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(3) Excitation Curves

The thick target x-ray excitation curve is obtained
by plotting the normalized activity as a function of the
electron beam energy. Since the activity has a short
half-life, the varying target current was weighted
exponentially from the end of the irradiation period.
Thus, all activities were normalized to inhnite irradia-
tion with constant current. For each isotope, several
irradiations were made at each voltage, and the
activities were averaged to reduce the statistical error.

Figure 2 shows the lower energy portions of the
excitation curves for Ag'" and Ag'", respectively. The
thresholds in both cases are below 800 kev, although the
data do not permit accurate location. The breaks in the
curves indicate an activation level in Ag'" at 1.285
&0.0j.8 Mev and an activation level in Ag'" at 1.210
~0.018 Mev. Figure 3 shows both excitation curves
over the entire energy range investigated and empha-
sizes the 75-kev difference between the corresponding
levels in the two nuclei. In considering the close simi-

larity between the two nuclei in other respects, it is to
be expected that such a small di6'erence between the
energy levels exists. The approximate over-all cross
section (i.e., per electron incident on a thick gold
target) at 1.4 Mev is of the order of 10 ~ cm' for both
isotopes. In Figs. 2 and 3, to convert activity to over-all
cross section, multiply the ordinates by 4X10 "cm'.

These excitation curves agree with the early work of
Feldmeier' in this laboratory but are contrary to that
of %iedenbeck. 4 This experiment is further confirmation
that, as has been previously discussed, ' one cannot
obtain more than a few energy levels by x-ray excitation.
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ESect of Finite Nuclear Size on the Elastic Scattering of Electrons*
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The effect of the finite size of the nucleus on the elastic scattering of electrons with energies in the
neighborhood of 20 Mev has been calculated for two simple spherical nuclear models: a uniform charge dis-
tribution, and a uniform shell charge distribution, both of radius R = 1.45 X 10 "A & cm. An exact phase shift
analysis has been made, the phase shifts difFering appreciably from those for a point nucleus only in the
j=$ state.

Phase shifts for elements of Z=13, 29, 50, and 79 have been plotted as a function of energy over the
interval from 15 to 35 Mev, permitting the calculation of any desired cross section within this range.
Representative curves of the ratio of the scattering cross section for the finite nucleus to that for a point
nucleus have been plotted.

The difFerence in the scattering due to the two models is large enough so that accurate experiments might
distinguish between them, the actual average nuclear charge distribution probably falling somewhere
between these two cases. The ability to difFerentiate between the two models, however, depends on the
accuracy with which nuclear radii are known.

I. INTRODUCTION

HEN a beam of high energy electrons ( 20 Mev)
falls on an atom, a significant part of the scat-

tering results from electrons which have actually
penetrated the nucleus, so that the scattering cross
section depends on the nature of the nuclear charge
distribution. Previous calculations for lower energies
have taken the nucleus to be simply a point charge. It is
the purpose of this paper to calculate the efkct of the
6nite nuclear size on the scattering of these high energy
electrons. Two simple nuclear models are assumed: (1) a

~ This paper was supported in part by the joint program of the
ONR and AEC.

t Now at Hughes Aircraft Company, Culver City, California.

uniform spherical charge distribution, and (2) a shell
charge distribution, with the charge distributed uni-
formly over the surface of the nucleus.

Rose' has already treated this problem by means of
the Born approximation, which is valid for the light
elements. Here exact results are obtained by means of
a phase shift analysis.

For the energies of interest here, it is necessary to use
the Dirac relativistic theory of the electron. Relativistic
scattering theory, for spherically symmetric scattering
centers, involves the solution of a pair of simultaneous
6rst-order diGerential equations, the well-known Dirac

' M. E. Rose, Phys. Rev. 73, 279 (1948).
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radial equations. '

(1/k) [(E V—/c)+rrzc]F.
+ (dG./dr) —[(»—1)/r]G. =0,

—(1/k) [(E—V/c) —zzzc]G.
(1)

+ (dF„/dr)+[(»+1)/r]F, =O,

where»=+(j+22), j=l&12.
From the asymptotic form of 6„,

G„[sin(kr —-', lzr+ g„)]/kr, (2)

one can determine the phase shift g„, depending on the
potential V of the scattering center, and the relativistic
energy E of the incident electrons. The scattering cross
section is given in terms of the phase shifts by

f(8)= P»—[(e"" 1)P—,. 1(cos8)
2ik.=&

+ (e"&- —1)P,(cos8)), (3)
OQ

g(8) = Q [—e"2 P cz'c(cos8)+e"2 P c(cocs8-)],
2ik.=&

where P,' and P'„are associated Legendre polynomials.
The terms in g„represent the contribution of the

j=l++~ states to the scattering, while those in g „
represent the j=l—2 states. (rl„and g correspond to
p; and g & & in Mott's notation but refer to the same j
value rather than the same I value. )

II. SOLUTION OF THE DIRAC RADIAL EQUATIONS

For energies of 20 Mev and above, the rest energy of
the electron plays a small role, and the treatment of
these equations is greatly simplified if it can be neglected
completely. This is a better approximation, even, than
it appears at first glance; for if kept, the rest mass
appears in the results primarily in the form E'—m'c'.

Making this simplification, the radial equations
become,

the problem is simplified by the fact that one can take
ltl=p, and only one second-order equation need be
solved.

The constants A and 8 enter the picture when the
solution of the second-order equations is also required
to satisfy the pair of first-order equations.

The equa. tion for 1P is to be solved for a potential
which, inside the nucleus, depends on the specific
nuclear model chosen but which, outside the nucleus,
equals the coulomb potential that would exist if all the
charge were located at a point.

Separate solutions for these two regions are obtained
with the requirement that their values and slopes
coincide at the nuclear radius. This, together with the
boundary condition that |p(0) =0, (in order that G be
finite at the origin) determines zP uniquely, except for
a constant multiplying factor which can be absorbed
into A.

Thus, for r)R, region II, the potential is U= —n/r,
where n=Ze'/kc,

Az "+[(k+n/r)'+zk/r —(»'——,')/r']61 =0. (7)

This equation reduces very simply to %hittaker's
confluent hypergeometric equation, and the general
solution' can be written

lpll =A zip. i+A zip. 2,

1P,I——re+pe '"",Fl(P+inr 2P+1; 2ikr),

where p= (»' —n')*',

lp, z rp+&e ' " IF——I(—p+in; —2p+1; 2ikr) (8).
Matching the inside and outside wave functions and

derivatives at the nuclear radius,

4'1(R) =All(, z(R)+Azlp, z(R),
tkz'(R) =A zip, z'(R)+ A 21',2'(R).

Solving for the constants A» and A2,

(k —U)F„+G, ' [(» 1)—/r]G„—=0,
—(k—U)G„+F,'+[(»+1)/r]F„=0,

A I= (4'l4'c2 lipc2$1 /4'clli'cz li'czli'cl )r

A2 (IP 1/1 1PI4' 1 /IP 11P 2 IP 21' 1

(4)
and

where k=E/Ac= P/k, U= V/kc.
If one makes the substitution Since it is the asymptotic form of 6 which is of

interest, it is the asymptotic form of lp which will be
considered here. Using the well-known asymptotic
expressions for the confluent hypergeometric functions,
one has

F=ir &(A1P Blip), G=r &(A—1P+Bpk), (5)

where A and 8 are constants, and then eliminates Bp
from the pair of equations, one obtains the following
second-order differential equation for zP.

(10)
r(—2p+1)

( 2ik) pr/e r'kr —r'a
In 2kre

—crra—
I'(—p+1 —in)

If tt is eliminated rather than 1P, the resulting equation
is the complex conjugate of the above equation; thus,

I'(2p+1)
2(k—U —rU')»' —-' ( 2ik) prie ikr la lnkkre —$ca- — —

1P"+ (k—U)'+ /=0. (6) I'(p+1 —in)
r r'

~Mott and Massey, Theory of Atomic Collisions {Clarendon
Press, Oxford, 1949), 2nd edition, p. 74.

'Khittaker and %atson, 3fodern Analysis (Cambridge Uni-
versity Press, Cambridge, 1927), p. 337.
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The ratio of p, z to $,2 is asymptotically a constant,
which will be called ~,.

The ratio A/B is still to be determined, and going
back to the 6rst radial equation, one obtains

F(—2p+1) F(p+1—ia)
«.= (—2ik)2&

F(2p+1) F(—p+1—ia)

Asymptotically, f can then be written,

P-AA. z(1+«&2/A z)-4.1(1+8),

A/B — e2ibr

(11)
L(r F,'+A, F,)+ (g/K. )r-"(rF,'+A,F,)7"

X , (21)
(re'+ApFi)+(5/K. )r '&(rF—i'+A iF p)

(12) where A, = p —K+ia, which can be written

where the arbitrary constant in fz has been chosen so
that A~=i, and

g= K,A2/Az

0"1 gz'/4z 0'1'/k—z

evaluated at r=E. (13)
0.2 A'/A 0'2'/A—2

where

A A, 1+(A2/A1)*r 2&E*

B B, 1+(A,/Az)r 2&K

rF p'+A pF pE=-
rF, '+A,F,

(22)

It is seen that only the logarithmic derivative of Pz
appears.

The question now is how $ is related to the phase
shift p„, which is to be determined from the asymptotic
form of G, . It becomes necessary to 6nd the ratio A/B,
which is obtained from one of the first-order equations.

Consider erst the case of a point nucleus, the coulomb
potential. The first radial equation gives

Here it is most convenient to use the asymptotic
expressions to evaluate A/B; however, one must take
care to use the complete asymptotic form of the con-
Quent hypergeometric functions when taking deriva-
tives.

I'(c) F(c)
F z(az; c; z) (—z)-'+ e*z -'.

I'(c—a) I'(a)
A, ( p+K+ia)—Fp* rFp*'—

e2skr

B, (p—«+2a)F,+rF, ' (14)
to

It can be shown that the expression for A/B reduces

where F,= 1F1(p+ia; 2p+1; 2ikr).
Since this must be a constant, it can be evaluated at

the origin.

A A, 1+$(K,+Kb)*(A2/Az)*

B B, I+p(K.+Kb)(A2/A 1)
(25)

A,/B.= —(p—K—ia)/(p —«+ ia). (15) where

The asymptotic form of G„&'& can then be written

G„&'&~1/kr sin(kr+ a ln2kr —x2l2r+ x„), (16)

F(1—2p) F(p+ia)
Kb= (2ik) 2&

F(1+2p) F(—p+ia)
(24)

where
p K+2a F—(p+1 ia)—

e2ixst e~i (p—l)

p K ia —F(p—+1+ia)

The appearance of the log term in the asymptotic
form arises from the fact that the potential falls oG
as 1/r.

It remains to be seen how this expression is altered
by the assumption of a finite nuclear size.

G, r &(Ag+BP*)-r 'LA(1+4)4"1+B(1+5')bt. '7.

This can be written as

G, 1/kr sin(kr+a ln2kr glzr+x, +8,—), (18)
where

A, B1+P
ess4

B, A 1+$

The phase shift for the case of a finite nuclear size
is given by

v.= X.+&' (20)

and the phase shift 8„ is then given by

1+2 (Ka+ Kb) (A 2/A 1) 1+K~ (A 2/A 1)
e2ibzr (25)

1+-', (K(g+Kb)*(A2/A, )* 1+K,(A2/A, )

Using the relation F(1—z)F(z) =zr/sin2rz, K, and Kb

can be written,

sinzr(p+ia) p ia F(p+—ia) '
e- '&(2k)2&

sin22rp 2p F(2p)
(26)

sinzr(p —ia) p ia F(p+—ia) '
e '2(2k)".

sin22rp 2p F(2p)

Thus, the phase shift 8„ is expressed in terms of
A2/Az, which in turn depends on the logarithmic
derivative of the inside wave function evaluated at the
nuclear radius.

The next step is to see how this phase shift enters
into the expression for the scattering cross section.
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f=f,+ Q e[e"«(e"'—1)P„,
2ik «-&

III. SCATTERING CROSS SECTION where the angular functions are tabulated in the paper

Letting g, = X.+8„, the expressions for f and g can be
The terms involving q' are negligible except for large

angles, where Ii becomes much larger than G. Thus, for
angles up to 150', the coulomb cross section can be
written

+ezig-„(eziz-~ 1)P]

and

f=f,+ Q iiezi«(e"' 1)(—P„+P, 4),
2Q «=i

g=g+—2 e'*""(e"'—1)(P '—P - ')
2Q «-&

(28)

Using recurrence relations between associated Le-
gendre functions, one has

oe

g=g+ Z L
—"'"(e"'-1)P-'

2ik «=&

+ezig g(eziz -~ 1)P 1$ (27)

where f, and g, are the values of f and g which give
the coulomb scattering.

It can be shown that x„=y „and b„=b „ in the
approximation of neglecting the rest mass; therefore,
one has

kze = IGI' sec'-'8

with an error of less than one percent.
Noting that

f, +gtan zz 8= k ' seczsz8 G,

the ratio e/o. becomes

(eziz„] ) z.
—=1+ Q «(P, +P„&)Re Ge "«I

IGIz.-z . E 2z )

(~2ib«1 p
2

+ P i4(P,+P, ,)e"&
I I

. (35)
IGIz =z

The phase shifts, 8„, will decrease very rapidly with
increasing ~ since, classically speaking, those electrons
whose angular momenta are such that they do not
penetrate the nucleus itself cannot tell the difference
between a 6nite nucleus and a point nucleus. For most
of the energies considered here, in fact, only bj will be
important.

Now, Pi+Pe=cos8+1=2 cos'-,'8

P, P„z ii tan—z8 (P,——+P„g). (29) 4 cosz~8 (ezi"—1)*
—=1+ Re Ge ""'I

Thus, g can be written in term of f
g
—g, = tan-', 8.(f f,)—(30)

The scattering cross section is then

ir=o.+2Re[(f+tanzz8 g,)(f—f )*]
+seczz8' If f~lz (31)

where e,= If,I'+ Ig, I'.
McKinley and Feshbach' have given the coulomb

scattering cross section in terms of two functions, Ii

and G (not to be confused with the radial functions F,
and G,).

4 cos4-,'8
+ sin'gz. (36)

This expression is valid for those energies for which

b2 is negligible, for all Z, and for scattering angles up
to 150'.

For low Z elements, such that n' is negligible, G Go,
and for energies such that 82 and 8~' are also negligible,
the cross section becomes

kf, =G iq'F, —
kg, =tan-', 8 G+iq' cot~z8 F,

kzo;=
I
G I' secz-'8+q'4 IF I' csc'-'8

(32)
(r 8bg—=1+ sin'zz8 cos(a ln sinzzz8+2a).
0'c CX

(37)

where q' = (a/P) (1—P') Z, P = e/c; q'~nzzzcz/E.

G and Ii are given by the following expressions
(taking n/p n):
G= Go+Gi, ~=~o+~i&

Gz= ~~a cotz~z8 exp(ia ln sinz~~8)
.[I'(1—i )/I'(1+i )j,

Fo (z/n) tanz-', 8Go, ——
Gz =E(8)n'+ P(8)a'+ [I(8)+J(8)]n4,
Fz ——A (8)n'+ B(8)a'+ [C(8)+D(8)]a4,

4 W. A. McKinley, Jr. and H. Feshbach, Phys. Rev. 74, 1759
(1948),

Having seen how the scattering cross section depends
on 5„, it is now necessary to Gnd out just how large these
phase shifts are for the different nuclear models.

IV. EVALUATION OF 5, FOR SPECIFIC
NUCLEAR MODELS

To determine the phase shift, one must solve Eq. (6)
for the region within the nucleus and evaluate Pr'/fr
at the nuclear radius.

The easiest ease to handle mathematically is the shell
charge distribution, where the potential is simply
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30o

13 0.467
29 2.54
50 8.28
79 22.31

0.0226
0.1314
0.491
1.740

TAsxs L [G/

2.58X10 '
0.0156
0.0629
0.269

120o

2.91X10 4

1.80X10 '
7.62X10 '
0.0370

150'

1.36X10 ~

8.43X10 ~

355X10 '
1.788X10 4

This equation cannot be put into any of the standard
forms, but noting that aQ that is required is
ft'(R)/Pz(R), one can make the substitution

@= (dPt/dx)/ft (43)

which reduces the second-order equation to the Riccati
first-order equation

Table II. Ge ~'"1. d%/dh+ +'= J(x), (44)

30o

50

13 0.672 0.150—0.122i —0.0096i
29 1.449 0.358—0.66Si —0.0588i

1.951 0.660—2.114i —0.237i
79 0.0314 0.949—4.72i —0.916i

0.0508—0.00036i
0.1248—0.0037i
0.249

—0.026i
0.481—0.193i

120

0.01705
0.00042i
0.0424
0.0019i
0.0873
0.0029i
0.190—0.0314i

150o

0.00368
0.00015i
0.00915
0.00078i
0.0187
0.0021i
0.0423—0.0006i

where J(x) is the coeKcient of }i/t in Eq. (42).
This equation can be solved by the power series

method, letting
COe=-P a„x"

ge 0
(45)

and evaluating the coeScients a„by the usual pro-
cedure.

Evaluating 4 at r=R; i.e., x=1,
I/'= a/R. The —wave equation then becomes

a ) ' i(k+a/R)
~ "+

I k+—(+ A =o (3g)
Ri r r'

@„a——g a„. (46)

This equation also reduces to %hittaker's conQuent
hypergeometric equation. The solution going to zero at
the origin is

/(//+a/R)rr}/}+

Xtpi([ «[; 2[ «[+1;2i(k+a/R)r). (39)

(The absolute signs about «can be omitted since it is
only positive « that is now being considered. )

The phase shift depends on A2/A~, which is given by
Eq. (9). If one writes

=e /t&r/+tp—

}i 2=e 't'r /+tp

—e i «//r///+}/F—

where

F,=gpss(p+in;2p+1; 2ikr),
F.= gpg(«; 2«+ 1;2ik r),

In terms of'O', A2/A& is

RF,'+ (p+ ,' ikR -4—)F/——= —R" . (47)
Ag RF /'+( p+~s ikR—4')F—, —

Calculations have been made for four elements, of
atomic number 13, 29, 50, and 79, and for a number of
energies between 15 and 35 Mev. The values of ~G~'
Ge "», for use in Eq. (36), are listed in Tables I and II.

Using the formula R=1.45X10 13A& cm for the
nuclear radius, and with k=E/bc=0. 507X10"EM,
cm ', kR is given by M= 7.35)(10 ' EM, A&.

The phase shifts, bi, are plotted against energy in
Figs. 1 and 2. The scattering cross sections for the
above Z at 20 and 30 Mev, and for energies of 15, 25, and
35 Mev at 2= 29 for both the shell and uniform charge
distributions, are plotted in Fig. 3 (u, k, and c).

V. DISCUSSION OF RESULTS

The general eGect produced by the 6nite size of the
nucleus is seen to be a reduction of the scattering cross
section, predominating at large angles. This is in agree-
ment with the wave picture of the scattering; for if the

k =k+a/R,
then

A2 RF,'+(p —«+in RF„'/F, )F, ——= —R'/, (41)
A g Rp, '+ ( p «+ia RF,'/—F.)—F, —

/
/

/

/
/

I
/

/
S~tgg

/
/

and i}„is determined from Eq. (25).
For the uniform charge distribution, the potential

within the nucleus is V= —(n/2R)(3 r'/R'), which—
leads to the equation

d'}fr «' —~4 k R
i —(—k .R)'+pius

de' x' g

+uk. .R~' ——,'u'x4 Pt =0, (42)

where «=r/R, k = k+3a/2R.

I J

io to so 0 20 3p
E»taGT W }/}«v ENERot' }N t/}ry

FIG. 1..Phase shift bj as a function of energy for shell and uniform
models for (a) Z=13, (b) Z=29.
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APPENDIX

Numerical Calculations

To evaluate the confluent hypergeometric functions, it is
necessary to use their series representations.

a a{a+1}s'
b b{b+1)2~

&
r(a+n) r(b) ~

„,r(b+n) r(a) nl

For the coulomb solutions, one has

F =Z a &"&a~,P f)
n~0

RFp'= Z nn &a)se
ps~0

'Skaggs, Laughlin, Hanson, and Orlin, Phys. Rev. 73, 420
(1948).' J. Schwinger, Phys. Rev. 75, 898(L) (1949).

one must. consider interactions with the individual
nucleons.

The present treatment is also»rrlited by the fact that
only spherically symmetric charge distributions can be
considered, and thus the eGect of nuclear quadrupole
moment cannot be calculated, Magnetic forces have
not been considered, although they may not be com-
pletely negligible at these energies. Furthermore, it is
only the cross section for elastic scattering that has
been investigated here. While the total cross section for
nuclear excitation is small, ' j.0 4 barn for 16-Mev
electrons (the coulomb differential cross section varying
from a few barn at 30' to 10 ' barn at 150'), it is
necessary to say a word about the eGect of radiation.

Schwinger' has calculated the radiative correction to
the coulomb cross section for essentially elastic scat-
tering of electrons. One can write o/a, =1—8(e, hE),
vrhere hE is the energy radiated. It is only for small
hE that b is important, and the scattering differs
appreciably from the coulomb scattering. Representa-
tive values of 8 are, for 8= ~x and E=20 Mev,

8=0.07I if BE=0.022,

and

8=0.018 if AE/E=0. 20.

Thus, the eGect of radiation can be minimized in ex-
perimental work by the use of a wide range detector.

The author is greatly indebted to Dr. H. Feshbach
for suggesting this problem and for continued help and
encouragement. Than. ks are due to Dr. M, E. Rose for
several helpful discussions, and, for computational aid,
the assistance of Ann Moldauer is gratefully acknowl-
edged.

where
r(p+n+~) r(2p+1) 1

r(2p+1+n) r(p+ia) n!'

s=2ikR, O.=Z/137, p (a'-a')&.
Then Ag/A1 for the shell model can be written

—= —R~I' "
A1

Z (n —p —~+i —RPa'/F„)~ p& )s
rs 0

while, for the uniform model,

e= Za„,
m~0

ap ——)L1+(1+4cp)1j,
a1=c1/2ao,

n-1
ca—Z altars-E

1

where c is given by

(2ao+n —1), n =1,2,

5

J(x) =—Z c„x" I see Eq. (44)j,x n-o

c» =0 For n&6.

The calculations have shown that Re(A ~/A 1)= —a/p Im(A 2/A 1)
for both models.

Utilizing this result, the phase shift 8, can be written as

a' r(p+ia) '
2 A

2p r(2p) A14= —arctan ~a2 —(e cot22rp —e csc2~p)

e r(p+icx) ~{2k)2' A

r(2p) A1

The complex gamma-function is not tabulated, and the best
way to evaluate it is to use the asymptotic formula in conjunction
with repeated use of the recurrence relation r{s+1)=sr(s).

The resulting expressions for magnitude and phase are

2ppc~ P&apP&P —1&(1+a/6pP+ )
pP(pa+2 p+1) (p'+4p+4) (p'+6p+9) '

argI'(p+1+ia) =C —Z arctan(a/p+n),
ps~1

4 = {x—$) arctan(a/x)+n{lnr —1)—n/12r,

where x= p+4, r'=x +cP, qb=arctan(a/x).

Z {n+p+$ —f',kR —+)exp&")z"
—= —R" ~-o
A1

Z (n —p+$ —ikR —4')n p&"&s"
rs~O

This method is only practical for those values of kR for which
the above series converge within a reasonable number of terms,
which essentially limits one to kR&1.

To evaluate RF,'/F„, one can make use of Kummer's second
transformation, which yields

F, 2m+1 1F1(g., 2fc+1; 2ik~R)

To evaluate 0, one has


