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A new analytic continuation principle is described, by means of which the calculation of matrix elements
of Heisenberg operators in any quantized Geld theory is greatly simpli6ed. By a "Heisenberg operator" is
meant an average over a Gnite space-time region of a Geld operator in the Heisenberg representation of the
theory. The analytic continuation is made by varying the characteristic masses of the Gelds through real
values. In this way a Heisenberg operator with the physically occurring masses is derived from an operator
calculated with very large 6ctitious masses. In, the region of large masses, where real creation of particles
is impossible, the operator is identical with the S-matrix for a suitably chosen scattering problem. The
calculation reduces to the calculation of an S-matrix, to which the techniques of Feynman are directly
applicable.

The S-matrix itself is a nonanalytic function of the masses in the region of values where thresholds for
real processes occur. A special device is introduced in order to bypass the region of nonanalyticity. The
Heisenberg operator is modified by the insertion of real exponential damping factors which have the effect
of making all energy denominators in a perturbation expansion complex. The modified operator is an
analytic function of the masses and of the damping coefficients, for all real positive values of the masses.
The analytic continuation is made by varying the masses while the damping coe%cients are non-zero,
letting the damping coefficients tend to zero when the physical values of the. masses have been reached.

I. INTRODUCTION
' "T is generally believed that quantum electrody-
~ - namics, in spite of its inherent divergences, consti-
tutes a consistent and meaningful theory. That is to
say, given any directly measurable physical efI'ect, the
theory will predict for it a finite and unambiguous
value, or statistical distribution of values. It has become
possible to use the theory consistently, and to circum-
vent the divergence difliculties, by using the idea of
renormalization of constants, an idea originally sug-
gested by Kramers' and Bethe, ' and worked out in
detail by Schwinger, ' Tomonaga, 4 Feynman, ' and
others. All these authors, however, have only applied
the theory to particular problems. No general proof
exists that the theory will give finite values for all
measurable quantities in all situations.

A start in the construction of such a proof was made
by the author, ' who showed that all matrix elements of
the 5-matrix in quantum electrodynamics become finite
after the renormalizations of mass and charge are
carried out. This analysis of the 5-matrix falls short of
what is required in two important respects. (i) The
5-matrix is written down as a formal series expansion
in powers of the coupling constant e, assuming the
series to be convergent after the renormalizations are
carried out; the convergence of the series is never

'H. A. Kramers, "Non-relativistic quantum-electrodynamics
and correspondence principle, " Solvay Conference Report,
Brussels, 1948.

-' H. A. Bethe, Phys. Rev. 72, 339 (1947).
3 J. Schwinger, Phys. Rev. 74, 1439 (1948); 75, 651 (1949); 76,

790 (1949).
4 T. Tati and S. Tomonaga, Prog. Theor. Phys. 3, 391 (1948);

Fukada, Miyamoto, and Tomonaga, Frog. Theor. Phys. 4, 47
and 121 (1949). Ajso earlier papers in the same journal.

~ R. P. Feynman, Phys. Rev. ?6, 749 and 769 (1949); 80, 440
(1950).

'

' F.J. Dyson, Phys. Rev. 75, 486 and 1736 (1949)~ These papers
will be referred to hereafter as (A) and (B).

proved, and the series is in fact certainly not convergent
in problems in which bound states are involved; thus,
the analysis is applicable only to pure scattering
processes between free particles. (ii) The 5-matrix
describes the results of measurements of the over-all
behavior of a system integrated over space-time; it
does not include a description of local measurements,
for example, measurements of field-strengths and cur-
rent-densities in finite space-time regions. The purpose
of the present series of papers is to remove the defect
(ii) of the previous work. ft will be proved that quantum
electrodynamics gives well-defined finite values for all
locally measurable quantities, whenever the expansion
in powers of e is convergent. Incidentally, it will appear
that our methods provide a basis for removing defect
(i) also from the analysis; this question will be discussed
in later papers of the series.

By a locally measurable quantity in quantum elec-
trodynamics' is meant an operator such as the field-
average

where F„„(x)is an electromagnetic field-strength opera-
tor in the Heisenberg representation, and R is a finite
space-time region of 4-dimensional volume V. Ke use
heavy type for Heisenberg representation operators,
light type for interaction representation operators.
Another example of a measurable quantity is

j„(5)= (1/V)
J

"j„(x)5(x)d4x;

' The author is much indebted to Professor %. Pauli and Dr.
Res Jost, who pointed out to him the necessity for working in
terms of such 6eld-averages. An unpublished calculation of
Dr. Jost, communicated to the author by letter in March, 19SO,
included many of the ideas of the present series of papers.
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here j„(x) is a current-density operator in the Heisen-
berg representation, and S(x) is a function which is
zero outside E and unity inside E, except in a thin shell
in the neighborhood of the boundary of E. in which it
changes smoothly from 0 to 1. As is well known, ' the
smoothness of S(x) at the boundary of R is necessary
in case (2) in order to obtain an operator whose mean-
square fluctuation is finite. Operators such as (1) and
(2) can be built up by linear superposition of the
I'ourier-transformed operators

berg operators are a more appropriate practical tool
than is the S-matrix.

II. FORMAL MANIPULATIONS

The expression for j„(x) in terms of interaction
representation operators is

j„(x)=S—'(t) j„(x)S(t),
where t is the time at the space-time point x, and the
transformation operator S(t) is "

j„(P)= (1/2or)4)' j„(x)e '& d,x, (4) p
4-1

Cx„Hr(x,)Hr(x, ) Hl(x„). (6)

where p is an arbitrary 4-vector in momentum-space.
The program of this and the next paper in the series
will be to prove in detail that the operator (4) is finite
after all renormalizations have been carried out, in-
cluding a renormalization of the unit of charge in terms
of which (4) is measured. A simple argument will then
show that (3) is finite after a corresponding renor-
malization of the unit of field-strength. It will be clear
that the methods are of general validity and could be
applied equally well to any locally measurable opera-
tor of the same form as (1) or (2).

The scope of the present paper is to formulate a
general expansion theorem, expressing Heisenberg oper-
ators such as (3) and (4) in terms of interaction repre-
sentation operators. ' The second paper of the series
will carry through the renormalization program for
these operators, using the expansion theorem as a
mathematical basis. The statement of the expansion
theorem occupies Sec. VIII of the present paper. The
theorem is surprisingly simple, being formally identical
with the corresponding expansion theorem for the
5-matrix which was the basis of the previous analysis.
The calculation of Heisenberg operators is thereby
made fully as easy as the calculation of the S-matrix.
There is no longer any advantage, for practical calcula-
tions, in using the S-matrix method in preference to the
original contact-transformation method of Schwinger,
which works in terms of Heisenberg operators. In fact,
the two methods of calculation diGer only when in the
S-matrix a higher order radiative effect is mixed with
contributions from real effects occurring in lower order;
and just in these circumstances the Heisenberg opera-
tors are simpler to use, since they isolate the true higher
order eBects from the others. It will be found that, in
general, for radiation problems which are not direct
calculations of scattering matrix elements, the Heisen-

'%. Heisenberg, Leipzig. Her. 86, 317 (1934).
'Expressions for the Heisenberg operators in terms of inter-

action operators have been studied previously by G. Kallhn,
Arkiv Fysik 2, 187 (1950). D. Feldman and C. N. Yang, Phys.
Rev. 79, 9'72 (1950).

Here,
EP(x) =Hg(x)+H, (x),

H, (x) = —(1/c) j„(x)A „(x),

H, (x)= —Smear(x)!P(x),

J.(x) =~e4(x)V.4('*),

(&)

(8)

(9)

L, LH'(x, ), LH'(x), j„(x)]] ]]. (11)

By a rearrangement of terms, this series may be written
in the alternative form

(o)o( o)o 1-

o-o n=o Lkc) ( kc~ q!p!"

P(H'(x, ), H (x ))P(H (x +g)

H'(x~. ),i.(x)), (12)

where the P-bracket denotes, as us'ual, a chronologically
ordered product, and the P-bracket is a product ordered
antichronologically, reading the order of factors in
both cases from right to left.

In an expression such as Eq. (11), involving products
of many interaction representation operators, all kinds
of higher order virtual processes are implicitly included.
The aim of our analysis is to find an expansion of j„(x)
in which virtual processes are represented explicitly,
so that the divergences which arise from virtual proc-
esses can be recognized and eliminated. Stated pre-
cisely, our aim is to express j„(x) as a sum of "normal
products" multiplied by c-number coefficients; a normal

'0 The notation is not exactly the same as in references (A) and
{&).

all these being interaction representation operators.
Expanding Eq. (5) gives an expression for j„(x) as a
series of multiple commutators

(own p4 —1

j„(x)= P
~

—
~ ! dx, dx.," I dx„LH&(x„),

=() I kc)
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product is defined to be a product of free particle emis-
sion and absorption operators in which all emission
operators stand to the left of all absorption operators, "
so that no virtual emission and reabsorption processes
are implicitly represented in it. The free particle opera-
tors are defined to be the coefficients A„(k), P (k),
P (k) in the momentum representations

A„(x)= dkA„(k)exp(ik x)

P.(x)= dkP (k)exp(ik x),~ (13)

P (x)= dkP (k)exp(ik x)

of the interaction representation operators, the coefEi.-
cients with positive values of the fourth component ko

being by definition absorption operators, those with
negative values of ko emission operators. The reasons
for expressing j„(x) as a sum of normal products are
the following. Given any initial and final states specified
by definite numbers of free particles with definite
polarizations and momenta, there exists precisely one
normal product with a non-zero matrix element between
these two states Ther. efore, a decomposition of j„(x)
into normal products is equivalent to a complete listing
of the matrix elements of j„(x) in the representation in
which free-particle occupation numbers are diagonal.
The eGects of virtual processes are represented ex-
plicitly in the numerical factors multiplying the various
normal products.

There is a general theorem due to Wick" which states
that every product Q of interaction representation
operators f (x), fs(y), A„(s) has a unique decomposi-
tion into a sum of nodal products. The decomposition
is a consequence only of the commutation relations be-
tween the factors of Q; it is an operator identity, inde-
pendent of the particular states in which we may be
interested. Just for this reason, the rules for decomposing

Q into a sum of normal products are simpler than the
rules given in the author's earlier papers' for writing
down the matrix elements of Q between given states.
The two sets of rules are equivalent, but there is a
great advantage in working with the normal product
decomposition because this method makes unnecessary
any explicit reference to the vacuum state of the fields.

%'ick has stated and proved his theorem only for a
chronologically ordered product Q. The theorem and
the method of proof are valid, however, for all products.
%'e shall here state the theorem in its general form,
referring to %ick's paper for the proof.

"The decomposition of an operator into normal products has
been frequently used in the past, for example by E. G. C.
Stueckelberg, Nature ISS, 143 (1944); A. Houriet and A. Kind,
Helv. Phys. Acta 22, 819 (1949}.

~ G. C. Nick, Phys. Rev. 80, 268 (iNO).

We define a "factor pairing" of Q in the following
way. A certain number (in particular this number may
be all, or none, or any intermediate even number& of the
factors of Q are associated together into pairs, the
members of each pair being either one g and one P, or
two A„operators. The remaining factors are leh. un-
paired. Two factor-pairings are regarded as d' tinct,
even when the number of pairs and the nature of the
factors composing them are the same in both, provided
that the positions in Q of the paired factors are different
in the two cases.

To each factor-pairing corresponds a "rearranged
form" of Q as follows. First, one pair of factors Pi is
brought to the left side of Q, the order of factors in the
pair being kept as it was in Q. Then another pair of
factors P2 is brought to the left and placed immediately
to the right of the first pair, and so on. The order in
which the pairs are chosen is not significant. When all
the pairs have been picked out, the unpaired factors
are left, forming a product U. The rearranged form
Ii =P~P2 ~ U is given the sign plus or minus according
as the permutation of electron-positron factors in going
from Q to F is even or odd.

Corresponding to any given product U we define the
"normal product" 1V(U). First, the factors of U are de-
composed according to Eq. (13) into sums of particle
emission and absorption operators; U is then a sum of
products of these elementary operators. X(U) is formed
from U by rearranging independently each of the prod-
ucts of elementary operators so that absorption opera-
tors stand to the right of emission operators, giving to
each rearranged product independently the sign plus or
minus according as the permutation of electron-positron
factors was even or odd.

Finally, a "normal constituent" of Q is obtained
from each rearranged form F as follows. The unpaired
factors U are replaced by $(U). Each pair of factors

f (x)Ps(x') is replaced by the C-number

iS s+(x —x') =[—i—(/2)x' ]td4k8(k)8(k'+m')

X (k„y„/&5)~ exp[ik (x—x')]. (14)

Each pair of factors its(x')f (x) is replaced by

X (k„y„+im) s exp[ik (x—x')]. (15)

Each pair A„(x)A.(x') is replaced by

ihcb~D+(x x') = [hc/(2s)']8—„„J d4k8(k)

X8(k'+li') exp[ik (x—x')]. (16)



HEISEN BERG OPERATORS 43i

Here, 8(k) is the step-function defined by

8(k) =1,
8(k) =0,

&o&0,
&o&0,

(17)

pt tl

I„(x)=)' dxg I dx2
tsv

tss-I

dx„[Hg(x„),

where ko is the fourth component of the 4-vector k;
te is the reciprocal of the electron Compton wavelength.
X is a real constant which has the value zero when A„
is the electromagnetic 6eld. It is essential to our method
that we carry through the analysis also for non-zero
values of ); this means that we consider A„ to be either
the electromagnetic 6eld or a neutral vector meson
field with rest-mass (hh/c).

After these replacements, Ii becomes an operator E
which is by definition the normal constituent of Q
c@e'ponding to the factor-pairing from which F was
~ver. Each E is thus a normal product multiplied
by various coefficients (15), (16),~( ~& )

The theorem of Wick can now be stated concisely.
Every product Q is identically equal to the suns of its
normal consti tlents.

In order to decompose j„(x) into a sum of normal
products, we choose any particular term in the ex-
pansion (11), for example,

S=Q OC, (22)

C denoting any one of the multiple commutators in
Eq. (20) and 0 the corresponding product of 8-functions
which speci6es a particular chronological order of the
points xq, x2, , x . Let a factor-pairing F of S, with
b factor-pairs, be given. Let the Feynman graph corre-
sponding to Ii be G, and let Sg be the corresponding
normal constituent of S. In constructing Sg, we express
each of the functions (14), (15), (16) as half the sum
or diGerence of an exchange term and a sum-term.
Thus,

III. INTRODUCTION OF DOUBLED
FEYNMAN GRAPHS

Since we are now dealing with multiple commutators
rather than with simple products, the analysis of
operators given by the Wick theorem and represented
by ordinary Feynman graphs will no longer be sufFi-

cient. We shall develop a more re6ned analysis, which
will lead to a graphical representation by means of a
new kind of diagram called a "doubled Feynman graph. "

For brevity, we use the word "exchange-term" to
mean either a commutator of two A„operators or an
anticommutator of a f and a f operator; we use "sum-
term" to mean either an anticommutator of two A„or
a commutator of a P and a P. We write also instead of
Eq. (20),

[,[H~(x.), j„(x)j ~ jj. (18)

This term can be rewritten more symmetrically as

D-L(x) = —,'[D(x)WiD'(x) j
5+(x)= ,'[S(x)—wiS'(x)j,

where D'(x) is the even function

(23)

tuoa 00

I~(x)=(1/n!) '

)I dxg dx„S, (19)
D'(x) = (1/2n)') d k8(k'+h')e'" * (23.1)

where

P(H)(x„), , Hg(xg), j„(x)), (21)

which was required for the calculation of the S-matrix. '
Exactly as in the 5-matrix analysis, each factor-pairing
is represented by a Feynman graph G, with (n+1)
vertices x, x~, . , x„connected by lines indicating
which operators are to be paired.

5=Q 8(x—xg)8(xg —x2) 8(x g
—x„)[Hg(x„),L, [H~(») j.(x)j" jj, (2o)

the summation being over the (n!) permutations of the
points x~, , x . S is a sum of (2"n!) products, all of
them made up of the same factors in various orders.
By a factor-pairing of S we mean a simultaneous pair-
ing of identical pairs of factors in each of the (2"n!)
products. To each factor-pairing Ii of 5 there corre-
sponds a normal constituent E which is the sum of
(2"n!) normal constituents, one taken from each prod-
uct. The enumeration of the factor-pairings of S is
now identical with the enumeration of factor-pairings
for the chronological product

and S' is similarly dehned. "Then, Sg is of the form

Sg=lq'g Q p PLp. (24)

Here, the summation is over the 2' possible products
P; each P is a product of b factors, one corresponding
to each internal line of G; to an electron line of G
corresponds either a factor S or a factor S' in P, and to
a photon line corresponds either D or D'. For each P,
I.I is a certain linear combination of the products 0'

appearing in Eq. (22). 1Vg is a normal product of the
(3n+2 2b) unpa—ired factors in F, and depends only
on G and not on P. The representation of Sg in the form
(24) is unique.

To obtain further information about the I.p, we use
an alternative form of 5 from which Eq. (12) was de-.

rived, namely,

S= Q (—1)" ' Q P(Hg(xg'), , Hg(x, '))
g 0

XP(H (*', ), , H (*.'), j,(*)). (24.1)

The inner sum is here over the [n!/q!(n q)!j way—s of

"J.Schwinger, Phys. Rev. 75, 651 (1949), Appendix.
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choosing q points x~', ~ ~, x~' out of the e points
x1, , x . It is important .that in Eq. (24.1) the
8-functions no longer appear explicitly. When Sg is
constructed from Eq. (24.1), each term of the inner
sum gives rise to a product of functions S", S, D+,
Sr, 8r, Dr, and Dr. The function Dr(x x')—arises
from the replacement of P(A„(x), A„(x')) according to
Eq. (16), and is given by

D (x) =D'(x)+iL28(x) —1jD(x). (24.2)

This is the Feynman D-function, which was used ex-
tensively in (A) and (B). The function Dr(x x')—
arises from the replacement of P(A„(x), A„(x')) and is
given by

Dr(x) =D'(x) —iL28(x) —1jD(x). (24;3)

Sr and 8r are similarly defined. Now using Kqs. (23),
(24.2), and (24.3), we again obtain So in the form (24),
but with 8-functions arising only from the factors
(24.2), (24.3). Therefore, Ls is a linear combination
with numerical coefBcients of terms 8', each W being
a product of factors 8(x' —x"); we say that each term
8' is "correct, " meaning by this that to each factor
8(x' —x") in W there corresponds at least one exchange-
term factor S(x'—x") or S(x"—x') or D(x' —x") in I'.
Thus, Sg has been expressed in a form where every
8-function is accompanied by a corresponding ex-
change-term.

I et W& be any term in LI which contains a set of
factors forming a cycle, for example,

8(x1 x2) 8(x3 x2)8(x4 x3)8(x4 x1)~ (24 '4)

We may replace some of these factors by equivalent
expressions according to the identity

8(x,—x,)= 1—8(x;—xg). (24.5)

Then 8'j. is split into a sum of terms IV', one of which
contains the factors

8(xl—x2)8(x2—*3)8(x3—x4)8(x4—xl) (24.6)

and is identically zero, while the others all contain
fewer factors than does lV~. The terms 8" obtained in
this way are all correct. If some of them again contain
cycles of factors, these 8" can again be replaced by
sums of terms with a smaller number of factors. In
this way we shall finally arrive at an expression for Lp
as a linear combination of products 8', each 8' being
correct and cycle-free.

Given any cycle-free 8'2 which contains a chain of
factors beginning with the point x, for example,

8(x1—x)8(x1—x2) 8(x3—x2)8(x4—x3),

we can replace certain factors as before by Eq. (24.5) in
such a way that 8'2 is replaced by a sum of correct
cycle-free terms 8".One of the S" contains the chain
of factors

8(x—x1)8(x1—x2)8(x2—x3)8(x3—x4), (24.7)

while the others contain fewer factors than 8'2. Pro-
ceeding in this way, we arrive ultimately at an expres-
sion for Lp as a linear combination of products 8', each
5' being correct and cycle-free and also "ordered with
respect to x." By this last phrase we mean that every
chain of factors in IV beginning with x is of the special
form (24.7). A cycle-free W which is ordered with re-
spect to x has the following property. The points
x~, . , x„ fall into two classes, C~ and, C2, one of which
may be empty. There does not exist any factor 8(x'
—x") in W with x' and x" in different classes. For every
x; in C&, there exists one and only one chain of factors
in 8' of the form

8(x-x')8(*'-x") "8(x"'-x,), (24.8)

connecting the points x and x;.
Each IV may be expressed as a linear c( "ibination of

products

Z4 8(x——x1')—8(x1' x2')—. 8(.x', 1 x,'—)8(x',+1—x',~2) 8(x'. 1-x.'),
where q takes the values 0, 1, 2, , n, and x&', ~ ~ ~, x„'
are any permutation of the points x&, . , x„.When H~

is cycle-free and ordered with respect to x, then an
expansion of 5' into a sum of Z, can be made, using only
those Z~ for which the points x~', . , x,' make up the
class C~. It was proved earlier that Lp is a linear com-
bination of the 0 occurring in Kq. (22), that is to say,
a linear combination of Z, with q= n. Also, L~ is a sum
of 8', each 8' being a linear combination of Z, with q
equal to the number of points in the class C& corre-
sponding to lV. But the representation of L~ as a linear
combination of Z, is unique; if a linear combination of
the Z, is zero, then every coeKcient must be zero.
Therefore, the sum of the terms 5' in LI, for which the
number of points in C& is not n, is identically zero. We
need retain only the terms W for which the class C~
is empty.

Summarizing the results of the analysis so far, we
have expressed So in the form (24). Lp is a linear com-
bination of products 8", with numerical coeKcients.
Each W is a product of factors 8(x' —x") which is cor-
rect, and cycle-free and ordered with respect to x,
and connected. By connected we mean that a chain of
factors (24.8) exists in W for every point x,. This has
the important consequence that non-sero normal con-
stituents So of S are obtained only from connected graphs
G. We shall suppose henceforward that G is connected,
which implies b&~ n.

A "doubled Feynman graph, " Gz, is defined as the
graph G with a certain subset T of its internal lines
drawn double. The figure formed by the doubled lines
T must satisfy three conditions: (i) it is connected;
(ii) it is simply connected, without closed cycles;
(iii) at least one line of T is incident at every vertex
of G. These conditions imply that there are just n lines
in T.
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To each product 8' we associate a doubled graph Gy
in the following way. To each factor 8(x' —x") in W
there corresponds one or more exchange-term factors
in I' involving the two points x' and x". If there is
more than one such exchange-term, we choose one
arbitrarily and ignore the others. To each factor of 8'
corresponds then one factor in I', 3:nd hence one in-
internal line of G. The set T of lines so obtained satisfies
the three required conditions for a set of doubled lines.
We call T the "order-type" of 8', and Gy is the corre-
sponding doubled graph.

The order-type T implies a partial ordering of the
points x, xi, ~ ~ ., x„defined by the following two state-
ments: (i) x is later than x; for all i; (ii) x, is later than
x; if x, lies on a polygonal arc joining x; to x in T. Thus,
1' flea 8' uniquely. The partial ordering is a complete
ordermg only if T is a single continuous arc without
branches a%i with one end point at x.

Regrouping the terms of the sum (24), we have

Sg=Xg Qr Sg(T)S2(T), (25)

where the summation is over the order-types T corn-
patible with G. Each S~(T) is a product of n factors of
the form

8(x' —x")S(x'—x"), 8(x' —x")S(x"—x')
or 8(x' —x")D(x' —x"), (26)

one corresponding to each doubled line of Gz. Each
Sm(T) is a linear combination of products of (b —n)
factors of the form

S(x'—x"), D(x' —x") S'(x' —x")
or D'(x' —x"), (27)

one factor corresponding to each undoubled internal
line of Gz.

Equation (25) is the conclusion of this lengthy analy-
sis of SG by means of doubled graphs. The only purpose
of the analysis is to show that the 8-functions in Eq.
(20) can be so rearranged that they occur always in
conjunction with exchange-terms as in (26). For-
tunately, the subsequent arguments will be of such a
kind that we shall never need to carry out the re-
arrangement in practice. The final results will be very
simple and will not involve 8-functions explicitly; but
it seems to be essential, in order to justify the simple
rules of calculation which we shall later formulate, to
prove that the rearrangement of t!I-functions is possible
in principle.

For completeness, we must here observe that Eq,
(18) is not the most general kind of term in the expan-
sion of Eq. (11).In addition to Eq. (18), we shall need
to consider terms in which a multiple commutator C„
appears involving, say, r operators Hq and (n r)—
operators H, . When Eq. (7) is substituted into Eq.
(11), such commutators always appear in symmetrical
combinations; thus,

ZC.=Z[&a.(x-), [ ",[&~.(»), i.(x)j ]], (28)

where the summation is over the (",) ways of choosing
r suKxes 1 and (n—r) suffixes S. The points xq, ~, x„
are not permuted in the different terms of Eq. (28).
When we pass to the symmetrical form analogous to
Eq. (19), we must now write

E„(x)= (1/n!)P ~
I dx, dxQ„, (29)

S„=Q 8(x—xg) 8(x;—x„)[H,, ,(x„),

L
" [&~ (») i.(x)j" jj (3o)

Here, the summation in Eq. (29) is over the ("„) ways
in which we can associate with each of the points
x&, , x„either H& or P,. The summation in Eq. (30)
is over the (n!) permutations of x~, ~ ~ ., x„, the opera-
tors H& and H, being permuted simultaneously so that
each x; carries its own operator around with it. By
splitting up the double summation in this special way,
we have arranged that S„ is a sum of products of the
same factors in various orders. The different terms in
Eq. (29), on the other hand, involve products of dif-
ferent sets of factors and are represented by di6erent
sets of graphs G. Therefore, we make the analysis into
normal constituents for each S„separately. In all other
respects, the terms involving S„can be treated in pre-
cisely the same way as the terms in S.To avoid needless
complications, we dismiss the S„with these brief re-
marks and carry through the analysis only for S.

IV. MOMENTUM SPACE REPRESENTATIONS

We wish to calculate the coefficient multiplying a
particular normal product such as

+(4' (P&)4'P(P2) ' ' 'A(p*) ~~(p ) ~.(p~)) (31)

in the expansion of j„(p). Here p, pq, p2, , p~ are
given 4-vectors and n, P, , X, , v are given spinor
and vector sures. Let this coeKcient be M. Then M
is a sum of contributions 3E(S) from different integrals
of the general form

~00 pCO 00

I„(p)= (1/n!) ~ ~ ~ dxq ~ dx„dxe '" S, (32)'

with S given by Eq. (20).
We now take the decisive step which will have the

effect of simplifying the calculation of M(S). We con-
sider instead of M(S) the corresponding coeScient
3fr(S) in the expansion of the generalized operator

00 F00 ~00

I (I', P)=(1/n!) ~
i dxg . dx„dxS

Xexp[—ip x+r~ ~ (x—x,)+r2 (x—x,)

+ .+r„(x—x„)j. (33)
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Here, the F; are e 4-vectors with components

r, =(o, o, o, r,,) (34)

momentum-space

and the I';0 are any e complex numbers with positive
real parts. In Eq. (33) the integrals over xb, , x are
exponentially convergent. The integrals in Eq. (32) are
not convergent but either oscillate or diverge at in-
6nity. We shall see later" that there are good physical
reasons for defbning the value of Eq. (32) to be the
limit of Eq. (33) as all the F,b tend to zero in a certain
way. That is to say, we use the Abel summation method
to give a meaning to Eq. (32). We shall discuss only
very incompletely the physical meaning of Eq. (33)
for 6nite F;0, which will form the subject of a separate
paper. The I (F, p) are here used simply as mathe-
matical auxiliaries in the evaluation of I (p).

Let G be any Feynman graph with the correct ex-
ternal lines to give rise to normal constituents with the
operator factor (31).Then, 3IIr(S) is a sum of contribu-
tions Mr'(So) from all such G. Each Mr'(So) may be
further subdivided into contributions Mr(SG) arising
from a graph G with particular association of each
factor in Eq. (31) to one external line of G, so that each
external line is restricted to represent a particle carry-
ing a certain de6nite momentum p„. Finally, each
Mr!So) is a sum of contributions Mr(S, Gr)1, one from
each doubled graph Gp derived from G.

Let t; be the algebraic sum of the momenta carried

by the external lines of G at the vertex x;. Then
Mr(S, Gr) is apart from numerical factors an integral

Sz—— dk +b dkbC(k q), , kb)
J „
x II (k.„q„+inb)8(k.'+nb') II 8(k.&+a)

ann+0+1

X II exp[ik, (x,' —x,")]. (36)
a n+1

Here C(k~~, kb) is some numerical function which
takes only 2f distinct values, since it depends only on
the signs of the fourth components of k~~, -, k~. The
values of C(k +b, ~ . ~, kb) will depend on the precise
combinations of D', D, S', and S functions occurring in
S2. They are pure numbers depending only on the
shape of Gy and independent of all variables such as
p; and r;. The product

II(k"V.+inb)

is a symbolic notation for a product of dirac matrices
which, multiplied with a similar product arising from

S~, makes up a tensor with the correct vector and spinor
suflixes to serve as a coefficient for Eq. (31) in j„(p).

Next we introduce momentum representations for
the factors of S&. Let Xi be the doubled line of Gz joining
x; to a point x, or x which is later than xi in T. Let y;
be the point x; or x' in question, and let

ss yi Xi.

00 goo

Mr(S Gr)=
J

~ *-dxdxg . dx„S)S2

If x' and x" are any two vertices of G, let 8&(x', x")
denote 1 if either x'=x" or x' stands later than x" in

T, and zero otherwise. Then, by Eq. (37),

Xexp[—ip x—it) x) it„x„+rg (—x—x.g)

+. +I'. (x—x„)j, (35)

x—x;=P, 8r(x, , x;)z,.

This implies the identities

(3g)

where Sb is a product of n factors (26), and S, is a sum

of products of (k—n) factors (27). The "numerical
factors" which are omitted from Eq. (35) depend on G
but are independent of T. They are unimportant be-
cause we shall 6nally arrive at a much simpler formula
for the precise evaluation of Mr(So) including nu-

merical constants; we shall use Eq. (35) only in order
to determine the analytic behavior of Mr(S, Gr) as a
function of the I';b. Now, write f for (k—n), and let

~o, a=m+1, , b, be the undoubled internal lines of
Gz. The electron lines of G have arrows giving them a
delnite sense; it is convenient also to insert arbitrarily
an arrow in each photon line, so that every line has a
sense. Let the end points of X be x 'x ",with the arrow

pointing from x," towards x,'. Suppose that X~~,
X~, are electron lines and X~,+~, -. -, ) ~ are photon
lines. Then S2 can be written as an f fold integral -in

'4 In the next paper of this series. The idea of using a limiting
process of this kind is due to B. Ferretti, Nuovo Cimento 7, 79
and 375 (1950).

where

p, r; (x—x;)=p;~,"z,,
g; t; (x—x,)=P; n; z;,

Q, k, (x,' —,x,")=Q, q,"z;,
(39)

a;=Q 8,(x;, x,)r„n,=p 8,(x;, x,)t;,
gj=go[8r(xjy xa ) 8t(xjp xa )jka= Pa ejaka J

Always, the suf5xes i and j run from 1 to n, and a
runs from m+1 to b.

Now let

Sg'=exp[rb (x—xb)+ +I' (x—x„)jSb. (41)

By Eqs. (26) and (39), Sb' is a product of n factors, one
corresponding to each doubled line );. When X, is an
electron line with the arrow in the sense xiy;, the factor is

Sq;(z;) = exp(D,"z,)8(z,)S(z~). (42)

When Pi is an electron line with arrow in the sense

yix;, the factor is

Ss;*(z~)= exp(tI,"z,)8(z,)S(—z;).
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When X; is a photon line, the factor is

Dz;(z;) =exp(A; z,)8(z;)D(z,). (44)

JIfr(S, Gr) as an integral over the 4-vectors

Xy Spy 7 Zrtp kg) y kate

rr. , rt', d n.,
respectively.

Now it happens that the special functions So(z),
So*(z), Do, (z) have particularly simple representations
in momentum-space, when 6 is a vector of the form.

6'= (0, 0, 0, t1*'o)

according to Eq. (40), and 6;o has a positive real part.
For example, we shall prove that

Dz(z)= —(1/2or)4 ~ dke'o'/[(k+iA)'+X') (4.7)

Let I be the right-hand side of Eq. (47). The integrand
is nonsingular for real k, and so there is no ambiguity
in defining the integral to be along the real axis for all
four components of k. We may evaluate I by using
Cauchy's theorem in the complex ko plane, mhere ko is
the fourth component of k. The poles are then at the
two points

We denote the products of these three sets of factors
in Sj' by

(45)

The integrations over x and the s; are trivial, yielding
only a product of (n+I) h-functions,

h(P+Q t;)b(ki+qi+ui) . . h(k„+q„+u„). (52)

The 6rst factor in Eq. (52) is a constant multiplying
factor expressing over-all conservation of energy and
momentum. This factor will be replaced by a nonsingu-
lar function f(P t;) when the various Fourier com-
ponents j„(p) are superposed to form the physically
measurable quantity (2). We omit this factor together
with the other numerical factors in the discussion Of

Eq. (35). The remaining factors in Eq. (52) are just
sufhcient to express the momenta k~, . , k„as linear
combinations of the k +~, , ko according to Eq. (40).
The resulting formula for Mr(S, Gr) is

M' r(S, Gr) = )~ ~ dk„~, dkoC(k„~g, , ka)

X
( q; . —u,+—id~)„y„im—

ko = —ohio&(kg'+ko'+ko'+X') (48)

When so is negative, the integrand vanishes for large
ko in the upper half-plane. Since the poles (48) lie
below the real axis, the value of I is then zero. When
so is positive, I is given by the sum of the residues at
the two poles, namely,

I=exp( —Bozo)D(z).

This completes the proof of Eq. (47). In exactly the
same way we find

So(z) =[ i/(2z)—4) t d.ke'o */[(k+iih, )„y'„im), (49)—

xn
(q,+u; id„)„—y„im—

&&II . II [(k..~.
o ( g; .u—,+i—A )'+X' ~-~+&

+im)h(k, '+m')] g h(k, '+X'). (53)
a n+ 0+1

V. COMPLEX INTEGRAL REPRESENTATIONS

Consider the rational function

( g; u +$A;)o"ro+ om
C =C (k„~g, , ko) =gS. (.) = L

—i/(2~)')~ dke+*" */[(k+ i~)„~„+im). (50)

Using now Eqs. (39), (41), (45), (47), (49), and (50)
and omitting a numerical factor gives the momentum
representation of 5~' as

(q,+u, iD,)„y„—+im
err'

(g,+u; ih;)'+m—'

oo o0 1
S,'= I I dk, dk„g

(k;+ih~)„y„im . —

1 j.
xn rr, , n' . (k;+i', ;)„y„+im o (k,+id;)'+7'

( q; u,+—ih;)—'+V

~+g k „y„+im & 1
err n

~=~+~ k '+m' ~-~+g+& k '+PP
(54)

Xexp(ik,"z,). (51)

It remains only to substitute Eqs. (36) and (51) into
Eq. (35). Using Eqs. (38) and (39), we may express

The factors correspond, in an obvious way, to the factors
in Eq. (53). We now assert that this function, 4, de-
pends only on G and is essentially the same for all
doubled graphs, Gz, which are derived from G. To
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prove this we write Eq. (54) in the form,

(55)

where there is one factor, and one 4-vector, R„, corre-
sponding to each internal line, X„ofG whether doubled
or undoubled. The two products in Eq. (55) together
run over the values r=1 ~ ~ b in some order. The R„
consist of the vectors k„u= n+1, . . ., b, together with
I vectors ih( q;—u;—+id;), i= 1, , I He. re, q, is &1
according to whether the arrow in X; is in the direction
x;y; or y,x;. Let e„; be defined to be +1 if X„ is a line
incident at x; with the arrow pointing away from x;,—1 if.X, is incident at x; with the arrow towards x, ,
and zero if X„is not incident at x;. Then, in consequence
of the structure of Gp, we have the identity

Q p, ipj,ep(x;, x;)= b;i, (56)

which is only an alternative statement of Eq. (38).
By the definition of R„, with Eqs. (40) and (56),

Pr priRr Qa palka+Qj &jigj( qj'+j+&~j)
ti+i—ri, /=1, , N. (57)

Suppose now that LAO, so that by Eq. (60) n, /0.
Then the factors of D have two properties which are
essential to the discussion: (i) there exists a set of f
linearly independent factors, and (ii) it is impossible
for any set of (f+1) factors to vanish simultaneously
for any values of the variables. The proof of (ii) is
as follows. If there is a set of (f+1) factors vanish-
ing simultaneously, at least one of these factors, say,
Fj, is linearly dependent on a subset F2 F3 ''' F
of the others, where the F2, ~, F are themselves
linearly independent. We can choose a representa-
tion of the R„ in terms of basic vectors k„such that
F2, ~, F are of the form

(a ak.p), (61)

with (m —1) different values of a. Then Fi is of the form

&i= ~i~( q;o—&,o—+&~&o), (62)

where q;p, according to (40), is a linear combination with
real coeflicients of the k,p occurring in (61). The a, are
real, and therefore when all factors (61) vanish, q;p is
real. But u;0 is real, and 6,0 has a positive real part, and
so (62) and (61) cannot vanish simultaneously.

In consequence of properties (i) and (ii) of D, there
exists an expansion of 4 in partial fractions

Q p.g'.= ho+&I'—io, (58)

the f„being complex variables. The denominator of
(55) is

(59)

where

These n linear relations between the R„are equivalent
to the n relations (40) expressing the q; in terms of the
k,. But (57) is independent of T and depends only on
G. Therefore, for all T, the function (54) is identical with

(55), with the R„related by (57). The functions 4 for
different T differ only in that different sets of f of the
R„are chosen as the basic vectors k in terms of which
4 is expressed, the remaining R„being eliminated by
means of (57). Let J- be the number of T which are
compatible with G. Then these diGerent T correspond
precisely to the l. possible ways of choosing a set of f
of the R„which are linearly independent.

Let the 3b space-components of the R, be given any
arbitrary real values consistent with (57). We consider
(55) as an analytic function of the b time-components

f,=R,O, subject to the relations

Here the summation is over the (L2~) possible ways U
of choosing f linearly independent factors from D.
Each U involves a choice of f linearly independent
variables f„, g„, , f„ from the f„, forming the k 0

corresponding to a particular T, and a choice of f
independent signs &1. The coefficients g(U) are
uniquely determined and depend on the space com-
ponents of the R, but not on the |,. We omit the proof
that properties (i) and (ii) imply (63), since it involves
only elementary but rather tedious algebra.

We see from Eq. (63) that C is not at all a general
rational function of f complex variables, but has a
very simple structure. It has precisely 1.2f simple poles,
or points at which f linear factors in its denominator
vanish. To each term in Eq. (63) corresponds a pole
which we call the pole U. The function is completely
determined by Eq. (63), given the positions of the
poles and the constants g(U), which are the residues at
the poles.

In the above analysis, the fact that X/0 was used
only in order to ensure that the a„given by Eq. (60)
should not vanish. The discussion is still valid for
) =0, except when

R„g=R„2=R„3=0 (64)
a„=(R,io+R„P+R„p'+X') &,

for factors in the first and second product, respectively,
in Eq. (55). D is a product of 2b factors which are non-
homogeneous linear forms in the f complex variables
k,p, when C' is represented by Eq. (54).

for some value of r. We shall Anally integrate 4 over
the space components of the R„, and we do not need
even to define 4' at the isolated points where Eq. (64)
holds. However, the behavior of the coeKcients g(U)
in the neighborhood of such points must be gentle
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Mr(S, Gr) = dzR Qg C(U)g(U). (65)

Here the integration is over the space components of
the R„subject to Eq. (57). The summation is over the
2 poles U of C at which the 8-functions in Eq. (53) have
singularities, which are just the poles corresponding to
the given Gr. The coefficients C(U) are derived from the
2t values of the function C(k„+2, . . ., kb) and are
numbers independent of all the variables.

Finally, we sum Kq. (65) over the Gr derived from a
given G, and we And

Mr(Sg)=A)' dzR Qg C(U)g(U), (66)

where the summation is now over all the poles of 4,
the C(U) are as before pure numbers, and A is a multi-

plying factor which is independent of m, X, and the
I';; A incorporates the various factors which were
dropped in the preceding work. By Eq. (63), we may
write instead of Eq. (66),

Mr(Sg)=A' dzR df',C(R,), (67)

where fdzR is as before a real integral, while fd[, is
some contour integral in the space of the complex g„
variables. The form of this contour integral will be
determined in the following section.

"See Sec. V of reference (8).

enough to make the integrals well dehned. In fact, the
g(U) become infinite at most like

(R 12+R 22+R 22)
—

&

and so the integrals over the space-components are
easily convergent in the neighborhood of the singulari-
ties. This allows us to use Eq. (63) for X=O without
danger of inconsistency.

The introduction of the F, factors in Eq. (33) has
entirely eliminated, from the present analysis, the two
kinds of unessential but troublesome divergences which
arise in the study of the S-matrix, "namely, accidental
divergences due to vanishing energy denominators in
perturbation theory and infrared divergences. The
disappearance of these divergences is due directly to
the fact that more than f factors in the denominator of
4 can never vanish simultaneously, which in turn is a
consequence of the exponential convergence of Eq.
(33). In particular, if we take X=O and then make all
F,~, the integrals of g(U) over the space-components
of the E„become logarithmically divergent at the points
(64), and these are typical infrared divergences.

Returning to Eq. (53), carrying out the integrations
over the k 0, and remembering the properties of the
function C(k~2, , kb) stated after Eq. (36), we have

k'+k'+k '—k'+tv'=0 or k'+k'+k' —k '+X'=0.

That is to say, only fourier components occur for which

kp& Min(m, X). (70)

The internal lines of G not belonging to C will con-
tribute to Mr(Sg) factors of the form @(x'—x"), where
x' and x" both belong to the 6rst product or both to
the second product in Eq. (68). The external lines con-
tribute a factor

expL —ztz xz ~ zt„x„). —

Now the integral for Mr (Sg) is obtained by substituting
all these factors for 8 in Eq. (33). We may take as
independent variables xz, , x„gp+2, , $„x,where

$;=x,—x.

When the momentum representations of the factors
(69) are used, Mr(8g) becomes an integral over these
variables and over a set of momentum variables k

satisfying Eq. (70).Let the integration over x be carried
out first. The factors p(x' —x") are independent of x.

VI. DETERMINATION OF THE CONTOUR

Let m and X now be considered to be very large
numbers, greater than any combinations of the P, I',,
and t; which occur in the theory. In this case we make
an alternative analysis of j„(P) based on Eq. (12) in-
stead of on Eq. (11).Consider the contribution J,„to
j„(p) derived from the term (q, p) in the double sum on
the right of Eq. (12). Let J,~ be expanded as a sum of
normal products according to the rules of Sec. II.

The coefficient of Eq. (31) in the expansion of J,„ is
as before a sum of contributions M(S) from different
integrals of the form (32) with zz=q+p, where 8 is
now an expression like

8=P(Hz(xz), , Hz(x, ))P(Hz(x, +2),
, Hz(x. ), j„(x)) (68)

instead of Eq. (20). We consider instead of M(8) the
corresponding coefficient Mr(8) in the expansion of
Eq (33).. But now, since there are no 8-functions in
Kq. (68), the I';p must all have real part zero in order
that Eq. (33) should not diverge exponentially.

Let Mr(8g) as before be a contribution to Mr(S)
arising from a connected graph G. Suppose first that
q)0. In this case, G will contain at least one internal
line x'x", where x' belongs to the P-product and x" to
the P-product in Eq. (68). Let C be the set of all in-

ternal lines of G with this property. To each line of C
will correspond in Mr(Sg) a factor

Sb(x' —x"), S-(x"—x'), or D+(x' x"), (69)—
according to Eqs. (14), (15), (16). In the momentum
representations these factors contain only foxier com-
ponents of the form expLik. (x' —x")) with kp) 0 and
either
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The factors depending explicitly on x are

It is assumed that ns and X are large enough to satisfy
(72). Therefore, the Mr(8o) derived from Eq. (68)
vanish identically whenever q&0 for every connected G.

It was proved in Sec. III that the normal constituents
of j„(p) arising from disconnected G are zero. There-
fore, when m and X satisfy (72), the normal constituents
of j„(P) can be calculated as follows. We use for j„(x)
instead of Eq. (12) the expression

i)" 1
j„r(x)= Q I

——
I

—
I dx, dx„

hc) n1" „
XP(IP(x&), , IP(x„)j„(x)), (73)

and include contributions only from connected graphs.
The operator j„r(x) has been encountered before. It

is the current operator in the "mixed representation"
of reference (A), where initial states are specified at a
remote time in the past, and hnal states at a remote
time in the future. The equivalence of j„(x) and j„(x)
for large m and X is a consequence of the fact that there
is not sufhcient energy available in a measurement of

j„(p) for the real production of particles of large rest-
mass.

For our present purposes, the physical interpretation
of j„r(x) is unimportant. The important fact is that
j„r(x) has the same structure as the S-matrix, involving
chronological products only. %'e are able to apply to it
the rules given in reference (8) for the calculation of
the S-matrix, with only minor alterations. These rules
lead to an alternative expression for the integral on
the right of Eq. (67), namely,

Qo F00

ilier(So) =A'~~
~

dk„+, dk,4. (74)

Here the integrals are along the real axis for all the 4f
components of the vectors k, and C is given by Kq.
(54), with the convention that the poles are moved an
in6nitesimal distance away from the real axis by re-
placing each mi and XP by ( mipP ) and (XP ip), p bei—ng
a small positive number and the integrals being calcu-
lated in the limit c—&+0. This convention regarding the
poles of C is due to Feynman, ' and is the convention
which is always correct for momentum representations
of operators like (73) involving only chronological
products.

When (71) is integrated over x, the result is a 4-dimen-
sional b-function of the vector multiplying x; but the
fourth component of this vector is never zero, provided
that

»n(m, ~)&
I ppl+Zi" It'pl+2&" IP pl (72)

It is possible now to transform the path of integra-
tion in Eq. (74) for each of the fourth components k, p

from the real axis to the imaginary axis, just as was
done in Sec. V of reference (8). Provided that (72) is
satis6ed, no singularities will be encountered in trans-
forming the path of integration through the first and
third quadrants of the k,p planes. There are no "dis-
placed poles, " because we assume the masses so large
that Eq. (51) of reference (8) can never hold. There-
fore, Eq. (67) holds, with the path of the integral
J'df„defined as follows. Choosing any set off variables
p„which are linearly independent, we integrate over
each of these variables up the imaginary axis from

( i p—o) to (+i~) Th. e p-limiting process is no longer
needed, because the path of integration is now sepa-
rated from the poles.

Equation (67), with this special choice of contour, is
valid under the two conditions: ns and A, are sufhciently
large, and each I ~ has real part zero.

Fsp =Ps"N~ (77)

where the y; are positive real numbers, and write

"J. E. Littlemood, Theory of Fgectiopfs (Oxford University
Press, 1944), theorem 105, p. 109, and corollary, p. 130.

VII. THE ANALYTIC CONTINUATION METHOD

We have found two alternative expressions for
Mr(so). One is the expression E& on the right of Eq
(66). The other is the expression Ep on the right of
Eq. (67), with the contour as defined in the preceding
section. The regions within which these two expres-
sions have been shown to be valid do not overlap. E~
is valid in the region

Re(P'p) &0, (75)

for all values of m and A, including X=O. E2 is valid in
the region

Re(I', p) =0, (76)

with m and X restricted by (72).
It is clear, from the definition of g(U) by Eq. (63),

that E& is an analytic function of the F;p throughout
the region (75), for any given values of m and XWO.

Provided that the path of integration in E2 is separated
from the poles of C, E2 is also an analytic function;
therefore, E2 is analytic for all complex values of the
P;p satisfying (72); that is to say, E& is an analytic
function of the I';p in a region including in its interior
points satisfying (76). We use now a lemma from the
theory of analytic functions.

Let fp(w) be a function of the complex variable w,
analytic in a circle C. Let D be a diameter of C bounding
the semicircle Ci. Let fi(w) be a function analytic iri C&,

such that fi(w)~f, (wp) when a point w in Ci tends to a
point wp on D. Then f& and fi are identical

The proof of this lemma will not be given here. It
follows easily from the Schwartz re6ection principle. "
To apply the lemma to our functions E~ and E2, take
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Ei=fi(w), E2=f2(u). Then Ci is a part of the region

(75), and D a part of the region (76). The lemma states
that Ei=Eu for all F o given by Eq. (77) with Re(ro) &0;
but, since both Ej and E& are analytic functions of the
p, ;, Ei=E2 also for complex p;. The conclusion of the
argument is that Ej and E2 are alternative representa-
tions of the same analytic function E, valid in diGerent
but overlapping domains.

Up to this point we have considered only the analy-
ticity of E as a function of the F;p, but Ei is also an
analytic function of m and 'A in the region

Re(F;0)&0, m&0, X&0, (78)

that is to say, for real values of m and ) and for complex
values in the immediate neighborhood of the positive
real axis, and E2 is an analytic function of X and m in
the same sense, for all X and m satisfying (72). There-
fore, E is a unique analytic function of the variables
(w, X, F;p) in the combined domain of all points satis-
fying either (78) or (72).

The procedure to be used for practical calculations
is the following. Suppose that we wish to calculate a
particular M(So), the contribution from a given G to
the coefficient of Eq. (31) in the normal product ex-
pansion of Eq. (32), with the physically occurring value
of m and X=O. %e start by writing down the expres-
sion E2 for Mr(So) according to Eq. (67), with X&0.
Assuming (72) to hold, the integrals in Ei can very
conveniently be evaluated analytically by means of
the well-established techniques of Feynman. ' The re-
sult of evaluating the integrals is the analytic function
E. We continue this function through the region (78),
keeping Re(F,O)&0, and decreasing et and X until m

reaches its actual value and ) reaches a very small
Xp less than any of the energies which are characteristic
of the particular physical situation. Then we make all
I;p tend to zero, in a way which will be specified pre-
cisely in the next paper of this series. Finally, we may
make Xp—4 if we desire to reintroduce infrared di-
vergences into our calculations, or we may leave )p
standing as a convenient cutoG parameter for these
divergences.

In this paper, nothing has been said about the
physically interesting ultraviolet divergences, the di-
vergences at large momenta of the integrals (67).
These are the divergences which are removed by mass
and charge renormalization, as will be described in the
following paper. Here we remark only that these
divergent terms will be separated in a consistent way
from the integrals E2 before the integrals are evaluated
analytically. The function E is therefore finite, and the
ultraviolet divergences do not interfere with the process
of analytic continuation.

The integrals E2, when all j. ;p are zero, are formally
identical with the integrals occuring in the calculation
of the S-matrix. If we maintain F;p=o and try to con-

tinue the function E2 from large values of m and )
down to the values in which we are interested, we shall
encounter values of m and X at which E2 is not analytic.
These are the places where the S-matrix is nonanalytic
because of the appearance of a threshold for some real
process which is competing with the process urider
analysis. When we arrive at the actual values of m and
X, the integrals E2 representing elements of the S-
matrix diGer from the values of E which we find by
analytic continuation through the region (78), because
of the eGects of the competing processes. In practice,
E will have a simpler analytic form than does E2, this
is the justification for the remarks made at the end of
Sec. I.

VIII. SUMMARY OF RULES FOR THE CALCULATION
OF HEISENBERG OPERATORS

A Heisenberg operator such as j„(p) is expressed

formally in terms of interaction representation operators
by means of Eq. (11).By the theorem of Wick stated
in Sec. II, j„(P) may be expanded into a sum of normal
products (31) multiplied by C-number coeflicients M
According to Sec. IV, each M is a sum of contributions
M(So) corresponding to different terms S of the form
(20) and to different connected graphs G. We calculate
M(So) as the limit when all F'0—4 of the generalized
coefficient Mr(So) defined in Sec. IV.

To calculate Mr(So), we consider m and X to be large,
satisfying (72). The operator j„r(P) is defined by Eq.
(73). This operator having the analytic form of an
S-matrix, we may calculate its decomposition into
normal products by following the rules of the S-matrix
analysis in (B). Let M'(So) be the coefficient of Eq.
(31) in the normal product expansion of j„(P),arising
from the term S and the graph G. Then M'(S )ios an
integral in momentum-space of the form (67), with C

given by Eq. (54) with all 6,=0. From M'(So) we ob-
tain Mr(So) simply by inserting the parameters 5,
given by Eq. (40) into 4 as given by Eq. (54). The path
of integration in Eq. (67) is defined in Sec. VI.

We evaluate the integrals (67) analytically, using the
methods of Feynman, obtaining for Mr(So) an ex-
pression which is an analytic function of the variables
F,'0 ts and X in the region where either (72) or (78) is
satisfied. By analytic continuation through the region
(78), as described in Sec. VII, we derive Mr(So) for
the values of m and 3 which are of physical interest.
Hence, passing to the limit I',p

—A, and, if necessary,
also letting )—4, we finally obtain the coefficients
M(So) in the normal product expansion of j„(P).

It should be observed that there is nothing in the
methods of the present paper which is specific to
quantum electrodynamics. Precisely the same rules
can be used for the calculation of Heisenberg operators
in any theory in which two or more quantized fields of
any kind are in interaction.


