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nuclear matrix elements due to the jump of the principal quantum
number. As was pointed out by many authors, this does not
contradict Mayer's shell model, but leads to some difEculties
with Feenberg's model, with respect to the 3p level.

(2) A series of spectacular experiments started by Langer, '
Wu, 'p and others, led to the discovery of many of "e"-type
spectra concerned with the first-forbidden transitions. It may
naturally be asked in this connection why no other type of spec-
trum associated with the first-forbidden formulas of Konopinski
and Uhlenbeck, "for instance, with J r, has so far been discovered.
We will try to indicate here that this question may be answered
satisfactorily by the use of Mayer's shell model. The selection
rule for the matrix element J'r is M= ~1,0, parity change yes.
However, in Mayer's level scheme, nuclei with the same principal
quantum number have the same parity. Therefore, it naturally
follows from this that„ if parity changes in a P-transition, the
principal quantum number will also jump. For example, transi-
tions (4f~/$~383/s), (2s«2~3p3&2), etc., in spectroscopic notation,
are such cases. Of these, the transitions {2s&~2~3p31&) are actually
found to be less frequent than the transitions (4f»2~3d3&&) in
Mayer's shell model. ' Moreover, for the case LA=~1, 0, J'e,
which represents an allowed spectrum, may happen to mask the
contribution of J'r. This provides a basis for explanation of the
fact that the case with J'r is far less frequent than the case of
"u"-type. On the other hand, in the shell model where the parity
and the principal quantum number may be taken independently,
the explanation would require a more complicated basis."

(3) Two divergent opinions have so far been advanced as
regards the classification of the bulk of P-emitters with ft-values
10'~10'; the one favoring their classification as first-forbidden,
and the other proposing to classify them as allowed unfavored
transitions (as seen in 1A in Table II of Konopinski}. '» If we try
to make the calculation by the first-forbidden formula, s we will

obtain considerably dispersed values for ft. However, a conven-
tional calculation on the basis of the allowed formula gives more
distinct values. If we do not regard this result as fortuitous, but
take this as a result of failure to observe the seventh-power law,
it follows, then, as stated by Wu' and also by Feenberg and Trigg, 4

that it is better to classify these transitions as allowed but
unfavored.
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'HE theory of transport phenomena in an ionized gas has
recently been reconsidered by Cohen, Spitzer, and NcR.

Routly, ' in an approximation which is specially adapted to in-
verse square forces. In this connection some results on the con-
vergence of the Chapman-Enskog method which came 'up in the
work reported in an earlier papers may be of some interest. These
results refer to the case H=0, where the matrix b, of Eq. (34) is
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presence of an electric field is, in the notation of reference 2,
given by

e(v R) '-' b,p„(')
y=f 1— — Z (—1}" I.„.

VkT p
g(~)

For Z= 1, one obtains

and
Ap2 /b = —0.0630, Ap2( jb = —0.018365,

Apg /6 ' =0.039955.

Finally, I should like to point out some corrections to reference 2.
In Eqs. (21) delete q in the third equation; in Eq. (30}replace P'
by P3; in Eq. {62) replace v2 by {2n)&; in Eq. (65) replace H„,'
by H,.'.

*This work was done under the auspices of the AEC.
i Cohen, Spitzer, and McR. Routly, Phys. Rev. 80, 230 (1950).
2 R. Landshoff, Phys. Rev. 76, 904 (1949).
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MALL single crystals of barium titanate have been available
to us for some time through the work of Matthias. ' Although

suitable for qualitative studies, these crystals were too small for
accurate measurements of elastic and piezoelectric constants.
Through the cooperation of the Signal Corps Engineering Labora-
tory, we have obtained larger single crystals of barium titanate
produced by the Harshaw Chemical Company under Signal
Corps contracts. ' These were large multi-domain single crystals,
but by being polarized with a high electric field the domains could
be oriented with their ferroelectric axes predominantly in the
direction of the thickness of the crystal plate.

The elastic constants were measured by using the ultrasonic
pulse method shown by Fig. 1. Longitudinal or transverse waves
are generated or received in fused quartz rods by X- or Y-cut
quartz crystals soldered to the rods. The sample is connected to
the fused quartz rods by means of a quarter-wave thickness of
polystyrene, . which has a very low loss and the mechanical im-
pedances of 0.45X10 and 0.165X10' mechanical ohms per cm'
for longitudinal and shear waves, when connected to the fused
quartz rods. The velocity and attenuation can be measured „by
observing the ratio between the incident and transmitted waves.

real. In this case the determinants can be evaluated with much
less labor and the approximation was carried to 5X5 matrices,
i.e., 2 steps beyond the approximation of reference 2. The results
are given in Table I. The velocity distribution of electrons in

TABLE L Successive approximations of the determinant ratios.
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FREQUENCY IN MEGACYCLES

Fr@. 1. Relative response as a function of frequency.

constant &33~ below the resonance, which can be written in the
form

3$/~3&T 1—k~, (3)

we Gnd k=0.67, mhich is considerably higher than that found in a
polarized ceramic of barium titanate. A similar relation between
the elastic constants measured for constant displacement and
constant Geld is

c338/c3p = 1—&'

or k=0.675.
From the dielectric constant, the coupling constants 0.192 and

0.67 for the longitudinal length and thickness modes, respectively,
and the elastic constants one can calculate the "effective" piezo-
electric constants for this degree of poling as

d3i = —310X10~stat coulombs/dyne,
tg» =+950X10~ stat coulombs/dyne. (5)

The elastic constants for constant electric displacement are

c» =2.06~0.05X 10'~ dynes/cm', cia = 1.40~0.2 X10 '.
c44D = 1.26&0.05X10'~.

~ Blattner, Matthias, Merz, and Scherrer. Experientia 3, 148 (1947).
g A. de Brettville, Jr., and G. Katz, Phys. Rev. 78, 340 (1950),

The transmitted waves are greatest at half-wavelength frequencies;
and, by obtaining two of these, the velocity can be determined.
If R is the ratio of thp amplitude at odd quarter-wavelengths to
the amplitude at half-wavelength frequencies, the attenuation can
be calculated from the formula

tanhA/= 8 —1

elastic constants:

s»~= 1.12X10 "cm'/dyne;
)S» + $(2Sis +Ses ) =0 69X10 j
c3P= 1.13X10'» dynes/cm~.

(2)

For the square crystal the dielectric constant was 2890 at low
frequencies, 2740 at frequencies below the thickness resonance,
and 1500 above the resonance. From the relation between the
dielectric constant above the resonance ~3~$ and the dielectric

TABLE I. Resonant and antiresonant frequencies for various orientations.

Orientation
Dimensions in mm

L W T
Resonant
frequency

Anti-
resonant Electro-

fre- mechanical
quency coupling

Length along a
cubic axis

10.13 1.15 0.5 189,973 192,950 0.192

Length 45' from
a cubic axis

9.90 1.02 0.5 247,650

Square plate 10.0 10.0 1.0 2,170,000

where A/ is the attenuation in nepers, Bl the phase shift in radians,
Z, the sending and receiving impedances on either side of the
sample, and Zo the characteristic impedance of the sample equal
to +~ density p times the velocity. Figure 1 shows measurements
for longitudinal and shear waves for a sample 1 cm square and
1.029 mm thick. The solid lines are for the sample polarized in the
direction of the thickness, while the dotted curves are for the
sample unpolarized. From these it is seen that the constant elect|ic
displacement elastic constants do not differ by more than 3 per-
cent, which indicates that cia =c3P and c44D = c6sL' within several
percent. A much higher loss for the depolarized condition indicates
a microhysteresis effect. The elastic constants are given by Fig. 1.

Measurements were also made of resonant and antiresonant
frequencies of a series of orientations which mere polarized along
the thickness which lies along a cubic axis. The results are shown
in Table I. From these me obtain the values of the constant Geld
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')ROCTOR and Yu' have demonstrated an interesting fine
structure in the nuclear magnetic resonance absorption line

for Sb'~' and Sb'~ in an aqueous solution of sodium hexa-
Quoantimonate and hydrofluoric acid. The structure consists of
an equally spaced symmetrical set of seven lines whose over-all
width of 10 gauss is unusually great for a liquid resonance.
'The second moment for the Sb"' line, computed from their
illustrated experimental curve, is 5.5 gauss'. If the resonance had
been obtained in a polycrystalline solid, a second moment of
153 gauss' would have been expected. ~' In solution the second
moment should be less than this, since there should be random
reorientation of the octahedral LSbF&1 ion, with a frequency
much greater than the frequency line width, unless the liquid has
an unusually high viscosity. In fact, for equal probability of all
spatial orientations, the line should be very narrow, since the
average values of the terms (3 cos'8;I;—1), which occur in the
interaction hamiltonian, are zero. 4

A high viscosity could reduce the ionic reorientation frequency
such that the line width is only partially reduced. It is, however,
diQicult to see why such a reduction caused by random reorienta-
tion should give the well-resolved fine structure. Moreover, it
requires the viscosity to be ~2X10' poise. '

Suppose, however, that rapid ionic reorientation takes place
about one axis only. For either uniform or random reorientation
about a tetrad axis of the octahedron the second moment would
be reduced to 7.2 gauss~; about a diad axis the value is 1.9 gauss',
and about a triad axis it is zero. Rotation about one tetrad axis
thus seems the most promising assumption. On this basis the line
shape has been calculated by classical computation of the local
Geld due to the six octahedral F" nuclei at the central Sb'"
nucleus; this procedure appears to be justifiable with this sym-
metry and motion for non-identical perturbing nuclei of spin $,
since it gives the correct second moment for all ionic orientations.
Calculation is made for the 2' equally probable configurations of
the six F'9 nuclei; for each the local Geld is averaged for random
reorientation about one tetrad axis. Finally, the line shape shown
in Fig. 1(a) is obtained for a randomly oriented assembly of ions
and is seen to exhibit an equally spaced symmetrical set of nine
lines. When multiplied by a broadening function, a curve is
obtained whose derivative is shown in Fig. 1(b). This curve agrees


