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(B) Excitation Curves

The thick target x-ray excitation curve is obtained
by plotting the normalized activity as a function of the
electron beam energy. Since the activity has a short
half-life, the varying target current was weighted
exponentially from the end of the irradiation period.
Thus, all activities were normalized to infinite irradia-
tion with constant current. For each isotope, several
irradiations were made at each voltage, and the
activities were averaged to reduce the statistical error.

Figure 2 shows the lower energy portions of the
excitation curves for Ag'%” and Ag'®, respectively. The
thresholds in both cases are below 800 kev, although the
data do not permit accurate location. The breaks in the
curves indicate an activation level in Ag!'” at 1.285
+0.018 Mev and an activation level in Ag!® at 1.210
+0.018 Mev. Figure 3 shows both excitation curves
over the entire energy range investigated and empha-
sizes the 75-kev difference between the corresponding
levels in the two nuclei. In considering the close simi-

LOUIS K. ACHESON,

JR.

larity between the two nuclei in other respects, it is to
be expected that such a small difference between the
energy levels exists. The approximate over-all cross
section (i.e., per electron incident on a thick gold
target) at 1.4 Mev is of the order of 10~% cm? for both
isotopes. In Figs. 2 and 3, to convert activity to over-all
cross section, multiply the ordinates by 4X107% cm?
These excitation curves agree with the early work of
Feldmeier? in this laboratory but are contrary to that
of Wiedenbeck.* This experiment is further confirmation
that, as has been previously discussed,® one cannot
obtain more than a few energy levels by x-ray excitation.
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The effect of the finite size of the nucleus on the elastic scattering of electrons with energies in the
neighborhood of 20 Mev has been calculated for two simple spherical nuclear models: a uniform charge dis-
tribution, and a uniform shell charge distribution, both of radius R=1.45)X10"3 4} cm. An exact phase shift
analysis has been made, the phase shifts differing appreciably from those for a point nucleus only in the
j=}% state.

Phase shifts for elements of Z=13, 29, 50, and 79 have been plotted as a function of energy over the
interval from 15 to 35 Mev, permitting the calculation of any desired cross section within this range.
Representative curves of the ratio of the scattering cross section for the finite nucleus to that for a point
nucleus have been plotted.

The difference in the scattering due to the two models is large enough so that accurate experiments might
distinguish between them, the actual average nuclear charge distribution probably falling somewhere
between these two cases. The ability to differentiate between the two models, however, depends on the

accuracy with which nuclear radii are known.

I. INTRODUCTION

HEN a beam of high energy electrons (~20 Mev)

falls on an atom, a significant part of the scat-

tering results from electrons which have actually
penetrated the nucleus, so that the scattering cross
section depends on the nature of the nuclear charge
distribution. ‘Previous calculations for lower energies
have taken the nucleus to be simply a point charge. It is
the purpose of this paper to calculate the effect of the
finite nuclear size on the scattering of these high energy
electrons. Two simple nuclear models are assumed: (1) a

* This paper was supported in part by the joint program of the
ONR and AEC.
t Now at Hughes Aircraft Company, Culver City, California.

uniform spherical charge distribution, and (2) a shell
charge distribution, with the charge distributed uni-
formly over the surface of the nucleus.

Rose! has already treated this problem by means of
the Born approximation, which is valid for the light
elements. Here exact results are obtained by means of
a phase shift analysis.

For the energies of interest here, it is necessary to use
the Dirac relativistic theory of the electron. Relativistic
scattering theory, for spherically symmetric scattering
centers, involves the solution of a pair of simultaneous
first-order differential equations, the well-known Dirac

I M. E. Rose, Phys. Rev. 73, 279 (1948).
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radial equations.?

(1/W(E—-V/e)+mc]F,

+(dG‘/df)—[(K—1)/f]G,=0, (1)
—(/WU(E-V/e)=mc]G.

+ (de/d’)+[(K+1)/’]Fx=0:

where k=2=(j+%), j=1+3.
From the asymptotic form of G,

G~ [sin(kr—3r+n.) ]/ kr, (2)

one can determine the phase shift 7., depending on the
potential V of the scattering center, and the relativistic
energy E of the incident electrons. The scattering cross
section is given in terms of the phase shifts by

o(0)=110)*+ | g(0) |*,

4

’ 1
i )—2—*

[ (e?— 1) P;_;(cosb)
ik x=1

1 + (e*n-x—1)P,(cosh) ], (3)
g6)= Py i [— e*™P,_;!(cosf) +e*ir-«P,}(cosh) ],

2tk =1

where P,! and P, are associated Legendre polynomials.

The terms in #, represent the contribution of the
j=I+7% states to the scattering, while those in 7_,
represent the j=1I—3 states. (1, and 7, correspond to
n: and n—;_, in Mott’s notation but refer to the same j
value rather than the same [ value.)

II. SOLUTION OF THE DIRAC RADIAL EQUATIONS

For energies of 20 Mev and above, the rest energy of
the electron plays a small role, and the treatment of
these equations is greatly simplified if it can be neglected
completely. This is a better approximation, even, than
it appears at first glance; for if kept, the rest mass
appears in the results primarily in the form E?—m?:.

Making this simplification, the radial equations
become,

(k—U)F+G/—[(k—1)/7]G.=0,
b=V F AL D/ R=0, P
where k=E/hc=p/h, U=V /hc.
If one makes the substitution
F=ir¥Ay—B¢), G=r"(Ay+B¢), (5)

where A and B are constants, and then eliminates B¢
from the pair of equations, one obtains the following
second-order differential equation for .

i(k—U—rU") x*—3

W’—I—[(k— U)+ ]¢=0~ (6)

r r?

If ¥ is eliminated rather than ¢, the resulting equation
is the complex conjugate of the above equation; thus,

2 Mott and Massey, Theory of Atomic Collisions (Clarendon
Press, Oxford, 1949), 2nd edition, p. 74.
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the problem is simplified by the fact that one can take
¢=y* and only one second-order equation need be
solved.

The constants 4 and B enter the picture when the
solution of the second-order equations is also required
to satisfy the pair of first-order equations.

The equation for ¥ is to be solved for a potential
which, inside the nucleus, depends on the specific
nuclear model chosen but which, outside the nucleus,
equals the coulomb potential that would exist if all the
charge were located at a point.

Separate solutions for these two regions are obtained
with the requirement that their values and slopes
coincide at the nuclear radius. This, together with the
boundary condition that ¥(0)=0, (in order that G be
finite at the origin) determines ¥ uniquely, except for
a constant multiplying factor which can be absorbed
into 4.

Thus, for > R, region II, the potential is U= —a/7,
where a=Zé*/ ke,

Y+ (k+a/r)+ik/r— (=1 /P Wu=0. (1)

This equation reduces very simply to Whittaker’s
confluent hypergeometric equation, and the general
solution® can be written

Yn=Awa+A4e,
a=r"tie= % | F (p+ia; 20+1; 2ikr),
where p= (k2— a2)},
Vea=r—rHe—¥ \Fy(— phic; —2p+1; 2ikr).  (8)

Matching the inside and outside wave functions and
derivatives at the nuclear radius,

Y1(R) = A (R)+ A¥ea(R),
‘PI/(R) =4 1¢c1'(R)+ 4 2\Pc2l(R)~

Solving for the constants 4; and 4.,

A= (‘hipc:"—' ‘Pczilfll/‘/’cﬂﬁcz)' - ‘/’cﬂ//cl/),
A2= (‘/’cl‘pI’_‘ Bbl\pc],/‘/’cl‘l’cz/_ ¢c2‘l’cl,- (9)

Since it is the asymptotic form of G which is of
interest, it is the asymptotic form of ¥ which will be
considered here. Using the well-known asymptotic
expressions for the confluent hypergeometric functions,
one has

T2p+1)
"T(ot1—ia)

I(—2p+1)
"I (=pt1—ia)

and

oL (_ 2ik)—prle—-ikr—ia ln2kre—~%1ra,

(10)

(__ zik)pr§e~ ikr—ia ln2kre—§1ra.

3 Whittaker and Watson, Modern Analysis (Cambridge Uni-
versity Press, Cambridge, 1927), p. 337.
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The ratio of ¥, to ¥.: is asymptotically a constant,
which will be called «,.

I(—2p+1) T(p+1—1
o= (= 2iR)% (=2p+1) T(p+ w).
T'(2p+1) T(—p+1—ia)
Asymptotically, ¥ can then be written,
Y~Aa (14 kad o/ A))~Ya (14-£), (12)

where the arbitrary constant in 1 has been chosen so
that 4,=1, and

&= koA 2/ 4,

'/’cl ‘/’I,/‘/’I_‘l’cl//‘pcl

K
‘Pc2 'ﬁI’/‘l/I*‘pc?,/‘pc?

It is seen that only the logarithmic derivative of 1
appears.

The question now is how £ is related to the phase
shift 5, which is to be determined from the asymptotic
form of G.. It becomes necessary to find the ratio A/B,
which is obtained from one of the first-order equations.

Consider first the case of a point nucleus, the coulomb
potential. The first radial equation gives

A, (—p+k+ia)F *—rF,¥

= gRikr.

B, (p—k+ia)F,+rF,’

where F,=1F1(p+ia; 2p+1; 2ikr).
Since this must be a constant, it can be evaluated at
the origin.

A/Bi=—(p—k—1ia)/(p—rk+1ic). (15)
The asymptotic form of G,‘? can then be written
G O~1/kr sin(kr+ o In2kr—ilnr+x.), (16)

11)

= evaluated at r=R. (13)

) (14)

where
p—k+iaT(p+1—ia)

p—k—iaT(p+1+1ia)

e2ixx= e—Ti(—1)

17)

The appearance of the log term in the asymptotic
form arises from the fact that the potential falls off
as 1/r.

It remains to be seen how this expression is altered
by the assumption of a finite nuclear size.

Ge~r-Y(Ay+ By
~r A AQH OYat B4 E)9a*].

This can be written as

G~1/kr sin(kr+ o In2kr—3lr+x+46.),  (18)
where
A, B 1+£*
b= — ——— (19)
B. A 1+4¢

The phase shift for the case of a finite nuclear size
is given by

7= Xxt 0. (20)
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The ratio 4/B is still to be determined, and going
back to the first radial equation, one obtains

A/B=—¢¥kr
LOF, +A,F,)+ (&/ka)r=2(rF_,'+ A _,F_,) J*

, (21)
(rF,'+ A, F o)+ (&/ka)r2#(rF_,'+A_,F_,)
where A ,= p—«+1ia, which can be written
A A, 14(42/A)*r*K*
- (22)

B B. 14(As/A)r»K

where
rF_J/+A_F_,
K=o

rF,/+A,F,

Here it is most convenient to use the asymptotic
expressions to evaluate 4/B; however, one must take
care to use the complete asymptotic form of the con-
fluent hypergeometric functions when taking deriva-
tives.

T'(c) T'(c)
(=)t
T'(e)

1Fi(e;c; 2)~ e:397°.

c—a)

It can be shown that the expression for A/B reduces
to

A A,'1+§(xa+xb)*(Az/Ax)*

B B. 14+3(xatw)(42/41)
where
T'(1—2p) T'(p+1
= (i) (1—2p) T(p+ia) , )
I'(14-2p) T(— pt+ia)
and the phase shift § is then given by
. 143 (kat+rs)(A2/ A1)  14k*(A2/A1)*
8218:= (25)

1+3 (kat o) (Ao/A)* 1+ra(ds/Ay)

Using the relation I'(1—2)T'(z)=n/sin7z, k. and «
can be written,

sinw(p+ia) p—ia|T'(p+ia)|?
Ko= e ™ir(2k)%,
sin2mp 2p | T(2p)
(26)
sinw(p—ia) p—ia|l(p+ia)|?
o= — erin(2k).
sin27p 2p | T(20)

Thus, the phase shift 6, is expressed in terms of
As/A1, which in turn depends on the logarithmic
derivative of the inside wave function evaluated at the
nuclear radius.

The next step is to see how this phase shift enters
into the expression for the scattering cross section,
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III. SCATTERING CROSS SECTION

Letting n,= x«+ 0., the expressions for f and g can be

written as

f= fc+ Z w[ ¥ xe(e—1) Py
1 x=1
+e2zx—,‘(82i5—‘_ I)P‘]’

and

1
=gt 3 [—etixe(etibe— )Py !

1 x=1
_*_62”(_‘(621,6—‘_ I)P,l], (27)

where f, and g are the values of f and g which give
the coulomb scattering.

It can be shown that x«=x_« and §,=0_ in the
approximation of neglecting the rest mass; therefore,
one has

f= f=+ S wetix(etite—1)(Pot-Pecs),

2tk k=1

and

g= gc+ T (et 1)(P— Pe).

'L k=1

(28)

Using recurrence relations between associated Le-
gendre functions, one has

P—Py=x tan}6- (Pt Pe). (29)
Thus, g can be written in term of f
g—g.=tanj0- (f— fo). (30)
The scattering cross section is then
o=+ 2Re[ (f+tan}6- g.)(f— fo) *]
+sec36- | f—fe?,  (31)

where o= | f.| >+ | g| %

McKinley and Feshbach* have given the coulomb
scattering cross section in terms of two functions, F
and G (not to be confused with the radial functions F,
and Gy).

kf.=G—i¢'F,
kg.=tan}f-G+iq cot3f-F,
Ko.=|G|? sec’38-+¢?| F|?* csc39,
where ¢’ = (a/B)(1— B}, B=1v/c; ¢'~amc*/E.

G and F are given by the following expressions

(taking o/f~a):
G=Got+G,, F=F¢t+F,,
Go=13a cot?30 exp (i In sin?36)
[T(1—ia)/T(14ia)],
Fy= (’L/a) tan%ﬂGo,
Gy=E(0)a*+H(8)e*+[1(8)+J (6) o,
F1=A(8)o+ B(0)a+[C(6)+ D(6) Jot,

‘W). A. McKinley, Jr. and H. Feshbach, Phys. Rev. 74, 1759
(1948).

(32)

(33)
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where the angular functions are tabulated in the paper
cited.

The terms involving ¢’ are negligible except for large
angles, where F becomes much larger than G. Thus, for
angles up to 150° the coulomb cross section can be
written

ko= | G|? sec’38
with an error of less than one percent.

Noting that

fetgtanif=

the ratio o/0. becomes

(34)

k1sec?d6-G,

I 2 e*i—1
-——-—1+—-—— Z k(P —i—P‘_l)Re[Ge‘?'Xx( ) ]
ac |G| 2 =1 2i

1
+—
IG|?

The phase shifts, 8, will decrease very rapidly with
increasing « since, classically speaking, those electrons
whose angular momenta are such that they do not
penetrate the nucleus itself cannot tell the difference
between a finite nucleus and a point nucleus. For most
of the energies considered here, in fact, only 8, will be
important.

Now, P+ Py=cosf+ 1=2 cos*30

I 4 cos?30 e2ii—1\*
—=14+ Re[Ge“2'X1( ) ]
e |G|? 2

w 2i8— 1y |2
e

4 cos*}0

sin?s;.  (36)

This expression is valid for those energies for which
8, is negligible, for all Z, and for scattering angles up
to 150°.

For low Z elements, such that o? is negligible, G~G,,
and for energies such that 8, and §,* are also negligible,
the cross section becomes

o 881
—=1+4—sin%40 cos(a In sin?36+2a).

Oc a

(37

Having seen how the scattering cross section depends
on &, it is now necessary to find out just how large these
phase shifts are for the different nuclear models.

IV. EVALUATION OF &, FOR SPECIFIC
NUCLEAR MODELS

To determine the phase shift, one must solve Eq. (6)
for the region within the nucleus and evaluate ¥1'/¥1
at the nuclear radius.

The easiest case to handle mathematically is the shell
charge distribution, where the potential is simply
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TasLe L |G|
z 30° 60° 90° 120° 150°
13 0467 0.0226 2.58X10-% 291X10~* 1.36X10°5
29 2.54 0.1314  0.0156 1.80X10~% 8.43X%1075
50 8.28 0.491 0.0629 7.62X1073 3.55X10~*
79 2231 1.740 0.269 0.0370 178810~
Table II. Ge=%X1,
zZ 30° 60° 90° 120° 150°
13 0.672 0.150 0.0508 0.01705 0.00368
—0.122; —0.0096; —0.00036: 0.00042; 0.000152
29 1.449 0.358 0.1248 0.0424 0.00915
—0.665; —0.0588; —0.0037: 0.0019: 0.00078:
50 1.951 0.660 0.249 0.0873 0.0187
—2.114; —0.237;  —0.026: 0.0029; 0.0021;
79 0.0314 0.949 0.481 0.190 0.0423
—4.72¢ —0916; —0.193; —0.0314;  —0.0006:

U= —a/R. The wave equation then becomes

a\? i(k+a/R) «*—%
¢I/’+[(k+-R-) + ]‘PI:O- (38)
r

72

This equation also reduces to Whittaker’s confluent
hypergeometric equation. The solution going to zero at
the origin is
¢I = e*i(k'f'alﬂ)'rl‘l‘}‘i

X1Fi([ k|5 2 &| +1; 2i(k+a/R)r).  (39)
(The absolute signs about « can be omitted since it is
only positive k that is now being considered.)

The phase shift depends on 4,/4,, which is given by
Eq. (9). If one writes

'pcl — e—akrrrH Fm

Yer= e ikrr—rHiF —py (40)
and
fi=e-bar i,
where
F,=1Fi(p+ia; 20+1; 2ikr),
F,=1F1(x; 2k+1; 2ik,r),
and
ka=k+a/R,
then
A, RF,’+(p—k+ia— RF,'/F\)F,
—=—R%» L, (41)
Ay RF_,/4+(—p—«+ia—RF,//F)F_,

and §, is determined from Eq. (25).

For the uniform charge distribution, the potential
within the nucleus is U= —(a/2R)(3—7*/R?), which
leads to the equation
a1 [k*—% k«R

[ Z (karR)*+3i0x
dx?

x? x

+akarRx2—%a’x4]¢1=0, 42)
where x=7/R, ko =k+3a/2R.
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This equation cannot be put into any of the standard
forms, but noting that all that is required is
Y1’ (R)/¢1(R), one can make the substitution

Y= (dy1/dx)/¥r (43)
which reduces the second-order equation to the Riccati
first-order equation

AV /dx+V2=J(x),

where J(x) is the coefficient of y1 in Eq. (42).
This equation can be solved by the power series
method, letting

(44)

1l =
V==73 a.x"
K n=0

(45)

and evaluating the coefficients ¢, by the usual pro-
cedure.
Evaluating ¥ at r=R;i.e., x=1,

‘I,r-R= Z Qan. (46)
n=0
In terms of ¥, A,/A; is
A RF,/+(p+3—ikR—Y¥)F,
Ce g7 T
A, RF_/+(—p+i—ikR—V)F_,

Calculations have been made for four elements, of
atomic number 13, 29, 50, and 79, and for a number of
energies between 15 and 35 Mev. The values of |G|2
Ge=?x1 for use in Eq. (36), are listed in Tables Iand II.

Using the formula R=1.45X10"134% cm for the
nuclear radius, and with 2=E/hc=0.507X10" Eyey
cm™, kR is given by AR=7.35X10"3% EpevA L.

The phase shifts, §,, are plotted against energy in
Figs. 1 and 2. The scattering cross sections for the
above Z at 20 and 30 Mev, and for energies of 15, 25, and
35 Mev at Z=29 for both the shell and uniform charge
distributions, are plotted in Fig. 3 (e, b, and ¢).

V. DISCUSSION OF RESULTS

The general effect produced by the finite size of the
nucleus is seen to be a reduction of the scattering cross
section, predominating at large angles. This is in agree-
ment with the wave picture of the scattering; for if the

oo . osof
I/ ,/
ze13 / S
008 e 04o| z2:29 /e
006 o30b

30

20 20
ENEQGY W Mev ENERGY N MEy

Fic. 1. Phase shift &, as a function of energy for shell and uniform
models for (¢) Z=13, (b)) Z=29.
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nucleus is considered shrunk to a point, then the scat-
tered waves from all elements of the nuclear charge will
arrive at the observation point in phase, and, therefore,
with maximum intensity. With a finite nucleus, the
scattered waves from the different elements will not be
in phase, interference will occur, and the intensity will
usually be reduced. Furthermore, the forward scattering
will suffer less reduction, since the path lengths of the
different scattered waves will be more nearly the same
and the waves more nearly in phase.

In these calculations, R has been taken as 1.45
X 1012 4} cm, but varying the radius, with a fixed Z,
produces exactly the same effect as varying the energy,
because of the dependence of the phase shift on kR.
Thus, the curves of phase shift as a function of energy
give equally well their dependence on the radius.

The different charge distributions produce a con-
siderable difference in the scattering, particularly for
the higher energies and higher Z, thus raising the pos-
sibility that accurate scattering experiments will yield
information regarding nuclear structure. However, this
effect is greatest at large scattering angles, which makes
it difficult to measure, since the coulomb cross section
becomes very small at large angles.

It is also true that one cannot separate the two
effects of type of charge distribution and size of nucleus.
This comes from the fact that only one phase shift, 4,
is necessary to describe the scattering. In general, the
phase shift obtained from the uniform model at a given
energy and Z is also given by the shell model using a
radius about three-fourths that of the uniform model.
Furthermore, the variation of the phase shift with
energy for the two models does not differ enough to
distinguish between them. However, radii are known

]
/ SHELL
]
250
2=79
2001 UNIFORM
B 5.
VSO
//
SHELL
.00} 4
2=30 UNIFORM
050+
1 e 1 e 1 1
o 10 20 30 40

ENERGY W Mev

F1G. 2. Phase shift &, as a function of energy for shell and uniform
models for Z=50 and 79.

1.00 }
-4
3
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———= sHELL
L ) " ) s " )
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SCATTERING ANGLE
o
L L L : L L L
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SCATTERING ANGLE

F16. 3. (a) Scattering of 20-Mev electrons by shell and uniform
nuclear models for various Z. (b) Scattering of 30-Mev electrons
by shell and uniform nuclear models for various Z. (¢) Scattering
of electrons of 15, 25, and 35 Mev by shell and uniform nuclear
models for Z=29.

accurately enough so that some indication of the nature
of the nuclear charge distribution should be obtainable.

The second phase shift, §;, varies from 0.4 percent
of 6, for Z=13 and E=15 Mev, to 3 percent for Z=79
and E=35 Mev and thus is negligible, except perhaps
for very high Z and high energy.

With the phase shifts plotted against E, one can find
the scattering for any energy in the neighborhood of 20
Mev. Owing to computational difficulties, the present
method is not practicable for calculating phase shifts
for kR much greater than unity. Moreover, at very
high energies the present treatment is inadequate in
principle, for it does not suffice to consider the inter-
action of the electrons with the nucleus as a whole;
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one must consider interactions with the individual
nucleons.

The present treatment is also limited by the fact that
only spherically symmetric charge distributions can be
considered, and thus the effect of nuclear quadrupole
moment cannot be calculated. Magnetic forces have
not been considered, although they may not be com-
pletely negligible at these energies. Furthermore, it is
only the cross section for elastic scattering that has
been investigated here. While the total cross section for
nuclear excitation is small,® 10~* barn for 16-Mev
electrons (the coulomb differential cross section varying
from a few barn at 30° to 10~3 barn at 150°), it is
necessary to say a word about the effect of radiation.

Schwinger® has calculated the radiative correction to
the coulomb cross section for essentially elastic scat-
tering of electrons. One can write o/oc.=1—48(9, AE),
where AE is the energy radiated. It is only for small
AE that & is important, and the scattering differs
appreciably from the coulomb scattering. Representa-
tive values of & are, for =217 and E=20 Meyv,

§=0.071 if AE=0.022,
and
6=0.018 if AE/E=0.20.

Thus, the effect of radiation can be minimized in ex-
perimental work by the use of a wide range detector.

The author is greatly indebted to Dr. H. Feshbach
for suggesting this problem and for continued help and
encouragement. Thaaks are due to Dr. M. E. Rose for
several helpful discussions, and, for computational aid,
the assistance of Ann Moldauer is gratefully acknowl-
edged.

APPENDIX
Numerical Calculations

To evaluate the confluent hypergeometric functions, it is
necessary to use their series representations.

a(a+1) 22
b(b+1) 2!

§ I'(a+n) I‘(b) z"
n=o D(0+n) I‘(a) nl’

For the coulomb solutions, one has

1Fia; by 2)= 1+ g4t

d
=2 a,™z", RF,/= > na,™zn,
n=0 n=0

5 Skaggs, Laughlin, Hanson, and Orlin, Phys. Rev. 73, 420

(1948).
8 J. Schwinger, Phys. Rev. 75, 898(L) (1949).
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where
T(p+n+ia) T(20+1) 1
I'(2p+1+4n) T(p+ia) n!
2=2ikR, a=2/137, p=(2—ad)}.

Then A;/A, for the shell model can be written

(n)

@p

i (n+p—k+ia—RF/F)ap,™z"
Rzp n=0
2 (n—p—«+ia—RF/ /F‘)a_,,(")z"

n=0

while, for the uniform model,

2 (n+p+3—itkR—¥)a, Mz"
A__ Rzp n=0
A E (n—p+3—ikR— \Il)a_,,(”)z"
n=0
This method is only practical for those values of 4R for which
the above series converge within a reasonable number of terms,
which essentially limits one to 2R<1.
To evaluate RF,’/F,, one can make use of Kummer’s second
transformation, which yields

F/ e*aB oFi(k+3; — 1(kaR)?)
R =% +1‘2’k R F (s 26+ 1; 2ikaR)
To evaluate ¥, one has
V= § Qn,
n=0
ao=3[14+(1+4c0)t],

a = 01/2(10,

) n-1
An= [Cn_ z alan-l]/(2a0+”—1)) ”=1) 21 Tt

=1

where ¢, is given by

J (x)——— 2 Cak™

n-D

[see Eq. (44)],

cn=0 For n>6.

The calculations have shown that Re(42/A1) = —a/p Im(As/A+)
for both models.
Utilizing this result, the phase shift 8 can be written as

& | T(p+ia)|? A,
Ta—_ || (2k)2PIm—
8¢= —arctan ') e A1
* 2—(e™ cot2wrp—e T csc21rp)
I‘(p+m) 207, A2
(2 ) (2k) ImAl

The complex gamma-function is not tabulated, and the best
way to evaluate it is to use the asymptotic formula in conjunction
with repeated use of the recurrence relation I'(z+1)=2zI'(z).

The resulting expressions for magnitude and phase are

2mwe 22202 (1 4-x/6724 - - -)
(k+2p+1) (+4p+4) (2 +6p+9)’

3
argl(p+1+ia)=®— 2 arctan(a/p+n),
n=1

| T(p+ic) |22

&= (x—1%) arctan(a/x) +a(lnr—1) —a /1272
where x=p+4, r’=22+a?, ¢p=arctan(a/x).



