «

) ( V m+«V~+«)
( 2»+1 )

f~:~& —1, f~:&+1.

After a transition, the system may be in a super-
position of the basic eigenstates I' represented by the
time dependent wave function,

(10)E,= (2r) '[X exp(i[Pr+b„j)+c c j, . .
gr = Pr(xzz, xz) exp( iErt), — (6)

These "scattered" electron waves contain both
incoming and outgoing particles. However, we can
show, by a relativistic generalization of the method
developed by Bethe, ' " that only the outgoing part
contributes to the transition probability. The radial
functions (4) for large r can be expressed as

where

QF = V(xzz)gz(W, xz.),
'M. K. Rose, Phys. Rev. 51, 484 (1937).

' H. A. Bethe, Ann. d. Physik 4, 443 (1930).
"N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-

Iisions (Oxford University Press, ¹wYork, 1933), chapter XIV,
section 3.
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where
8

$T
0
0
,0

0 0 0 u= i[(W—1)/s.p]»

' ' ', f=[(W+1)/ p]»,
r

The phase 8„ is conveniently separated into two terms,
one depending on ~, the other produced by the coulomb
field and independent of a. 8„=~„+8„

where

and

~,= ~„—(~/2) y„—argI'[y, +i (uZW)/P],

y„= [K'—(Q.Z)']»,

exp(2iq. ) = —(K—inZ/p)/(y„+i aZW/p)

(12)

Here the asymptotic phase shift 8, produced by the
coulomb field depends on the atomic number Z and the
fine structure constant a.

and P=(W' —1)» is the magnitude of the electron
momentum far from the nucleus. Substituting expres-
sion (10) into (9), we evaluate the energy integral, by a
method similar to Bethe's, thereby obtaining conser-
vation of energy and the following asymptotic, time-
dependent, scattered electron wave function:

'(7r/r)Pz(f
~

H
~

s)XA~ exp(i[pr+8„—x/2]),

r & (p/W)t (11)

r & (p/W)i=r,

12. Clearly, the so-called "magnetic and electric
polarization" current densities, involving M and P,
do not contribute to the radial probability current of
electrons. By inserting (11) into (14) we can obtain, as
follows, the probability per unit time for the emission
of an electron outward from the nucleus along a radius
vector r inclined at an angle 8 to 8+d8 relative to the
anti-neutrino momentum direction which is selected as
the polar axis x3.

dy= dy(J r)r sin8d8

21r

d yf„*( PP) f„r—' sin8d8. (15)
~0

An alternative expression for the radial electron
current can be obtained by using the following rela-
tion, " valid for free electrons having energy W~&1:
$*(PW)»t = —(P*f). Thus, it follows that (15) has the
alternative form:

(16)

This latter expression clearly indicates that the radial
current of electrons is positive definite.

On insertion of (11) into (15) or (16), we obtain
alternative explicit expressions for the angular de-
pendent probability current of electrons.

8,= [aZW in(2Pr)]/P. (,3)
A=2~'Ze(f'l&l~)(~I&If)

In evaluating the integral (9), the coulomb factor
exp(ib, ) need not be considered as a rapidly varying
function of 8' for two reasons. First, the effect of
orbital electron screening of the nuclear coulomb field

would, if taken into account, cause the asymptotic
value of 8, to approach a constant. Secondly, even if the
nucleus had been treated as stripped of orbital electrons
and exp(i8, ), therefore, not removed from the integrand
of (9), we would have obtained a different value for ro

which would take into account the influence of the
coulomb field on the electron velocity. "

(B) Electron Probability Current

To complete the proof that the wave function (11)
contains only outgoing electrons and to obtain the final
expression for the probability per unit time of observing
an electron moving at an angle 8 relative to the anti-
neutrino momentum, it is convenient to make use of
the Gordon decomposition" of the probability current
density. At distances far from the nucleus, the electron
current density per incident neutrino is:
J=5[4-'(i&W".) (iW *.)(&4".*)]-

+curl(Q„*M/„)+ (8/8t) Q„*PQ„). (14)

The vector operators M and P are defined in reference

'~ E, L. Hill and R. I.andsho8, Revs. Modern Phys. 10; 116
(1938).

)& exp(j[e, e„])(f~

f—') sin8d8 (17).

Here the angular dependent factors are defined alter-
natively as

2~(f~ f') = de (AI*[1—p/W]Ag )
Jo

2g

d p(Af*[1—pW]AI ). (18)

Thus, it follows that the angular dependence of the
decay probability arises from the spinor products
(Af*Ag ) alone, because (Aq*[P/W]A ~ ) must vanish to
satisfy the requirement that

(Af*[p/W]A/ ) = (Af*[pW]A/ )

for W&~ i. The integral over the azimuthal angle of the
electron, of course, vanishes except for those sets of
quantum numbers f, f' in which m=m'. Therefore,
(18) simply reduces to:

(f~ f') =(K, m~K', m)=(A. *A. ), (19)

and the summation in (17) is restricted to K, K', and m.
It must be kept in mind that dy gives the probability

current for an electron produced when a neutrino of a
"H. A. Bethe, Z. Naturforsch. 3a, 470 (1948). This relation

follows simply from the Dirac equation with r)&1. Our choice of
sign for the operators I and P is opposite from Bethe's.
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particular momentum and spin is absorbed. The matro. '

elements (flHls), given by (8), depend explicitly on
the neutrino momentum and spin. To find the angular
and energy dependent rate of P-decay, we sum dy,
given by (17), over all possible states of the incident
neutrino. This introduces the usual statistical factor
qPdq/(2pr)P for a neutrino of a de6nite spin and mo-
mentum in the direction of the solid angle dQ. The sum-
mation over neutrino spin is independent of the angle
between electron and neutrino. However, in integrating
over neutrino directions dQ, we hold the electron-
neutrino angle 6xed and instead integrate over all
directional orientations of the transforming nucleus.
In this manner, we obtain the probability per unit time
of observing an electron in the energy range W to
8'+dl/I/', having an electron anti-neutrino angle between
8 and 8+d8.

P(8, W, Wp, Z)d8dW
= q'ggp[jl f')(fl f') sin8d8dW, (20)

where q=R'p —8'. The bracketed factors are a sim-
pli6ed notation for the angular independent part of the
P-spectrum.

K ~OS

=P,((f'l Hl s)(sl Hl f))p„exp(i[a„p,))—. (21)
The brackets ( )~„ indicate the nuclear orientation
average, and s stands for the two spin values of the
neutrino of momentum components q~=q2=0, q3=g.

Terms in Eq. (20) which make important contribu-
tions to the angular dependent decay probability
include the interference between outgoing electrons for
which ~ 8~'. If Eq. (20) is integrated over all angles of
P-emission, only the f=f' terms do not vanish, and one
obtains the usual angular independent P-energy spec-
trum.

III. ANGULAR DEPENDENT COIMECTION FACTORS

In order to calculate the angular correlation functions
for allowed and first forbidden transitions, we shall
make use of the expression for the angular dependent
decay probability in a slightly modified form. The
expression (20) gives the angular correlation and
energy spectrum as well. For allowed transitions, the
energy spectrum is the same for all 6ve types of
coupling. To present t'he angular correlations in con-
venient form, we introduce the factors C„x from which
the factor giving rise to the allowed energy spectrum
has been removed. The subscript n is zero for allowed
transitions and one for 6rst forbidden transitions, and
the subscript X equals S, V, A, T, or I' designating the
interaction (1) considered. Rewriting (20) in the nth-
forbidden approximation as
I' xd8dW=C x(p sin8d8)L(G'/2pr')FppWq dW), (22)

we define the correction factors as

C.x=&&~/4~')PppW) '&a Lflf').x(flf'), (»)
where Pp is the usual Fermi function.

Now to calculate the matrix element (flHl s) given

by (8), we expand the electron wave function appearing
therein" in the following manner:

3

4)=6 +pr 'P xixf~+ . .. (24)

(t
(flHls)»=Gl ~

oH
l (6p O~)~j (25)

in which the light particle wave functions are removed
from the integral and evaluated at the nuclear radius p.
For simplicity, the integral over nucleon coordinates is
abbreviated J'O~ as is usual.

To indicate the method emp1.oyed in determining the
allowed correlation factors Cpx, we shall consider a
representative example, axial vector coupling. In this
case Olr Oz, may be set equal to e~ or„since J'pp=0
for allowed transitions with this coupling. The factors

[fl f') zmpay then be calculated as follows: Make use

of the Casimir trick for evaluating the neutrino spin
sum and obtain

Z.(f'IHl s)(slHlf)

t~;
l l „~p lPAp*~s(1 —~)~pro) (26)

i pl~ ) (& i
Average the product of nuclear matrix elements over
all possible orientations of the nucleus, " multiply by
the phase factor, and obtain

2

D'lf')= pG'
aJ

XPkp*(3 —ap)A p) exp(pLpf —pg)). (27)

The quantum numbers designated by f and f' can
have the values ~= ~1 and m= +~ for allowed transi-

'4 Clearly, the subscript H can now be dropped, nucleon coor-
dinates being understood in Eq. (8).

'~ The products of nuclear matrix elements are averaged over
nuclear orientations by the method discussed on p. 337 of Max
Born, Opt' (Verlag. Julius Springer, Berlin, 1933).

Here the first-order spherical harmonics have been ex-
pressed in the cartesian coordinates x~, x2, x3, and the
terms pp;/r factored out. P~p is that part of Py containing
only zero-order spherical harmonics. For values of
ff =+1, the electron wave function contains only zero-
and 6rst-order spherical harmonics; for ~= &2, it
contains 6rst- and second-order spherical harmonics.
However, second-order spherical harmonics contribute
only to second and higher orders of forbidden transi-
tions. The selection of the axis of quantization (xp) to
correspond to the momentum direction of the anti-
neutrino enables us to expand the factor exp( —iq x),
also appearing in the matrix element (8), as 1—imp+

(A) Allowed Transitions

The matrix element for allowed transitions is, using
the conventional approximation,
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(~1, -',
~
%1, -', )=(2e) 'cos8,

(~1, —
~p~ %1, ——',)= —(2pr)

—' cos8. (29)

The exponential factors in Eq. (27) reduce to
ezp(i[q„—pj.)), SinCe fOr (k~ = (s'(, y, =y„. ThiS Can
be seen by reference to Eq. (12).

Now summing over f and f', we obtain, on inserting
(27), (28), and (29) into Eq. (23),

3%'

Cog=-o, (FoPW) '
J

e (fz'+g—P)
2

tions. Thus, since ek= tjo', the sum over f and f' involves
eight terms. In four of these terms, s= s'; hence, f=f'.
The factors (f ~

f') in these four cases are

(f~ f)=(2pr) —' for (f~ =(&1,a~p~. (28)

In the four remaining terms, f~:= —x', and the factors
(flf') are

indicates that the angular correlation is essentially a
relativistic effect.

A comparison of the angular correlation factors
(enclosed in brackets) with those calculated by Hamil-
ton4 for Z=O shows that the nuclear coulomb 6eld
produces no eGect. The correlation factors given above
are the same as Hamilton's.

The allowed correlation functions Cox do not agree
exactly with those calculated by Rose. ' This is because
in his calculation the phase factor, exp(i[pj. —pj„]), was
treated approximately.

(8) First Forbidden Transitions

The method of computing the factors C~x for 6rst
forbidden transitions parallels the calculation of Cox,
although it is much more tedious because the matrix
elements (f ~

II~ s) contain many more terms. Consider
the matrix element for 6rst forbidden transitions, using
axial vector coupling again as an example,

(p——(ifig-&exp(i[gk —g-i])+c.c.) cos8 (30) (f(B(s)i@=G P k~ J' o' xk )Pk*o 8,
2 EJ )

The combinations of radial functions and phase factors,
enclosed in parentheses in this expression, are common
to all 6ve types of coupling. The choice of a particular
type of coupling affects only the sign of the term con-
taining cos8 and a numerical factor.

The correlation functions Cox are given below for the
6ve types of coupling.

2

Cos= JI P -', (1+»)[1—(P/W) cos8]

2

Cpv —— I 1 —,'(1+y~)[1+(p/W) cos8]

2

Co~ = e p (I+&i)[1—
p (p/W) c»8] ~ (31)

2

Coz ——J~Pe p(1+y&)[1+o(P/W) cos8]

where

» I An'P (32)i
Pk P xjk+$$A'f 0

Notice here that the anti-neutrino moves along the x3
axis; thus, g=q8».

We express the nuclear matrix elements in Eq. (32)
in terms of irreducible tensor components" as follows:

Jt ejxk= pQjk+pA jk+ oSjk. (33)

Under space rotations S, A, and Q transform, respec-
tively, like the spherical harmonics of order 0, 1, and 2,
and, consequently, give rise to different selection rules.
Explicitly, the tensor components are"

Q,k
——J~[ojxk+okxj—-', (e r)8,,],

2

Cpa= J"pyp —,'(1+pe)[1—(p/W) cos8]. A jk=
J [ojSk 0'kÃj]~ (34)

The common factor p'(1+») is independent of W and
for the light elements is nearly unity. The angular cor-
relations are clearly different in the 6rst four coupling
cases. The scalar and pseudoscalar couplings give the
same angular correlation, but, on the other hand, their
parity selection rules are different and their nuclear
matrix elements are of different orders of magnitude.
Hence, it is possible to distinguish between the 6ve
types of coupling. In all cases shown above, the angular
dependent term is proportional to p/W= p/c which

f
S,k ——

J
(e r)8jk.

A,

Similar tensors, A, etc., can be formed from the com-
binations I'k*o;. We express the 6rst term in (32) as a
contraction of the tensors A, Q, and S, formed from
the nuclear matrix elements, with the tensors A, etc. ,

' E. J. Konopinski and G. K. Uhlenbeck, Phys. Rev. 60, 308
(&94&).

'~ E. Greuling, Phys. Rev. 61, 568 (1942).
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formed from the electron-neutrino factors. These
tensors cannot mix upon contraction, because Q is

symmetric with trace zero, A is antisymmetric, and S
is a scalar times a unit tensor. The second term in (32)
does not contain the coordinates x„ in the nuclear
matrix element and is, thus, no more complicated than
the allowed matrix elements.

When the product (f'~ HI s)(s~ HI f) is formed, cross
products of the type occurring between the 6rst and
second terms of (32) will not be considered. In the case
of axial vector coupling, they would have the form
(J'&r r)~(J'»)f(W, 8)+complex conjugate. This par-
ticular cross term may be expected to vanish, because

y& and e do not transform in the same way under a
time reversal 's

The procedure used to obtain the factors [f~
f'] is

involved because of the large number of terms, but the
steps are straightforward. As in allowed transitions,
we average over all orientations of the nucleus" and
make use of the Casimir trick in performing the neu-
trino spin sum.

In order to show the types of terms which appear, we
shall sketch the calculation of one term in [f~f'].
Choosing as a sample term of (f'(H(s)(s~H~ f), the

product A A, the nuclear orientation average yields

bilities for the combination f, f' with m=m'. It is
convenient to divide these possibilities into eight groups,
making use of the fact that the angular dependent
factors (f ~

f') consist of eight different types. The groups
are chosen so that all the members of a particular group
have the same angular dependence. In three of the
groups f=f', thus, the exponential phase factors of

[f~f'J are unity. In the remaining groups, three
have f~:= —

f~.
" so that the exponential has the form

exp(i[»„.—&7,]);and two groups have
~

&&
~

W
~

&&'
~

so ths, t
the complete factor exp(i[a„—e„]) is required.

To evaluate C» from Eq. (23), the summation over

f and f' is done by summing first over the terms in each
group and then summing over the eight groups them-
selves. The results of this involved process are as
follows:

2

C,s ——-', Jr r Bs«&,

Civ= s J
r Av ' + Jl n z(1+y&)

X [1——',(P/W) cos8],

p p (A, &,*A,g, )A„A;&,*B,B,*A; p

jk j'k'

oX r P A,„*B,B,*A,
&,. (35)

4 jk

Here we have written the equivalent form 2~ J'&rX r~'
for g ~

A,&, ~'. Performing the spin sum, we obtain for
this term of [f~f'j, neglecting a numerical coefficient
and the phase factor,

'2

J
&rXr [2P~' P+Q P;*'o;&&,P,+(P*' &.r)Ps

iWj

+Pa*'(&r P) Pi*'&r, &&&so.iP—, P2*'0 ia&&a,P—
&j, (36)

2 2

+6
J

oXr A~&"+-' J~&i r A~ "&

2

+ Jty&& 2(1+y&)[1+(P/W) cos8],

se2

2 l2

+-,' &rXr Br'"+-', s r Br&'&
J

(3&)

where the prime indicates that the electron wave func-
tion has the quantum numbers f', otherwise f

For first forbidden transitions, f (and f') can have
the following values: &&=&2, m= &—'„&2 (for j=—',),
and &&=&1, m=&-', (for j=-,'). There are 40 possi-

' C. L. Critchfield, Phys. Rev. 63, 423 (1943), has pointed out
that no such interference terms should appear because of the time
reversal parity property of nuclear states. Matrix elements of »
and (e r) are nonvanishing if the isobaric states have opposite
space parity and have, respectively, the same and opposite "time
parity. "

"The nuclear orientation average for the products of irre-
ducible tensors can be obtained from Born's Optik (reference 15,
p. 348}.Using Born's method, we obtain

(Ae'A'v &» =Is" s~i x~»lA .I''
lQ*.&*Q"& lA. = s"s" s;; &~-IQ -I'

The fractional factor in these equations is just the reciprocal of
the number of independent components in the tensor.

2

+ ~a —',(1+pi)[1+-',(p/W) cos8].

Pseudoscalar coupling gives the same angular corre-
lation as scalar coupling. The coeS.cient C~p can be
obtained by replacing

~

J'r~' in Cis by
~

J'&zr~'. The
correlation factors" A~ and B~, which are given in the
approximation O.Z(&1, are adequate for elements as
heavy as RaE, for example, for which the error intro-

"The operator P does not appreciably affect the magnitude
of the nuclear matrix elements and has been omitted from them;
however, this operator is important in the electron-neutrino
portion of (f~H[s) because of its commutation properties. The
notation Ax(n) and Bx(n) is chosen so that B indicates that the
coupling contains P and A indicates that it does not; (n) =(0},
(1), (2) indicates that the corresponding quantity multiplies the
square of a 0th, 1st, or 2nd rank tensor nuclear matrix element,
respectively.
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duced by this approximation amounts to 15 percent
ol So.

= 4 V'[1%-',(p/W) cos8]
g (I)

+V[(p/W) (p+ q cos8)+ (q+ p cos8)]

+[1&(p/W) cos8]D,
(~)

= [5%(p/W) cos8]D&pq(p/W) sin'8,
P~(2)

(I)
= a2V'[1%-', (P/W) cos8]

g&(I)

+2 V[(p/W) (p+q cos8)W (q+ p cos8)]

+[1W (p/W) cos8]DW pq(p/W) sin'8,
(0)

= (9/4) V'[1&(p/W) cos8]
gz(0)

+3V[(p/W) (p+q cos8)& (q+ p cos8)]

+[1&(p/W) cos8]D&2pq(p/W) sin'8.

(38)

Here D= p'+q2+2pq cos8, and the factor V=uZ/p is
the magnitude of the potential energy of an electron
at the surface of the nucleus.

For elements at light as Be', V=1.8 Mev, and for
A", V= 10 Mev. Thus, for all but the lightest elements
the angular correlation term proportional to V' will be
the dominant one in the correlation factors Ax and B~.
The terms proportional to V' resemble the allowed cor-
relation functions. The terms proportional to V are
of two types, depending on the sign in front of

(q+p cos8). For the plus sign, emission of the anti-
neutrino and the electron in the same hemisphere is
favored; this is generally referred to as a forward cor-
relation. For the minus sign, a comparatively much
weaker correlation results which favors emission of the
anti-neutrino and electron in opposite hemispheres; a
so-called backward correlation. The terms independent
of V represent the Z=O limit. They are identical with
the first forbidden correlation functions calculated by
Hamilton. 4

Of the correlation functions shown in Eqs. (38), only
the second rank tensor factors A") and 8") show no
coulomb eGect. Both A(') and 8('-) give a forward cor-
relation. The factor 8(2) favors a forward anti-neutrino
somewhat more strongly than A(2), but it would be
difFicult to distinguish between them experimentally.

In Eqs. (38) the correlation factors A"', Bo&, A&'&,

and B(0) show a strong Z eGect. The V' term is larger
than the other terms in these correlation factors for
elements with atomic number Z&Z,~1.6$'0&, where
8'0 is the maximum electron energy. ' If Z»Z„ then
only the V' term is of consequence.

IV. CONCLUSIONS

Some general conclusions can be drawn concerning
the angular correlation functions, if we consider to-
gether the allowed transitions and the V' terms in the
first forbidden transitions. First, scalar nuclear matrix
elements are multiplied by correlation factors propor-
tional to 1&(p/W) cos8. Second, vector nuclear matrix
elements multiply factors of the form 1&—',(p/W) cos8.
Furthermore, for Z»Z, the electron energy independent
V' terms are dominant, and, therefore, some first for-
bidden P-emitters may have allowed-looking energy
spectra. If Z»Z„ then, clearly, from Cox and C~x it is
possible for any one of the five types of coupling to give
allowed-looking spectra and either a forward or a
backward angular correlation. To interpret angular
correlation data in this case (Z»Z, ), either the spin
change must be known or the half-life must be so short
that the transition can unambiguously be classified as
allowed, as, for example, is the case with He'.

Experimental evidence (i.e., unique first forbidden
spectra and allowed transitions with spin change one)
favors tensor or axial vector coupling. These two
couplings give the Gamow-Teller selection rules. To
distinguish between them, angular correlation data for
a spin change (&-+1) or (8-+0) would be particularly
valuable. These transitions should be either allowed or
first forbidden, depending on the parity change. In the
case of (6-+1) transitions, axial vector coupling gives
a backward angular correlation in both Cf)g and C&.4,
and tensor coupling gives a forward correlation in Coz
and Cir. In the case of (6-+0) transitions, axial vector
coupling gives a forward correlation in C~~, and tensor
coupling gives a backward correlation in C~z. Thus, it
should be possible to distinguish between tensor and
axial vector coupling by the general forwardness or
backwardness of the correlation, provided the spin
change is definitely (~1) or definitely (~0).
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