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F a container of liquid helium is connected by a very fine slit
. or a capillary with a helium bath, the meniscus in the container

reaches the level of the bath eventually by way of very slow and
very slightly damped oscillations. Allen and Misener, ' who first
observed this phenomenon, assumed that the frequency of the
oscillations is determined by the restoring force of gravitation,
Agpx, where A is the area of the liquid surface in the container,
p is the density of liquid helium, x is the level difFerence, and
@=980cm /sec'. The potential energy is then

Ep, I,——$A gpx'.

To all intents and purposes the inertia of the liquid can be
attributed entirely to the mass of the liquid moving in the
capillary. Then, assuming that only the superQuid Lvelocity
v, = (A jo)(p/p, )ij can pass through the capillary of length l and
cross section r, the kinetic energy is given by

E]g j~= )La'pgvg = @p LA x /pro'.

Hence, the system represents an harmonic oscillator of frequency

co;= 2mv;= (p,go/pLA)&.

Atkins' has observed similar oscillations in a vessel connected with
the bath by the Rollin film, and has used measurements of the
frequency to determine the thickness of the film. In measuring
these oscillations, particular care must be taken to avoid swamping
them by the fountain efFect. In Allen and Misener's and in
Atkins' experiments, constant temperature was insured by a very
good heat contact between container and bath.

If, however, the two containers are well isolated from each other.
it is mainly the fountain effect and not gravitation which de-
termines the frequency of the oscillations. We have the equations
of motion' for the superQuid:

viscosity. We may then put (V„)=0, p,cr(V,)=pAi, and dispense
mith Eq. (3), writing (2) and (4) as

(PAL@/p, a)+gx+ (1/p) (p—pp) —(S—S.)(T—Tp) =0, (2')

pA f Tp(S—$,)i+(h+x)CpPI+tc(T —Tp) =0. (4')

The quantity p —pp can be expressed by the temperature difFerence
and the derivative of the vapor pressure curve,

P—Pp= (T—Tp) (dp/dT) p.

For x small compared with h, (2'} and (4') are linear, homoge-
neous equations of the form:

i+a];2x—cu;2AT =0,

i+7'+LT =0,
where

T:—{T—Tp)hCy/)Tp(S —S )).
Tp(S—S )' 1 dp

ghC„p(S —S,) dT ~~p

L=—a/(PAhCv).

Equations (2") and (4") have solutions of the form

x=B'e"',
B&&ex t (5)

where X is determined by the secular equation:

X'+LE+~ (1+A)X+Z;2=0. (6)

For L~ ~ (complete heat exchange), we have A=ice;. These are
the isothermal oscillations mentioned above.

On the other hand, for L=O (complete insulation), we have a
much higher frequency:

co =co;(1+a)&=cop/p, (1+a)/p|&, (7)
where cop is the frequency at the absolute zero. Furthermore, there
is a static solution ) =0 and, from {2"),xp =aTp which is the well-
known equilibrium condition for the fountain pressure. The
general solutions are vibrations of frequency co around an
equilibrium position xp given by the temperature difference. For
1.3'(T(T& the entropy is roughly proportional to T's, and a
crude estimate gives co /co;= {82/h&)(T/Tp)". Figure 1 displays
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where pp and Tp are the vapor pressure and temperature in the
container, S„and S, are the entropies per gram of helium attri-
buted to the normal and superQuid components, y„ is the viscosity
of the normal Quid, and (V ) the average of V„over the cross
section of the capillary. S, is generally understood to be zero, or
practically zero. We express the balance of entropy by

p,o (S—S,)Tp(V, —V„)+pA (h+x) C„f'+«(T—Tp) =0, (4)

where C~ is the specific heat per gram, h is the distance from the
bottom of the container to the bath level, and a is an assumed heat
leakage between bath and container. We mill assume the capillary
or slit so narrow that the normal Quid is immobilized by its
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FIG. 1.Undamped adiabatic (coo) and isothermal {cus) oscillations, calculated
for h =1 cm. Frequencies as functions of temperature.

440



LETTE RS TO THE E D I TOR

the temperature dependence of cu;/coo and eu /zoo. (In the calcula-
tion it was assumed that S,=0 and S~T~.6 over the entire range. )

Examination of the discriminant 6 of (6), given by

275= 1——,
' 1+18 ——27 — —+—

reveals that for finite L and T, three distinct situations may obtain.
For L/co &2 we have the damped adiabatic vibrations. For
L/ru, &)co,jco; we have the damped isothermal vibrations. Be-
tween these values, for 2&L/a &/co jau;, the three solutions of
(6) are all aperiodic.

We substitute X=ia—b, and equate real and imaginary parts of
(6) to zero. The two equations so obtained yield an aperiodic
solution a=0, and two more relations between a, b, and L from
which we can derive a relationship between a and b and then
calculate the dependence of each on L. The aperiodic solution can
then be found by equating the constant term in (6) to the product
of the roots:

L~ .2/(~1~2) L4) .2/(a22+ ~22)

In the periodic regions the general solution of (2") and (4") for the
meniscus level x can then be written:

x= D'g &t cos(at —p)+D" expL —L~ 't/(a2 +b2 )j (8)

where D', D", p, are arbitrary constants. Hence, we obtain an
aperiodic decrease of the average temperature and pressure
differences between bath and container, plus the damped
vibrations.

In Fig. 2 we show the solutions calculated for T=2'K and h= 1

cm, as functions of L/co, . The ordinates are in units of co, in and

arrangements the total heat leakage from an insulated container
(volume 1 cm') to the bath was about 40 erg deg ' sec ' for
T& Ty. This would give roughly L=2)&10 'T', where we have
taken pC„=4X10 T' cal deg ' sec ' cm 3. Accordingly, it
should be possible to provide insulation which will reduce the
damping sufBciently to permit observation of the adiabatic
oscillations. This might provide a method of measuring the
temperature dependence of the entropy, or rather of (S—S,), at
lowest temperatures.

The author is indebted to Professor F. London for suggesting
this question and for numerous discussions.

4' Supported by the ONR.
I J. F. Allen and A. D. Misener, Proc. Roy. Soc. (London) A172, 467

(1939).
3 K. R. Atkins, Proc. Roy. Soc. (London) A203, 119, 239 (1950).
3 See, for instance, R. B. Dingle, Proc. Phys. Soc. (London) A62, 648

(1949).
4W. H. Keesom and B. Saris, Physica 7, 241 (1940). See also P. H.

Keesom, Physica 11, 339 (1945).
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TARTING from the c]assification of ft-values of P-decay, we'
have recently analyzed the P-decay schemes and selection

rules of P-rays by Mayer's shell model. Our general conclusion
agrees with the result of recent researches made by Wus and also
by Feenberg and Trigg. 4 As regards some of the P-decays, Mayer's
theory gives a more simple explanation than those of Feenberg
and Hammack and of Nordheim. We would like to lay special
stress on the following three points:

(1) Fermi's formula for the allowed transition, which has been
tentatively employed in calculating the ft-values of P-decay, is
subject, in some cases of forbidden transitions, to errors ranging
up to about one hundred. For instance, Feenberg and Hammacks
held that in a group obeying the first-forbidden selection rule
~=~2, parity change yes, respective ft-values are too great to
be included in the first-forbidden category. However, our re-
examination' by means of the correct forbidden formula of
Nakamura, Shima, and Kobayashi' resulted in improvement by a
factor of as much as sixty. It is interesting to note that the re-
examination reveals that all of the above-mentioned group with
"a"-type spectrum have almost the same ft-values (see Table I),
and that their magnitudes are not unreasonably great for the
first-forbidden transition if allowance is made for the reduction of
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FIG. 2. Frequencies (a) and damping (b) as functions of the heat exchange
L, calculated for h =1 cm, T =2'K. The aperiodic solution in the adiabatic
range is 'A3= —b3, and in the isothermal range is XI = —bI.

adjacent to the adiabatic region, and in units of oo; in and adjacent
to the isothermal region. (For the scales employed, the aperiodic
root, X3, is almost too small to be visible in the adiabatic range,
and is too large in the isothermal range to be shown in the plot. )
Figure 2 shows that if the adiabatic oscillations are to persist over
several periods with only slight diminution in amphtude, we must
have at most L/co &0.1. In this case we have

a=(g, {1—$(L/m ) I. b=gL; ) 3= —(co /ao )'L

The vibrations die out more rapidly than the average meniscus
level sinks.

To see whether the adiabatic oscillations are observable we refer
to Keesom and Saris, 4 who found that for one of their experimental

TABLE I ~ Improvement of ft-values by the first-forbidden formula:*
Woo 59Wo4 407 Wo

f(Wo) = ——~ (Wps —1)&
630 5040 10080 630 /

Wps Wp+ —+— log [Wo+(Wos —1)&]. (1)24 96

Elements
of "a"-type Wo (mc') t (sec)

ft
uncorrected

ft
corrected

by Eq. (1)
Y90
A39
Krso
C133
Srso
Sroo
Y91
Rboo
K43

5.29
2.108
2.17

10.43
3.88
2.05
4.01
4.6
8

2.2 X103
4 5 X109
2.96 X10s
2.3 X103
4.7 X10o
8 X20o
5.3 X10o
1.36 X10o
6.0 X104

1.1 X103
2.1 X103
3.0 X10s
4.0 X107
4.9 X10s
1.4 X109
5.4 X 109
3.8 X103
1.1 X10o

3 X107
4 X107
4 X107
5 X107
6 X107
? X10'
8 X107
8 X107
1.1 X109

*F.B. Shull and E. Feenberg, Phys. Rev. 75, 1768 (1949), replaced it
by (Woo —1)f and found, as a mean value, (Wos —1)ft 10» for the
"a"-type group.


