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identifying magic numbers in the region 50<A4 <65.
The level scheme of Maria Mayer suggests that 28 and
32 are magic numbers in this region, whereas Haxel
et al. suggest 28 and 34. Nordheim suggests 34, and
Feenberg and Hammack hint that 32 and/or 34 may be
magic. The minimum in the packing fraction curve in
Fig. 1 is located at »sNi%.§ This coincides, according to
the Mayer scheme, with a doubly-magic nuclide.

The heaviest stable isotope of silicon, 14Si%, is of
interest because of its exceptionally low packing frac-
tion. Maria Mayer has shown that strong spin-orbit
coupling can lead to a reversal of the 2s, 3ds/2 level
order with the result that 14 nucleons complete the 3ds,»
shell and constitute a particularly stable configuration.
The 16-nucleon configuration, representing the com-

§ Note added in proof —Some recent experiments suggest that
Ni® may mark the minimum of the packing fraction curve. These
experiments are being continued.
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pletion of the 2s shell, should also be very stable. Thus,
it may be that 14Si% owes its exceptional stability to a
doubly-magic configuration. Its doubly-magic brother,
1451%8, is somewhat less closely knit. The increase in
stability resulting from an excess of neutrons over
protons, which is so pronounced in the heavier nuclides,
is presumably responsible for this difference.

It seems likely that additional mass measurements
can be of considerable use in the jdentification of the
ground states of nuclei, particularly in the case of even-
even nuclei, where no information has so far been
derived from spin measurements. In conclusion, one
may venture to say that the mass evidence to date
gives general support to the level scheme of Maria
Mayer.

The authors wish to acknowledge the help of Karl S.
Woodcock, Richard F. Woodcock, and Clifford Geisel-
breth.
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The boundary conditions for a Dirac particle in a central scalar field are discussed for both bound and
continuum states. In this development, the methods employed are considerably different from those custom-

arily used for the corresponding nonrelativistic case.

I. INTRODUCTION

HILE the Dirac wave functions for a particle in

a central field possess properties which are, in

many instances, qualitatively similar to those exhibited
by the corresponding solutions to the Schroedinger
problem, there are several essential differences which
have apparently not been considered very completely
or stated explicitly in previous investigations. An
important point of difference is concerned with the
boundary conditions which, in the relativistic and non-
relativistic problems, must be discussed quite independ-
ently. Intimately connected with the formulation of
boundary conditions is the question of which potential
functions are admissible from a physical point of view.
Here, the radically different answer provided by the
relativistic problem is, in part, traceable to the energy
doubling (existence of positive and negative energy
states) and, in part, arises from the spin properties. A
third point of interest is the study of the nodal prop-
* This document is based on work performed for the AEC at

the Oak Ridge National Laboratory.
t Revised manuscript received January 18, 1951.

erties (oscillation theorems, etc.) in the case of bound
states. Despite the fact that the Dirac equations do
not form a Sturm-Liouville system, several of the
theorems concerning nodal properties are applicable.

The following is devoted primarily to a discussion of
the three aforementioned problems: (1) boundary
conditions, (2) admissible potentials, and (3) nodal
properties. In connection with the study of nodal
properties, we have found it necessary to develop
methods somewhat different from those generally used
in the treatment of Sturm-Liouville systems. Since these
methods are also applicable to such systems, they may
be of interest for classes of problems other than the one
discussed here (Sec. VII).

The desirability of such a study was encountered in
our program for computation of L-shell internal con-
version coefficients, which required extensive numerical
calculation of Dirac wave functions in a central non-
coulomb field.! Some considerations which may be

1 Rose, Goertzel, Spinrad, Harr, and Strong, Phys. Rev. 76,
1883 (1949).
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useful for the numerical calculation of wave functions
are given below.

The wave functions for a Dirac electron in a central
field are of two types (doubling caused by spin-orbital
coupling).? Denoting the two types by indices by a and
b, the four components of the wave function, for a given
total angular momentum quantum number j and given
magnetic quantum number m, can be written in the
form

l=mtiy!
('paly ‘l’b3)= (__.______..) Y!Klm—i('l'fn gx))

2| k| +1
|"|+ m+3 .
(d’a?y \l/b4) ( 2| [ )Y|x|m+#(zfn gl);
(1)
W ¢)=(M) (g, ife)
a3y Vb1 2IKI—1 xl 1" (gxy »
W ¢>=—(’"'—m_%)*y mi (g, if.)
ady ¥b2 2|K|~1 Ix]—1 gx; &)

Here, V)* is a (normalized) surface harmonic of degree
N, order p, and f, and g, satisfy the differential equations

d(rf)/dr=«f—(W—1—V)rg, (2)
d(rg)/dr=W-+1—V)rf—«g.

For type a, k=—(j+3), so that « is a negative integer.
For type b, k=443, so « is a positive integer. W is the
total energy (including rest energy), and V the potential
energy in units of mc?; » is measured in units of %/mc.
We shall rewrite Egs. (2) in the form

F'=anF+a1G, G'=anF+anG, (2a)

where F=1f, G=rg, anu=—an=«/r, ap=—(W-1
—V), aggz=W+1—V; and throughout a prime denotes
differentiation with respect to 7.

II. BOUNDARY CONDITIONS

The functions F and G are to be subject to the
conditions that they be real and single-valued, and, in
addition, for bound states

b
O<f (F4-GY)dr<», 0<La<bg . (3a)

In addition, for both bound and continuum states, we
require that

ll]](')l(F,Gk— FkG,') = 0, (3b)

where ¢ and k each represents a triad of quantum

numbers (W, k, and m), denoting constants of the

motion defining a stationary state in a central field.

2 M. E. Rose, Phys. Rev. 51, 484 (1937). In this reference the

subscripts on the functions f and g have a different meaning from
that used here.
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The radial functions are independent of m but do
depend on W and «.

Continuity and finiteness of F and G at all ordinary
points of (2a) are assured if the functions satisfy
Eq. (2a).

Condition (3a) is required by the probability inter-
pretation of the wave function modulus. Condition
(3b) is a consequence of the requirement that a linear
superposition ¥ of stationary states satisfy the con-
tinuity equation, as the three-dimensional time-depen-
dent wave equation demands. The continuity equation
is fulfilled for ¥ if it is fulfilled for the mixed current-
charge densities; that is, if

div(¥*a¥,)+ (¥ *¥)/3t=0, (4a)

since for i=%k, Eq. (4a) is automatically satisfied. The
contribution to the particle flux per unit solid angle
from the mixed states is

72T 0 =Qu (8, o) (FiGr— (4b)

where J,(® is the radial component of ¥,*a¥;, and the
angular dependent coefficients Q;; are sums of terms
involving products of spherical harmonics of, in general,
different degree and order and are dependent on «, m.
If condition (3b) is not fulfilled, it follows that J (0
~1/7%, since, as will be shown below, lim(F.G,— F:G,)
is always finite at the origin. Then Ji*~gradl/r, and
divJ@®~§(r), in contradiction to (4a).

We shall have use, in what follows, for the concept
of left-handed and right-handed solutions (L and R
solutions). By a left-handed solution of (2a), we mean
one satisfying the conditions:

F kGI') )

b
0<f (FHGr)dr<o, >0 (5a)
0

HIIOI(F,'Gk— FkG,') = 0, (Sb)

which are equivalent to Eq. (3) with the point at
infinity excluded. By a right-handed solution, we mean
one which fulfills the boundary condition

0<f (FR*4-GrY)dr< o, 0<a<oo, (6a)

which is equivalent to Eq. (3) with the origin excluded.
A bound state wave function, that is, one satisfying
Egs. (3a) and (3b), is both a right-handed and a
left-handed solution (LR solution).

For continuum states, we still require Egs. (5a) and
(5b), and no boundary condition at infinity is necessary
except for normalization purposes.

These boundary conditions are the necessary and
sufficient conditions (along with Eq. (2a)) for the
complete determination of the wave functions in the
central field Dirac problem. In addition, Eq. (3b)
restricts the choice of potential function on the basis of
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the behavior of V(r) near the origin. We shall designate
potentials for which Eq. (3b) is fulfilled as admissible.
For such potentials, it will be seen that discrete eigen-
values are always finite. For potentials which are
admissible, condition (3a) alone determines the eigen-
functions.

III. ADMISSIBLE POTENTIALS AND BEHAVIOR
NEAR SINGULAR POINTS

(A) Behavior Near the Origin

Here and in the following, we shall find it helpful to
use the phase function ¢(r) and the amplitude function

A(r), defined by?
F=Asing, G=A cose. (7

From Eq. (2a), it is evident that F and G cannot
vanish simultaneously at an interior point of the interval
(0— ). It follows, then, that A cannot vanish except
at the end points. 4 cannot have any singularities
except at the origin or at a point where V has a singu-
larity. Substituting Eq. (7) into Eq. (2a), we obtain

A’/A=—(k/r) cos2p+sin2e, (8)
¢’ =(x/r) sin2¢— (W —V)+cos2 . 9)
Putting Egs. (8) and (9) into integral form,
" "
Ind;—Indy=—« f r~! cos2 pdr+ f sin2pdr, (10a)
0

70

1
Q1— Qo= Kf r~tsin2 pdr— W (r,—ro)

0
ry r1
+ f Vdr+ f cos2edr, (10b)
0 0

where 7, is any interior point. In the following, we
investigate the behavior of 49 and ¢, as their argument
7o approaches zero.

We shall now consider two cases according to whether

Ien|>1 or <L

This includes fields more strongly divergent than the
coulomb field (|lim(rV)| =) and fields which are
convergent or less strongly divergent than the coulomb
field (Ilim(»V)| =0).

(1). |lim(»V)|>1. If we allow 7, to approach the
origin, then in Eq. (10b) the integral fyVdr is a diver-
gent term which cannot be cancelled, for all «, by any
other term on the right-hand side of Eq. (10b). Hence,
¢ becomes infinite at the origin, and F and G have an
infinite number of nodes in any finite interval including
the origin.

3 H. Priifer, Math. Annalen 95, 499 (1926). For another appli-

cation of the phase and amplitude functions in the Dirac equa-
tions, see G. Breit and G. E. Brown, Phys. Rev. 76, 1307 (1949).
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Now consider Eq. (10a). The dominant term on the
right is

1
—xK f =1 cos2 pdr.

70

Without the cos2¢ factor, this would diverge as 70,
but the presence of the rapidly oscillating factor makes
it converge.* Hence, In4 remains finite as »—0, and 4
remains finite and greater than zero.

It is now seen that 4(0)0, and

hng(F,Gk-— FkG,') = HIIOIA A Sin((ai_‘ ‘Pk)

approaches a finite nonvanishing limit, since ;— ¢y
does approach a definite limit at the origin. Conse-
quently, condition (3b) is violated. Therefore, potentials
for which |lim(»V)|>1 at the origin are inadmissible
for all stationary as well as nonstationary states. This
is in contrast to the statement made by Plesset® who,
while noting the irregular singularity at the origin for
V(r)~r~ (v a positive integer>1), did not consider
the flux boundary condition (3b) and, therefore, con-
cluded that a stationary state continuum solution was
admissible in this case.

(2). |lim(rV)| < 1. We prove by construction that in
all such cases there exists a solution of Eq. (2a) which
satisfies the boundary conditions at the origin. The
first and third integrals on the right-hand side of Eq.
(10b) may now diverge individually as 7,—0. However,
with 7,=0, it is now always possible to find a finite
o= ¢(0) such that the sum of these two terms and
also, therefore, the right-hand side of (10b) converge
and such that equation Eq. (10b) is satisfied. Thus,
we set

= <Po+ 0,

where 6 is to vanish as 7 approaches zero. Then, in the
neighborhood of the origin, with sin26~26 and cos26~1,
the required solution of Eq. (9) is

T
0=f—2"8_2' sin2¢of 1’2"82' 8in2¢o
0

X[V —W+cos2eot (k/r)sin2¢y Jdr. (11)

In Eq. (11) n= —« cos2 ¢y, and we fix ¢, (to within an
additive integral multiple of = which is always arbitrary

¢ The convergence of the integral does not follow simply from
the rapid oscillation of cos2¢, but its convergence, in this case,
can be seen by changing the variable of integration,

- @
j; . "r~1 cos2 edr= j; ul(rd @/dr)7! cos2ed e,

where ¢ is to approach infinity. Suppose limV is unbounded at
the origin. Then, by Eq. (9) rdg/dr~rV and the integrand
approaches zero so that the integral converges. The remaining
possibility is « > |limrV|=|g|>1. In this case, the first term
in Eq. (9) is of the same order as V. However, as is shown in
aragraph (2) below, these terms can never cancel, for all «, if
B|>1 and the integral is bounded.
8 M. S. Plesset, Phys. Rev. 41, 278 (1932).
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by Eq. (2a)) by the conditions

n=—« c0s2¢9 >0, (11a)

(11b)

n order that Eq. (11b) may be fulfilled for all «, with
real ¢, the condition |lim(rV)| <1 is necessary and
sufficient. For definiteness, we take the principal value
of ¢¢ for L and LR solutions. Equation (11a) corre-
sponds to the choice of the solution of Eq. (2a) which
is regular at the origin, while (11b) is sufficient to make
6 finite at r=0. The conditions (11a) and (11b) can
always be fulfilled, for the present case, with real .
For fields coulomb at »=0 (point charge and screened
fields), (V= —/r), we obtain the well-known results

sin2¢o=0/k, cos2¢py=—v/k, (11c)

with y=(x*—B?)} or tang,=B/(k—v), while, for the
case |lim(rV)| =0, we find

Kk sin2 o= — ling(rV).

k>0
k<O0.

It is now clear that 6 approaches zero at the origin.
If n=0 (which occurs only for |im(rV)| =1, |«|=1),
the result is obvious. For 0, 6 is indeterminate at
the origin, and by "Hdspital’s rule,

6—r[V—W+cos2eo+ (x/7) sin2¢0 /29, (1le)

which clearly goes to zero [for example, see Eq. (11b)].

In Eq. (10a) we can now observe that the dominant
term for ro—0 is the first one, and by Eq. (11a) the
indicial behavior of the amplitude function is

Po= 1!'/2,

b (11d)

A~orm,

(12)

Hence, a set of functions Fy, and G, will always exist
for which (#0)

F1(0)=0, GL(0)=0. (12a)

If »=0, Fr and Gy have finite nonzero limits, and
|FL| =|Gy|, since go==/4. Our subsequent theorems
can easily be demonstrated to hold in this limiting
case but, for ease of discussion, we shall omit explicit
consideration of the case |lim(rV)| =1 in the following.

The indicial behavior (12) may be particularized for
the two subcases considered. For lim(rV)=—p8, we
find from relationships (7), (11a), (11c), (11e), and (12)

F=0(r), G~O(r), (12b)

where the symbol O signifies “of order of,” and the

ratio Fr/Gy is given in Eq. (11c). For lim(»V)=0,
n=|«|, we find®

FL=O(7"), GL=O(7""HC!21), k>0

FrL=0(r""*ay), GL=0(r"%), k<O0.

To summarize the results of this section, we conclude

that if [lim(»V)|>1 at the origin, there are no L

8 M. E. Rose, Phys. Rev. 82, 389 (1951).

(12¢)
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solutions and, a fortiori, no eigensolutions in the discrete
or continuous spectrum. If |lim(rV)| <1 at the origin,
there is always an L solution, and for the inequality we
have A(0)=0 [and, thus, F(0)=G(0)=0], and the
same results must apply to eigensolutions. For an
eigensolution, condition (3a) also requires that 4, and
therefore F and G, vanish at infinity. The explicit
results concerning the behavior at the origin are given
by expressions (11c), (11d), (12b), and (12c).

(B) Behavior at Infinity

In the following, we are concerned with bound state
wave functions. We shall consider only potentials
which are monotonic in the neighborhood of infinity.
They may be bounded or unbounded. We do not
consider periodic potentials, for example.

If V() is infinite, we can neglect W and unity
compared with V in the neighborhood of infinity, so
that Egs. (2a) become

F'=(/r)F+VG, G'=—VF—(x/r)G.
These have the asymptotic solutions
F=B(r) exp(xiSVdr), G==iF

(or the real parts thereof), with |B’/B|<K|V|. By
means of Egs. (10a) and (10b), which are valid in all
cases, it can be shown that lim(B(r)) exists and does
not vanish. Therefore, the solutions violate (6a). Hence,
there are no bound states, but such solutions are
admissible for continuum states. This differs from the
result obtained with the Schroedinger equation and is
a manifestation of the Klein paradox.

For bound states, then, V(«) must be finite, and we
can choose V()=0. Equations (2a) become, near
infinity,

F'=(x/r)F—(W—1)G, G'=W+1)F—(x/r)G.

With B(r) as above, these have the asymptotic solutions
F=B(r) exp((1-W?¥), G==x(1+W)}(1—-W)IF.
If |[W|<1, we can get a bound state by choosing the
lower sign throughout; if |W| > 1, there are only con-
tinuum states. Hence, we have the well-known result
that there is a continuous spectrum for |W|2>1; this
differs from the Schroedinger case which, in the corre-
sponding situation, has a continuous spectrum only for
w21.

In summary, we get bound states if V(e)=0,
|W|<1; a continuum if V(0)=0, |W|>1; and only
a continuum if |V (e)|= o0, for any W, provided, of
course, that the behavior, at points other than infinity,
conforms to the boundary conditions imposed above.

From the results of discussion (A), we conclude that
a potential V(r) is admissible only if |lim(rV)| <1 at
r=0, and (with the exception noted above) for all such
admissible potentials, both Fy, and G (and also the
eigenfunctions Frr and Gir) vanish at r=0. We also
note that for an admissible potential the energy is

(13)

(14)
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always finite:

w f (F4G?)dr= f (24FG/r+G*— F?
0 0

+V(F*+G*)+G'F—F'Gldr, (15)

where F and G are eigensolutions. By conditions (3a)
and (3b), the integral on the left and the first four
terms of the right-hand side are seen to converge. The
last two terms of the integrand, involving the Wronskian
of F and G, behave at the origin as follows:

FG'—GF'~r*d(ran)/dr, (x>0),

and an integration by parts is seen to give a convergent
integral at r=0. Convergence at « follows from the
asymptotic behavior already given. The case x<0
gives the same conclusion. The convergence of the
energy integrals is, of course, necessary but not suffi-
cient, since |W|<1 is required. Actually, the fulfill-
ment of Egs. (2a) with |W| <1 and of Egs. (3a) and
(3b) is equivalent to this extended condition on the
energy integrals.

IV. ORTHOGONALITY OF THE EIGENSOLUTIONS

The wave equations (2a) can be written in hamiltonian form
by introducing the two component spinor

-
v=[g] (16)
Then,
HY=WY, (16a)
where
_ ok, d _[ V—1 x/r+d/dr]
H—a',’+w,,dr o, +V= «/r—d/dr V41 (16b)

is the self-adjoint hamiltonian operator, and the o’s are the usual
Pauli matrices.
If ¥, and ¥, correspond to W =W, and W, respectively, we find

‘I’zH‘I’;[— ‘I’lH‘I’z= (d/d’) (FzGl—' Fle) = (Wl’— Wz)\l’l‘I’Z- (173)
The condition for orthogonality (W =W ),
S wwdr=o, (17b)

is seen to be fulfilled if [F2G1— F1G2]o®=0. By the results of the
previous section, the quasi-Wronskian? F,G;— F,G, vanishes at
the upper limit for all R solutions and at the lower limit for al{
L solutions. For eigensolutions, it vanishes at both limits and
(17b) is fulfilled. If one of the ¥ functions corresponds to a
continuum state and the other to the discrete spectrum, the same
result applies. For both states in the continuum, Eq. (17b), of
course, does not apply, and normalization in the scale of f(W),
where f is a function of W, is utilized in the usual manner.

V. UNIDIRECTIONAL ROTATION THEOREM

In this and the following two sections, we develop
certain theorems describing the behavior of the nodes
of left, right, and eigensolutions. Retaining the notation
that left and right solutions are designated with the
subscripts L and R, we write the wave functions without

7In the nonrelativistic limit, }(F:G,—FiG;) reduces to the
Wronskian G»'G1—G1'Gs. For the case |[lim(rV)|=1, see the
remarks following Eqgs. (12a).
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subscripts (a) whenever it is unnecessary to specify
that the solution is L or R and (b) for eigensolutions.
The context will distinguish between these two cases.

Consider a cartesian 2-space in which the coordinates
are G and F, so that a vector from the origin to the
point (G, F) makes an angle ¢ with the G axis. Then,
the unidirectional rotation theorem states that as r
changes, the aforementioned vector crosses the coordi-
nate axis (F=0, G=0) with a one-signed sense of
rotation. There is one exceptional case of minor interest,
which is discussed later (footnote 8). Leaving this case
aside at present and introducing the notation S(x)
=sign of x, the theorem states that

S(a¢/ar)g_o=5(6(o/af) F=0 (18)

is always positive or always negative at every internal
node of F and G. In the following, references to nodes
will imply internal nodes, unless explicit statement to
the contrary is made.

It is useful to introduce p=F/G=tane. Then, p
fulfills the Riccati equation

o' =2xp/r+ a1a— anp’. (19)

Since 8¢/dr= (14 p?)~10p/0r, we have
S(3¢/3r)=S(3p/0r),

so that the theorem is equivalent to the statement that

dp/dr is one-signed at the (simple) poles and nodes of p.
From Eq. (19),

S(8p/97) pmo = —S(at21),
and
S(8p/07) p—0=S(a12).

We now introduce the transformation
F=r—F, O=rG

which is to be applied only in the open interval (0— =),
so that § and ® are finite. Moreover, the internal nodes
of §, ® coincide with those of F, G, respectively. Then

§F'=a(N®, @'=b(N7, (21)

where a(r) = a1277%, b(r) = aarr®*. It is clear that wher-
ever § or & has a node8

S@'/&)=—5E/8)

at points in the immediate vicinity of the node, as can
be seen immediately by an elementary graphical repre-

(20)

8 It is obvious that the rotation theorem is valid for any node
which occurs in the region in which a12<0 (since we take aaz to
be positive definite) and that such a region must exist in order
that bound states exist. It is evident also that inside the turning
point (@12<0), the extrema of § and ® are concave toward the
r axis. However, outside the turning point (a;2>0), it is possible
that an extreme of ®, with opposite curvature, and a node of &
may occur at one point only. At such a point, S(8¢/dr) >0. This
exceptional case occurs only for L-solutions which are not at the
same time eigensolutions and for only a restricted energy range
between the eigenvalues. We shall not make explicit mention of
this exceptional case in the following, since its consideration does
not affect our main conclusions.
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sentation of the functions. This implies that nodes can
exist only where

F'E'/FO=ab<0,
S(a12)=—S(az1). (22)

From the continuity of a1 and s, this applies at the
position of the node as well as in the vicinity of the
node. Therefore, from Eq. (20)

S(8p/37) pm0=S(3p/ 1) =

which is equivalent to the theorem as stated. For
negative definite V at finite », we have a9 >0.® This
implies a clockwise sense of rotation for ¢ in crossing
the quadrant lines. For the sake of definiteness, we
shall consider this case in all further discussion.?

or where

An important consequence of the result just obtained is that we
can establish the relation between the number of nodes of F and
G for L, R, and LR solutions. For L solutions and for eigensolu-
tions (LR) as well, the value of ¢ at the origin is given by Egs
(11c) and (11d) for admissible potentials. Thus, for potentials
attractive at the origin, ¢1(0) is in the first quadrant (7/22 ¢>0)
for k>0, and in the fourth quadrant for k<0, (02 ¢>—=/2). In
the following, the number of internal nodes of F and G is denoted
by nr and ng, respectively.

Corollary 1. For L solutions: With «>0, np—ng=0 or 1 de-
pending upon whether pr.( =) is positive or negative, respectively.
If nr=mng, the nodes of F and G can be set into one to one corre-
spondence so that each F node precedes the corresponding node
of G. If np=ng+1, the same correspondence can be set up
between the first #y—1 nodes of F and n¢ nodes of G, and again
the nodes of F precede the nodes of G and the last G node (node
of maximum 7) is followed by the last F node. With k<0, ng—nr
=0 or 1, and the nodes of G precede the nodes of F in the sense
described above. In both cases (x greater than or less than zero),
the nodes of F and G separate each other.

From the asymptotic behavior at « (Sec. III(B)), we have

pr(=)=—[1-W)/1+W)]

for R solutions (see paragraph following Eq. (14)). Therefore,
¢r(®) is in either the second or fourth quadrant. The clockwise
rotation of ¢, with increasing » at the nodes, then immediately
leads to the following result.

Corollary 2. For R solutions, nr—ne=0 or 1, and the nodes of
F precede the nodes of G as r decreases from infinity. Also, the
F and G nodes separate each other. These results apply for both
signs of «.

Combining the results of Corollaries 1 and 2, we obtain the
following.

Corollary 3. For an eigensolution,

k>0
xk<0.

For x>0, the first and last nodes (considering F and G together)
are F nodes. For k<0, the nodes of G precede those of F as r
increases. The nodes of F and G separate each other in both cases
(k greater than or less than zero).

nr=ng+1,
nr=ngq,

(23)

VI. OSCILLATION THEOREMS

We consider a field such that at least two eigensolutions exist.
The eigenvalues may be arranged in order of increasing numerical
value W,, Wy, ..., and the corresponding eigenfunctions are

Wy, ¥y, ..., where
F.
W= [G:]

9 This is, of course, a sufficient condition but not a necessary one.
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We proceed to establish the following oscillation theorem. If the
number of nodes of the eigenfunctions F,, and G, are denoted by
np(m) and ne(m), then

ne(m+1)=ngm)+1, np(m+1)=np(m)+1. (24)

From Corollary 3 of the preceding section, only one of the results,
Eqgs. (24), need be established ; the other then follows immediately
from Egs. (23).10

In order to establish the oscillation theorem (24), we make use
of the following lemma. For L solutions, ¢ is a monotonic de-
creasing function of W, while for R solution, ¢ is a monotonic
increasing function of W. We apply the adjoint theorem (17a)
to two functions ¥; and ¥, corresponding to energies W and
W+dW, respectively; then, dropping the subscript 1 on the

wave functions,
G dF |
[Fr—Gﬁ]f a

For L solutions, we apply Eq. (25) in the interval O to 7 and note
that (see Sec. ITI(A))

lim(G1?3pL/dW)=0
>0

:’\Iﬂdr. (25)

for all admissible potentials. Then

Guapr/oW=— [ wdr. (262)

For R solutions, we apply Eq. (25) in the interval 7 to © and
again note that (see Sec. III(B))
lim(Gr23pr/dW)=0

reo

in all cases. Then

Grdpn/oW = [ widr. (26b)
In terms of ¢, Egs. (26a) and (26b) become
dpr/oW=—wr [ wi2dr (27a)
and
don/oW=¥r [ wrtdr (27b)

which establishes the lemma.

It follows that Ao(r) = ¢r(r) — ¢L(r) is a bounded differentiable
and monotonic function of W. If we select a particular internal
point 7o, the existence of an eigensolution, which requires that
¥1(ro) =¥r(r0), implies that

Ap(ro)=vm, (28)

where » is an integer. We designate by W, the value of W for
which Eq, (28) is fulfilled. Then, as W increases, the next eigen-
function will be realized when W =W, .1, at which point

Ap(re)= (v+1)m. (28a)

The existence of W, is assured by the premise that at least two
eigenfunctions and the corresponding eigenvalues exist.

Taking for ¢1(0) its principal value, it is clear that G, will have
n nodes if (n—3$)7 < — oL(ro) <(n-+3)m, where the equality holds
if 7o is a node of Gr. Consequently, the number of G nodes in
the interval 0—r is

ng(0—ro) =(—x1oL(r0)— %), (29

where the symbol (x) is the smallest integer greafer than x. Simi-
larly, taking ¢r(w) to have its principal value, the number of
nodes of Gr in the interval 7y to « is

na(ro— ) =(x"1pr(ro) —%).

10 The subscript m on W and ¥ is not necessarily equal to the
number of nodes of F or G. See text following Eq. (32).

11 Obviously, we can always choose 7o so that G(r) #0. However,
with the meaning assigned to (x), it is evident that Eq. (29) is
valid in any case.
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It follows that the total number of nodes of G is

ng=(—7"loL(ro)) — H+{ror(r) —H+e, (30)
where =0, if G(r,) 0, and e= —1, if G(r,) =0, so that the node
at 79 is counted only once. In the former case, we write

— 7 loL(ro) —3=ri+3,
T lor(r0) —3=v—»—2+1-45

which agrees with Eq. (28). In Egs. (31), »; is an integer (2 —1,
see Sec. V), and 0<8<1. It follows then that

ng=wn+1+rv—py—1=v.

(31

If 7 is a node, 6=0 and ng={v)+{(pr—ri—1)—1=». Thus, in
any case, the number of nodes of G is given by

ng=~Aep(ro)/m. (32)

Consequently (see Eq. (28a)), the number of nodes of G and, by
Corollary 3, of F each increases by unity as W increases from one
eigenvalue to the next.

The eigenfunction G, corresponding to the eigenvalue W,, is
constructed in the following way. For <7y, G=GL; for r>ro,
G=Gpr if v is even, and G=—GRr if » is odd.

It must not be concluded that for the nth eigenfunction G will
have n—1 nodes. This is actually the case for Schroedinger
problem, where the lowest eigenfunction is always nodeless.
However, in the relativistic case, there need not be a nodeless
eigenfunction for a particular hamiltonian. For example, for k=1,
an attractive square well of unit radius and depth Vo= —10 has
a lowest eigenfunction with two internal nodes. In this case, the
well has been made so deep and broad that the first two values
of W, for which the wave functions F and G are continuous at
the radius of the well, have been pushed below W=—1. The
essential difference between the relativistic and nonrelativistic
cases is the existence of a lower bound for the discrete energy
spectrum which must be recognized in the case of the former
(see also Sec. VII).

A second oscillation theorem is concerned with the direction in
which the nodes of F and G move as W increases. Let r, be a
node of F. Then in the vicinity of 7,

pP= (f—rn)am(f’n)
and
(0p/0W)rn=(0@/OW)rn=—a1:(rn)dr,/0W.

From the results of Sec. V, we conclude that

S(@e(rn)/0W)=S(8r./0W). 33)

Similarly, let 7,,» be a node of G. Then in the vicinity of 7,
1/p= (r—rm)ez1(rm)
and
[(a/aW)/(l/P)]"'m= "azl(fm)(arm/aW)
or
3@ (rm)/OW = a1 (rm) (Orm/dW).

Thus,

S(@@(rm)/OW)=S5(8rm/dW). (33a)

It follows from Eqs. (26a) and (26b) that as W increases the
nodes of both F and G move to the left for L solutions and to the
right for R solutions.

VII. NONRELATIVISTIC LIMIT

Certain of the properties of the relativistic wave
functions, as discussed in the foregoing, are known to
apply to the Schroedinger wave functions. There are
certain questions connected with the Schroedinger
problem, in particular boundary conditions and ad-
missible potentials, which cannot be discussed as direct
reductions of the preceding analysis to the nonrelativ-
istic limit.

In the limit |W—1|K1, |V|K1, but W—1=E~V;

ROSE AND R. R. NEWTON

the first-order Egs. (2a) go over to the second-order
nonrelativistic wave equation with G equal to » times
the radial Schroedinger function. Here, one makes the
identification k(xk+1)=1I(l4+1); that is, k=1 or k=—1
—1. To effect a close parallelism with the preceding
discussion, we can take k= —/—1, so that x>40. How-
ever, it is sometimes convenient to take k=0 (see Eq.
(35) and the subsequent discussion). Since asr—2, and
is, therefore, positive definite in the closed interval
(0, =), the zero of as which occurs in the relativistic
case at W= —1, r= o has disappeared. For this reason,
the discrete eigenvalue spectrum in the nonrelativistic
case has only an upper bound (E=0), and, by the
usual argument, there is always a nodeless eigenfunc-
tion.

Although the Schroedinger equation is a limiting
form of the Dirac equation, the corresponding state-
ment for the boundary conditions does not seem to be
true. Instead, the boundary conditions for the non-
relativistic problem are:

(a) Square integrability :

b
0<f GUr<«, 0<a<bs ™. (34a)

This is the limiting form of condition (3a), since F, as
defined above, is the so-called “small component”
which vanishes in the nonrelativistic limit.

(b) Lower bound to the continuous spectrum: With-
out such a condition, the only stable state would have
energy E= — o,

(c) Invariance under extended point transformations:
At singular points of such a transformation, a function
which satisfies the wave equation in one coordinate
system may not satisfy it in others. An example of a
singular point is the origin in the transformation from
Cartesian to polar coordinates. This condition excludes'
a singularity as strong as r~! for the Schroedinger v,
and hence,

limG=0.

r-0

(34b)

This condition also applies to the Dirac equations, but,
as has been demonstrated in Sec. III, Eq. (34b) is
automatically fulfilled when conditions (3a) and (3b)
are met, and Eq. (34b) was unnecessary. It will be
noted that while finiteness of y=G/r is not required
a priori, the indicial behavior of G (see below) is such
that Eq. (34b) is equivalent to the statement that ¢ is
finite at »=0.

Studying the Schroedinger equation by our methods
requires changing from a second-order equation to a
pair of first-order equations. This process is not unique.
For studying nodal properties, as in Secs. V and VI,
the most convenient choice is:

F'=—xG, G'=F, (35)

2P, A. M. Dirac, Principles of Quantum Mechanics (Oxford
University Press, New York, 1947), third edition, p. 155.
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where x=2(E—V)—I(l4+1)/7%. A left-handed solution
is one for which G(0)=0, so that square integrability
is also assured; a right-handed solution is one which is
square integrable near infinity, that is, in condition
(34a), >0, b= . Corollaries 1 and 2, and the first
of Egs. (23) under Corollary 3, which is valid for k=0,
are immediate consequences of the continuity of G and
G and of GL(0)=Gr(x)=0. The results of Sec. VI
also apply, if k=0, and are immediately applicable.

For studying admissible potentials a more convenient
set of first-order equations is

F'=—(/2x)F—x}G, G'=x'F. (36)
Introducing 4 and ¢ as in Egs. (7), we get
1
Ind,—Ind,= —f (X’/ZX) Sin2¢df,
"’ (37)

1 ry
o1~ Po=— f (xX'/2x) sinp c08<pdr~f xidr.
o T0

We shall consider only attractive potentials ; one readily
sees that there is always one and only one left-handed
solution for repulsive potentials. We consider three
cases based upon the behavior of lim(r*V) as r—0.

(1) im(»?V)=— . Then lim(r?x)=, for any /,
and for sufficiently small 7, x>0, x’ <0. Then JS7"xidr
in Egs. (37) diverges as 7,—0, and ¢ is infinite at the
origin. Further, from the signs of x’ and x, we see that
In4d—— «,and 4 approaches zero at the origin. Hence,
all solutions of (36) are L solutions. We can always find
at least one R solution for the Schroedinger equation.
Hence, for all E, the wave equation and boundary
conditions (a) and (c) given above can be satisfied.
Therefore, (b) is violated, and attractive potentials
more singular than »~2 are inadmissible.

(2) im(#*V)=0. Here x has a different behavior for
{=0and I>0.

(2a) I=0. Then lim(r>x)=0. Proceeding as with the
Dirac equations in Sec. ITI(A), we can find a finite ¢,
at the origin, with sin2¢y=0. Setting ¢= ¢o+0, and
making the choice cos2¢o= —1, we find, near the origin
6= —rx}, which approaches zero in agreement with
assumption. This choice further makes 4, approach
zero and gives an L solution. The other possible choice
(sin2¢—0, cos2¢—1 corresponding to the second
linearly independent solution) makes A remain greater
than zero at the origin, and Eq. (34b) is violated. Hence,
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there is only one L solution. For this solution, A~x?,
cosp~ryx}, and G~r.

(2b) I>0. Then lim(r*x)= —I(l+1), and ¢ takes on
complex values sufficiently near the origin. The phase-
amplitude method is not convenient for this case.
However, the behavior of G near the origin now depends
only upon ! and not upon V. The well-known indicial
behavior of G is 7*, where

v=—114+1.

Only one solution, with »=1+41, satisfies the boundary
conditions.

Hence, if lim(?V)=0, there is one and only one L
solution for all /, and such potentials are admissible.
G behaves like 7'+ near the origin.

(3) lim(r*V)=—B%£0. The indicial behavior of G is
r’, where

y=3+[1—26+10+ 1),

With /=0, the real part of » is positive for all 8, and
all solutions are left-handed. Therefore, boundary
condition (b) is violated, and all such potentials are
inadmissible.

Thus, on the basis of a consideration of bound states,
the only admissible potentials which are attractive at
the origin are those for which Lim(»?V)=0 as r—0,
whereas no restrictions need be placed on repulsive
potentials. This is in contrast to the Dirac result (Sec.
III), where the potentials could be classified as ad-
missible or otherwise, without regard to the sign of V.
This symmetry between attractive and repulsive po-
tentials in the relativistic case is, of course, under-
standable in terms of energy doubling (quadratic
energy-momentum relationship).’

At first glance one might conjecture that, at least in
the Schroedinger case, the physical basis of admissibility
of a potential is the requirement that the attraction
shall not predominate over the centrifugal repulsion.
The foregoing shows that this interpretation is not
correct, and, in the Dirac case, such an interpretation
would be definitely ambiguous.

We wish to express our appreciation to Professor F.
A. Ficken of the Department of Mathematics, Uni-
versity of Tennessee, for a critical review of the manu-
script.

13 The second-order equations for the relativistic F and G are
independent of the sign of V, in the region where V is large, in all
terms including those arising from the effect of spin.



