PHYSICAL REVIEW

VOLUME 82,

NUMBER 4 MAY 15, 1951

The Noncentral Electric Interaction in Alpha-Radioactivity™*

MELVIN A. PRESTON
McLennan Laboratory, University of Toronoto, Toronoto, Canada

(Received July 24, 1950)t

Apart from the penetrability of the coulomb potential barrier, which determines the order of magnitude
of the intensity of a-decay, there are three secondary effects which alter the decay constant: angular
momentum, “formation” prohibition as discussed by Perlman, Ghiorso, and Seaborg, and noncentral
electric interaction with the product nucleus. The general theory of this last effect is discussed and its
magnitude estimated. It is suggested that it may be of considerable importance in determining the intensity
of highly forbidden ground state transitions described by Perlman, Ghiorso, and Seaborg. Further numerical

work would be desirable.

I. INTRODUCTION

HE standard formula for the decay constant in
a-activity is of the form

A= (v:/2r0)G exp(—2wy). (A1)

Here v, is the velocity of the a-particle inside the
nucleus of radius 7y, so that the first factor is the
frequency of collisions of the a-particle with the nuclear
barrier. The last factor, exp(— 2w,), describes the “leak”
through the coulomb potential barrier around the
nucleus and determines the order of magnitude of A.
(wo will be defined later.) The remaining factor G
depends in general on u;, 7, and v, the velocity at
infinity. The form of G is determined by the model
used to describe the forces holding the a-particle in the
nucleus. For a rectangular well potential, G can be
obtained explicitly.

This basic formula (A.1) applies only to the case in
which the a-particle is emitted with zero angular
momentum from an even-even nucleus in which the
“formation” time of the a-particle is negligible. This
point has been demonstrated by the analysis of Perl-
man, Ghiorso, and Seaborg.! In nuclei other than even—
even, the a-particle must be formed from the nucleons;
and in order to obtain full energy, it must include the
unpaired nucleon(s) in the highest energy state. This
effect makes the a-decay of such nuclei forbidden to
some extent with respect to a hypothetical even—even
decay of the same energy and same charge number.
Also, in the decay of any one nuclear species, the ground-
state transition requires that the a-particle carry away
the maximum energy, which must be obtained from the
unpaired nucleon(s). Hence, apart from barrier pene-
tration, the low energy lines of a complex a-spectrum
might be expected to be more probable than the
ground-state transition. In other words, for their
respective energies, the ground-state transition is for-
bidden relative to the other transitions possible. This
effect requires a modification of the factor G; the exact
theory is clearly complicated.

* Most of the work here described was carried on at The Uni-
versity, Birmingham, England.

t Revised manuscript received January 22, 1951

! Perlman, Ghiorso, and Seaborg, Phys. Rev. 77 26 (1950).

The formula for \ is also changed if the a-particle
has non-zero angular momentum.>3

There is a third mechanism* which can alter the
value of A given by the standard formula ; namely, the
noncentral interaction of the a-particle outside the
nucleus with the unsymmetrically distributed protons
in the product nucleus. By means of this coupling, the
a-particle can take energy from or give energy up to
the nucleus and thus alter its own ability to penetrate
the barrier. The study of this effect arose from an
attempt to understand, theoretically, certain observa-
tions® of the a-ray spectra of Po and Ra. The connection
of the theory with this particular problem has already
been given in a paper® hereafter referred to as P. In
the present paper we propose to discuss this non-
central electric interaction effect in general. In P it was
suggested that this mechanism might be important if a
ground-state transition could be forbidden; a physical
basis for this assumption is provided by the formation
prohibition.

II. PERTURBATION SOLUTIONS

The general equations of the theory are given in P.
We may summarize them as follows. The total wave
function of the system is

V=3 mn ¢un(t)un(¥), (L.1)

where %,,(§) are the complete set of normalized ortho-
gonal eigenfunctions of the residual nucleus,  referring
to all the coordinates which determine a nuclear con-
figuration. The a-particle has position r and its wave
functions are written

(1.2)

The potential > (2¢%/|r—r;|)—2Z¢%/r is treated as a
perturbation. It is expanded in powers of 1/7 and it is

In
Sa(B)=7"11(r) 3 cuPuM(cosh)eiMe.
M=

—in

2G. Gamow and C. L. Critchfield, Theory of Atomic Nucleus
and Nuclear Energy Sources (Clarendon Press, Oxford, 1949).

3 M. A. Preston, Phys. Rev. 71, 865 (1947).

¢ Originally suggested some years ago by Professor Gamow.

3W. Y. Chang, Phys. Rev. 69, 60, and 70, 632 (1946).

6 M. A. Preston, Phys. Rev. 75 90 (1949) This work suggested
that Chang’s results were spurious. See W. G. Wadey, Phys. Rev.
74, 1846 (1948).
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deduced that the radial functions f, satisfy
(@2 fn/dr)+{(2m/ B2 (En— V) = la(lat+1)/7%} fn

N—-1 Im +ln
=2 fu X Aemr @D (13)
m=0 k =|lm —In|

k=0, n=0,1, .-, N—1.
Here

V=2Ze&/r, r>r,. (1.4)

A" is a mean transition matrix element averaged over
the possible orientations of the angular momentum &%
and is of order of magnitude

(4V2/2k+1)(me*/h?) f Un* Y i 7 Pr(cost) undk,

where (r;, 8;, ¢:) are the coordinates of the ith proton
in the nucleus and the summation is over all such
protons. These A’s represent roughly the coupling which
changes the angular momentum and energy of the
a-particle. The origin is at the center of mass of the
residual nucleons, m is the reduced mass, and E, is the
(strictly complex) energy of the nth a-particle group.

To simplify the problem, we shall study the case in
which the residual nucleus has one or more excited
levels all of the same spin. We assume that the transi-
tions between these levels are unimportant compared
with those between any one of them and the ground
level; ie., Ax""<A;™ when m#0. The case of only
one excited level is, of course, included. Also, one of the
terms of the summation over k in Eq. (1.3) is much
greater than the rest. If the ground state has spin zero,
there is only one term; otherwise the term with the
least value of & is the important one. Let this value of
k=p—1.

We now proceed to set up a perturbation calculation
by the substitution

Ja(r) =wn(r) xa(kar), (1.5)
where x.(x) is the confluent hypergeometric function
defined by

(@xa/d2*)+ {1 — (kn/x) = la(lnt-1) /2 } =0,

and as x—x,
xn—expi{x+ir+ka In(kn/4ex)}. 1.7
kn=4Z6/hvn, kn=muv,/h, E,=3mv.? (1.8)
Thus, x» is the wave function of the a-particle in the
standard theory which does not take account of the
interaction with the individual protons of the nucleus.
X~ is studied in P, Sec. IV. With this substitution and

the simplifications indicated in the previous paragraph,
Egs. (1.3) become

(1.6)

xowo' +2koxo'we'= Y. xmwmdp_1""r?, (1.92)
m#0

XnWr' 2k Xn"Wa' = x0woA p_1"r?, n7%0. (1.9b)

t he
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argument of the function, that is, with respect to k,r
for x» and with respect to r for wp.

To solve these equations one might be inclined to use
a perturbation technique. At infinity, both x, and x.
have magnitude unity; the high energy a-particles are
always observed to be considerably more intense than
those of even slightly lower energy. Since the subscript
0 refers to the ground state, Ey>E,; and hence at
infinity w.<w,, and we might therefore assume the
usual perturbation conditions; iz., wo=a,, a constant,
and w, small. Then Eq. (1.9a) is discarded and we
obtain

W (1) = vao(Ror)+ an €xpis, (1.10a)
wa(0)=a, expis, (1.10b)
wo(7) = ao. (1.10c)
Here vy is given by P (3.17) and P (4.12), viz.,
n0(%) = $@0Yonpno(COtag COtBo)? exp(wo— Qo) k0?2
XA p 1" L= (p—1)— Lt (p—1)}x~?. (1.11)

Ynj=kn/k; and the other functions in Egs. (1.10) are
defined in P, Sec. IV.

This is a straightforward perturbation calculation,
which is suggested by the fact that ¢.<a,. However, in
general, this solution is not valid. The value of the ratio
an/ao predicted by a simple theory, based only on the
barrier penetrability, is the ratio of the Gamow factors,
viz., exp(w(ro) —Q(ro)), where 7, is the nuclear radius
and w and Q refer, respectively, to states 0 and #, being
defined explicitly in ‘P(4.2) and P(4.10). If a,/a, has
this value, then x, will equal x.a¢ at r=r,, because of
the corresponding exponential increase of x./xo. Hence,
x~wn Will be of at least the same order as xow, in the
region near the nucleus, unless @./ao is much less than
the Gamow ratio. Hence the neglect of the right-hand
side of Eq. (1.92) is not usually justified.

Consequently, this simple perturbation calculation
has had to be modified. The method used in P consists
essentially of treating as a small perturbation not the
functions f,, but rather the departure of both the f.’s
and fo from the functions a@. exp(#8,)x. and aox, which
would be their forms if there were no interaction of the
type we are studying. That is, we have there written

Jo=woxo=(@o+2_n Yon) X0, (1.12a)
fﬂ=wﬂXﬂ= (an expian'l'vno)xo, (1.12b)

and have assumed |von|<Ka@nxn/x0 and |vao| <Kaoxo/ Xn.
The right-hand sides of these inequalities are, respec-
tively, the unperturbed values of ¢ and a,. Substitution
in Eq. (1.9) then yields equations for 75, and 2,0 which
are solved in P, with the result that v, is given as above
by Eq. (1.11) and
von(Rn?) = 3@npon(cotan cotBo)? exp(Qo— wo)ko?

XA p_j_"o* { Ioﬂ_(p— 1) - IOn+(P_ 1) }x"”. (113)

The solutions (1.12) have much wider applications
than Egs. (1.10), but there are conditions in which
Eqgs. (1.12) also do not hold. These are if [va| or |a0]
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becomes comparable with a,xa/xo Or @oxo/Xn, respec-
tively. If we look at the forms of 7o, and s, we see that
the orders of magnitude of all the terms but the integrals
I- are roughly independent of Eo— E,, but as E,—E,
—0, the I~ terms may become large, and the solution
(1.12) becomes invalid. In this case, of course, Eq.
(1.10) also fails. The quantities (/——I*)x~? are largest
for points near the nucleus. Hence, we can expect our
perturbation calculations to fail first at points near the
nucleus as Ey—E, is decreased.

III. SOLUTION FOR SMALL ENERGY DIFFERENCE

It is possible, however, to give an alternative method
of solution which may be useful when the perturbation
solution begins to fail. This depends on the fact that,
since Eq— E, is small, xo and x. are not very different.
In Eq. (1.6) for x., the term «./x arises from the
coulomb potential and is numerically the ratio of this
potential to the total energy of the particle (about 5
near the nucleus and for representative a-energies). It
is much more important than the centrifugal term. For
small changes in energy the percent variation of «,/x
is the same as that of the energy. In other words,
changes in energy of 500 kev or less will not have a
large effect on the coefficient of x in the differential
equation. Thus, if we renormalize x, so that it has the
same value as xo at r=ry, it will be a good approxima-
tion to replace both xo and x, by the same function ¥,
provided 7 is not extended too far from 7,. Details as to
the meaning of “too far’” consistent with any pre-
scribed degree of accuracy are given elsewhere.” For
example, if E,—E,=250 kev, the method gives 10
percent accuracy for r=J1.67, and for smaller energy
differences or less accuracy the range can be extended.
Since, as E¢—E, is decreased the breakdown of per-
turbation theory occurs near the nucleus, these ranges
appear to be sufficient. (Actually, we shall see that for
250 kev the perturbation method is valid.)

For simplicity, we consider the case where there is
significant interaction between the ground state “0”
and one excited state “n”’. Then we use x(kr) torepresent
both xo(ker) and xa(kar)x0(Ror0)/ xn(kar0). We define x
exactly by

X"+ —«/kr)x=0, x(kro)=xo(koro).

Here «, k, and v are certain mean values.

We now replace xo(ker) and xa(kr) in Eq. (1.9) by
x(kr), and after some substitutions find that we can
write

Jo(r)=woxo=3a0A[T1C+(r)+T:D,(r)+AC_(r)

2.1)

+AeD_(r) Ixo(kor)/x0(koro), (2.2a)
Jfa= %aeri"[:AIC_-i— AD_—T4Cy— I‘gD.,,]x,,/
Xn(knfo)- (22b)

Here, A, "°=Ae® T, T's, A, Az are constants and
xC+y xD+, xC—, xD— are the independent solutions,

7M. A. Preston, Thesis, University of Birmingham (1949).
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corresponding to the two signs of 4, of the equation
@F/d2?4-[1— (x/x)£ A/x?]F=0. (2.3)

It is only in the region near the nucleus that the solution
(2.2) is valid. If the lowest value of 7 for which the
perturbation solution (1.12) is sufficiently accurate is
less than the highest value for which Eq. (2.2) is reliable,
we can then join the two solutions at some intermediate
value 7;. Whether or not this can be done in any par-
ticular case can be determined numerically.

It is necessary to fix the four constants I'y, ', A;, A,
in Eq. (2.2) and g, and a, expid in Eq. (1.12). These are
fixed by boundary conditions. At the nuclear radius we
have, apart from the constant of proportionality
between f; and f., a matrix of four complex constants
a, B, v, 6 determining the values of dfy/dr and df,/dr:

fo'=afotBfa (2.4a)

at r=rp
fa'=vfot8fn (2.4b)

Clearly, I'y, T's, A5, Az can be found in terms of «, S,
v, 8. Then at some value of r=r;, the solutions (2.7)
and (1.15) are joined by the four conditions

(foy fny @fo/dr, dfn/dr) 2.)
= (fo, fn, dfo/dr, dfa/dr)1.12) (2.5)

at r=r,. This implies that the perturbation solutions
also involve four undetermined constants, which are
thus given in terms of «, B, v, 6. However, we have only
two constants available in Eq. (1.12), viz.,, @p and
a. expid; knowledge of the other two is equivalent to
assuming the presence of only outgoing waves at
infinity. Thus, instead of «, B, v, 8, knowledge of which
depends on details of intranuclear phenomena, we use
the absence of incoming waves at infinity. The constants
which remain are T3, T3 A5 Az C=(fa/fo)=
=a, expid/ap and pu=(f/fo)ro. Equations (2.5) deter-
mine the I’s and A’s as functions of C and then Egs.
(2.2) allow us to find the relationship between C and .
Thus we can express the relative intensity of the two
states at infinity in terms of the relative intensity at ro.
We can also find A, the decay constant, from

(fofo*' - fo*f0,+fn n*’ - fn*fn,)"ﬂ
— 2im\/B) f Fofo+fufuR)dr. (2.6)

The integral on the right can be estimated only roughly.

Apart from obtaining explicit forms for the functions
Cy, Dy in the solutions of Eq. (2.3), this completes the
general solution of the problem. In a given numerical
case, it is desirable to discuss the solutions for a range
of values of 4, since this nuclear parameter cannot be
well known a priori.

It is to be noted that, although Egs. (2.5) involve 7;,
the value of » at which the two solutions are joined, the
final result should not be at all sensitive to this param-
eter, if it really lies in an interval of » where both solu-
tions are reasonably accurate. In a numerical case, it
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would be wise to repeat the calculations with a slightly
different value of r,, thus obtaining a final check on the
over-all accuracy of the various approximations.

IV. EXPLICIT FORMS FOR C4, Dy
We have still to solve explicitly
(BF/dx®)+[1— (x/x)£A/x?]F=0. (2.3)
If we are dealing with a dipole transition, p=2, and the
solutions of Eq. (2.3) are confluent hypergometric

functions. We base the solution of Eq. (2.3) on the
known expressions [P(4.1) and (4.6)] for the solutions

of
d*x/de®+ (1 —«/x—1(1+1)/23)x=0. 3.1)

Since these solutions are known for the first few integral
values of /, we can express the solutions F of Eq. (2.3)
in terms of the solutions x and the difference between A4
and the nearest value of /(I+1).

Now by P, Eq. (5.1),

A "= 4V2me2R/3h*~2.53
XlO“’(fu,,*Er,— cosfu,dE cm). (3.2)

It is difficult to estimate the matrix element R, but as
it refers to a dipole transition it will be at most a few
times 1072 cm and may be as small as 10~** cm. Hence,
for the dimensionless quantity 4, we have the approxi-

mate limits
1TAT1072 3.3)

Thus, if A=I(l4+1)+A4, Eq. (3.3) shows that A has its
smallest value when /=0. Therefore, we shall study the
equation

(&F/dx)+[1— (x/x)+N/2*]F=0 (3.4)
and shall make use of the functions x which satisfy
(@x/dx?)+(1—«/x)x=0. 3.5)

For higher multipoles, similar considerations show that
near the nucleus 4 ,#~7 is small compared with (1—«/x);
and therefore we express solutions of

(PF/da?)+[1— (x/x)+N/ % JF=0
in terms of the solutions x of Eq. (3.5).

3.6)
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Our procedure is to put
F(x)=x(x)o(x) 3.7
and express o as a power series in the parameter A, viz.:

o= cal)\™ (3.8)

We want two independent solutions of Eq. (3.6).
One is obtained by making F almost the same as the

solution
[P (4.1)]

that is, we take F=x, F'=x’ at the nuclear boundary.
The other independent solution of Eq. (3.6) is obtained
in the same way, using for x the other solution of Eq.
(3.5), viz., (cota)tee.

For the second solution we write

x= (cota)lev;

0'=Z 'Ynxn- (3.9)
0
Then,
Ci=2 cad", D=3 vaA", (3.10)
C=X cn(=A4)", D=3 vya(—A) )

Recursion formulas for ¢, and v, have been obtained.”
These involve numerical integration, but usually ¢,
and v, are required for only a few low values of #.

V. NUMERICAL RESULTS FOR A DIPOLE CASE

Numerical calculations have been made for a typical
case. For E, we have taken 5.303 Mev, simply because
some of the quantities had already been obtained for
this energy, which is that of the main line of polonium.
For the small energy difference, we have taken E,— E,
=250 kev, so that the calculations of Sec. II on the
validity of replacing xo and x,. by the same function
apply. We have assumed a dipole transition;i.e., p=2.
However, the methods of this section are applicable to
higher multipoles.

For E=5.30 Mev, and ry=8.27X10"18 cm, it is
necessary in calculating Cy, D, to take the power series
(3.10) only to the terms in A2

We now proceed to solve (2.5) and use (2.2) to obtain
the relationship between C= (fa/f0)w and p= (f./fo)ro.
It is found that terms in A? can be neglected; to this
order the result is

IC+Ae?{ —[(v1'— 1) /v’ 1— MYItyo/v0 )+ 30 7(Lno=— 1))}

The following abbreviations have been used.

TI= (cotBo tana)? exp(Qo— wo).

= , - (4.1)
T ACe ([T v — o)/ 1= (T 7o/ 1)+ ho(Tno— 7))

¢=k sin2a,; p tana;. (4.5)

(4.2) ll/= K sinZ&1 T tanﬁl. (46)

IT=Tont(r)=In*(r1); Ion =Ion(ry). 4.7)

I1? is the ratio of the barrier penetrabilities at the two
energies.

(4.3)
(4.4)

p= (cotoq C0t31)# exp(ﬂl—wl) (kfl)—z.

7="yon(coter; cotB1)} exp(wi— Q) (kr1) 2.

In these equations the subscript O refers to values at
r=ro, the nuclear radius; subscript 1 refers to r=r,,
the point where the solution of Sec. III is joined to the
perturbation solution; a=arc cos(kr/x)}; a and B are
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the corresponding quantities for Ey and E,, defined
exactly in P Egs. (4.1), (4.11). ' =d/da.

Let us compare this result with those of the per-
turbation methods. If the perturbation solution (1.12)
is carried right down to r=r,, instead of using the
alternative method near the nucleus, it can be seen that

HC‘{"Aew%HTo(Ino_— I+)ro
B 1+ACe“"%pg(Ic,,‘— I+)ro ’

where 7o and po are T and p with 7y, replaced by 7,. Also
the more restricted perturbation solution (1.10), if
extended to r=r,, gives

[J.=HC+ABW%HTQ(I”0——I+)'0.
In our numerical case, Eq. (4.1) gives
IIC+ Ae®(7.96+6.152) X 102

L (4.8)

(4.9)

u= (4.1a)
1+CAe%(1.6,—0.08,2) X 10!
and Eq. (4.8) gives
IIC+ Ae®(8.3546.497) X 102
u= (4.8a)
14+CAe%(1.5,—0.087) X 10!
and Eq. (4.9), of course, gives
p=TIC+Ae?(8.3c+6.455)X 102, (1=4.84). (4.9a)

In these expressions we have taken r;=14.72X 101
cm. If we had taken r,=16.81X10~"3 cm, the coef-

C= (/M) —Ae®{ —=[(v1"— 1) /v’ TI]— @I yo/vo )+ 37(Tno™—I1)}
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ficient in the numerator of Eq. (4.1a) would have been
(7.85+6.15) X102 and in the denominator it would
have been (1.6;—0.084)X 101, Thus, the result is not
sensitive to the value of 7;. The calculations for I+ and
I~ are given elsewhere.”

The observed relative intensity of the a-particles of
the lower energy E, to that of particles of energy E,
is |C|%. When A=0, that is, when the effect of the
electrostatic interaction is not taken into account, we
have |C|?=u?/II?, which simply expresses the result
of the standard theory, II* being the ratio of the
penetrabilities of the coulomb potential barrier at the
two energies.

The results of the perturbation calculation as given
in Eq. (4.8a) are clearly very close to those of the
second method (4.1a). This is not surprising, however,
for in this case the criteria stated in Sec. I for the valid-
ity of Eq. (1.12) imply 0.114<1, which is certainly
satisfied. Thus, even with the energy difference of 250
kev, the improved perturbation method is valid.

The original perturbation method, corresponding to
Eq. (4.92) is valid if |vao+a, expid| x~<aoxo for all 7.
This holds only if C is very small and then, of course,
there is no real difference between Egs. (4.8a) and
(4.9a).

Let us now consider the magnitude of the interaction
effect we have been studying. Rewrite Eq. (4.1) in the
form

1= pde (v~ )/ 7' = (6T o/ o' I +3p(Lon=—I+)/11}

Firstly, we take the case |u|=1. This expresses that,
in the absence of the potential barrier, decay with either
energy E, or E, is equally probable. Since the energies
are close together, this seems a reasonable assumption
in the absence of any special restrictive conditions.
Then, if u=expi®, we obtain, to order 4,

|C|?=T2—11"143.11X 102 cos(f— O@—tan—1.32).

For the energies chosen, II7?=4.269X10~2; and this'is
the relative intensity at infinity on the standard theory.
Thus, the second term measures the interaction effect;
and, numerically,

|C|?=4.269X10"2{1—0.154 cos(f—O—tan—1.32)}.

Thus, the effect produces at most a 10 percent change
in the relative intensities at infinity, and with the more
reasonable values 0.2 >4 >0.01, the effect is less than
3 percent.

The above is for |u|=1. Next consider p=0. This
means that there is no direct a-emission with energy
E, but that all the rays with this energy are due to the
interaction. Then

|C|2=4.4X 1044,

Thus, the maximum relative intensity (of the lower

(4.10)

energy particles to the greater) due to the interaction
alone is about 4X10~*; and more probable values cor-
responding to smaller values of 4 are 10~5 down to 102

We can also put |u|= =, i.e., no direct emission of
the higher energy particles. Then the intensity .of the
higher energy particles is less than that of the lower
energy ones and the ratio is

|1/C|2=2.3X 10242

Thus, this effect is 100 times as great as the reverse;
i.e., it is about 100 times more probable that the a-par-
ticle will absorb the energy of a nucleus left in an
excited state than that it will excite a nucleus left in
its ground state. Both these processes of course give
weaker lines than the corresponding direct decay with
|u|=1.

The case |u|= » is the extreme limit of the for-
bidden ground-state transition suggested by Perlman,
Ghiorso, and Seaborg. Their model for non-even-even
nuclei would suggest values of |u| between one and
infinity. It is seen that in such cases the effect here
studied might be of some importance. The numerical
values above are for E,=5.30 Mev, Ey— E,= 250 kev.
From the calculations in P with Ey—E,=1.2 Mev, we
find that for |u|= o, |1/C|2*~10-342% It would be
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interesting to repeat the calculations for energy dif-
ference in the region where perturbation methods
really fail and a larger value of |1/C|? might occur. The
value Ey— E,~50 kev should provide such a case and
would be interesting in view of the two lines of
Bi*?(ThC), which differ by 40 kev.® The greatest dif-
ficulty in such a calculation would be the numerical
evaluation of I~ and Iy,

In addition to Bi*2 there are a number of other cases!
where this effect might be of some importance. These
are shown in Table I. It is difficult to separate the con-
tributions of the various phenomena which affect the
intensities. Usually, neither the angular momentum of
the a-particle nor the degree of prohibition (value of u)
can be estimated with any certainty. (The penetra-
bility of the coulomb barrier is, of course, the factor
which fixes the order of magnitude of the intensities.)
In any given experimental case, we would like the

( 93 4(3) T. Seaborg and I. Perlman, Revs. Modern Phys. 20, 585
1 .

ROLF LANDAUER

TasLE I. Relatively forbidden transitions in which the electric
interacItIion may be important. For Ra?®, the figures refer to lines
T and II.

Eo—En
Nucleus akev |IC|~2
s 160 0.11
Th229 100 0.5
Ra2 80 0.40
Bi22 40 0.39
Bi2 60 0.82

difference between the observed partial decay constant
and that predicted by standard theory [Eq. (A.1)] to
be apportioned among the three effects: angular
momentum, “formation” prohibition, and noncentral
electric interaction. At present, this does not seem
possible, but there appears to be evidence that all
three play some role.

I am much indebted to Professor R. E. Peierls for
stimulating discussion and to my wife for help with
the rather heavy numerical calculations.
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In the vicinity of an edge type dislocation, the density of electrons, and therefore the width of the filled
portion of the conduction band is not uniform. To keep the electrons in equilibrium, an electrostatic po-
tential is required. The scattering caused by this potential is used to calculate the increased resistance of

isotropically cold-worked copper.

I. INTRODUCTION

OLD working produces an increase in the resistance
of metals. This increase has been attributed to
the formation of dislocations by Koehler.!* Koehler’s
calculations have been refined by Mackenzie and
Sondheimer,® who give a very elegant treatment of the
problem. In particular, they calculated the change in
resistance produced by cold-working, at high tempera-
tures, whereas Koehler calculated the resistance arising
from dislocations at absolute zero. These two quantities
need not be equalt—® Both treatments attribute a
screened coulomb potential to each ion of the crystal.
The perturbation that scatters the conduction electrons
arises from the fact that these ions, and consequently
their screened coulomb fields, are displaced from their
normal lattice positions.
17]. S. Koehler, Phys. Rev. 75, 106 (1949).
2 J. S. Koehler, Am. J. Phys. 10, 275 (1942).
I;SI('))K' Mackenzie and E. H. Sondheimer, Phys. Rev. 77, 264
( +E. H. Sondheimer and A. H. Wilson, Proc. Roy. Soc. (London)
A190, 435 (1947).

8 M. Kohler, Z. Physik 126, 495 (1949).
8 J. W. Rutter and J. Reekie, Phys. Rev. 78, 70 (1950).

In the earlier treatments it is assumed, therefore,
that the screening electrons which are associated with
a particular ion stay with that ion as the latter is
displaced from its position. No large scale redistribution
of electronic charge is permitted.

Actually, however, the electrons can redistribute
themselves. An edge dislocation contains an extra plane
of ions, above or below the slip plane. Consider the
case in which the extra plane is above the slip plane.
If each ion were to keep its screening electrons, the
Fermi energy above the slip plane would be larger than
below, and, as a result, some electrons would go from
the upper to the lower region. This in turn gives an
unbalance of charge and an electric field. Equilibrium
will be attained when the Fermi levels in the different
regions have come together.” If the number of electrons
which are displaced to establish the field is small, the
effect of this change of electron density on the Fermi
energy can be neglected. The purpose of this paper is
to calculate the incremental resistance per dislocation
due to this electrostatic field. It will turn out to be

7 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).



