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A Note on Dirac Central Field Wave Functions*

M. E. RosE
Oak Ridge XationaI, Laboratory, Oak Ridge, Tennessee

(Received November 16, 1950)

A systematic treatment is developed for the discussion of the solution of the Dirac wave equation for a
central field for the purposes of theories involving the finite size of the nucleus.

L INTRODUCTION

HERE are a number of problems for which the
eGect of the 6nite size of the nucleus is of interest. '

In an attempt to systematize the treatment of some of
these problems certain procedures for the calculation
of wave functions have been developed which the
author has found to be particularly useful. In view of
the possible application of these procedures to other
problems, it is felt to be worth while to present the
following discussion.

formal integration of (1) gives
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where C; are integration constants. For ~(0, and
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= k, we have C&
——0 for the regular solution and

we write (4) in the form
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N1 &1+2' N2 N2 +2N1)(o) (4c)
In the representation' in which j2 and j, are diagonal,

the "small" and "large" radial functions, u&/r and &/ur,

respectively, are given in terms of the solutions of the
differential equations,

du;/dr= u;,u, ; i, j='l, 2,

sum over repeated indices implied, and

u2 ——Q (cu2a) g) "u2&'&,

0
(5)

and u~ is obtained from the first of (4c) or from (1).
For any function f(r),

where u2&0& =Cmr~, and (4) defines the integral operators
cu;. The solution of (4c), obtained by iteration, is

«/r —(W —1—V)
~ij

W+1—V —«/r
(2)

where

~~~~f(r) =»' 3'"~»(y)i (», y)fb)dy,
Qp

(Sa)

In Eq. (2), W and V are the total energy and scalar
potential, respectively, and i(», y) = x "n2g(x)dx (Sb)

~= &(j+-',) for j= l&2

is a nonvanishing integer. Throughout, we use

k=m=c=1.

(A) Quadrature Solution

For an investigation of the eGect of the Gnite size of
the nucleus, it is necessary to obtain wave functions in
the smeared-out nuclear charge distribution. %hile
these are easily obtained for all of the simple models
customarily used, there are certain advantages to be
derived from the following more general procedure. A

* This paper is based on work performed for the AEC at the
Oak Ridge National Laboratory.

' Forbidden (zero-zero) transitions, S. D. Drell, Phys. Rev. 81,
656A (1951);Isotope shift, G. Breit, Phys. Rev. 42, 348 (1932};
Hyperfine structure, A. Bohr and V. F. Weisskopf, Phys. Rev.
7f, 94 (1950); Electron scattering, M. E. Rose, Phys. Rev.
73, 279 (1948); L. Acheson, Ph.D. dissertation (M.I.T.); L.
R. B. Klton, Phys. Rev. 79, 412 (1950); KA'ect in P-decay, M.
E. Rose and D. K. Holmes (in preparation).' M. E. Rose, Phys. Rev. 51, 484 (1937}.

is a given function once V is specified.
For «) 0 we replace ra2coz by ruqco2, which (with ~= k)

is equivalent to interchanging' a» and a».
The solution (5) and the corresponding one for ~)0

may be applied only in those cases for which the inte-
grals exist. In the form given, (S) is an expansion
around the origin and we must make the restriction
limrV=O as r~. However, for a finite size nucleus
this condition will always be fulfilled. The fact that (5)
does constitute an expansion around the origin is evident
if we use

f(r)dr =0(rf(r)),
0

' This is an example of the general result that changing the sign
of a is equivalent to changing the sign of W and V and inter-
changing N1 and u2, as can be verified directly from (1). If we
denote these operations by the operators Q„, O~, Qv, and O»,
respectively, acting on the 2-spinor (NI, N2), then

O„Qg QVO12= 1,
since for each operator O2=1, Q=Q ', and all of these operators
commute.
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where 0 means "of order of," which will always be
valid for the quadratures appearing in (5). It is now
clear that the ratio of the (u+1)st to the uth term is
O(r'). The convergence domain of (5) is easily estab-
lished. For example, if V is bounded, (5) converges as
well as in the case V= const, and in this latter case (5)
gives the power series for r times the spherical bessel
functions, which are the well-known solutions in this
case.

Where the solutions are obtainable in the form of a
power series in r, (5) will generate the same series but
with a reordering of the terms so that each term is a
polynomial with the sum of the first m terms of (5)
containing at least the sum of the first ns terms of the
power series. A particularly useful feature of the series
(5) is the fact that an upper limit on the error incurred
in terminating the series can be obtained in almost all
cases. Usually t/' will be negative-definite, and this will
almost certainly be the case over the region where (5)
would be used. In that case, for the electron continuum,
(W) 1), nim and a2i are negative-definite and positive-
definite, respectively. The series (5) is therefore alter-
nating and, over a large domain, the absolute value of
the term is monotonic decreasing so that the error is
less than the first term neglected. For bound states
there will always be a turning point (a»=0), but n»&0
for smaller values of r. In any practical case the turning
point will be beyond the nuclear radius and usually far
beyond it, so that the alternating character of the series
(5) is retained for bound states also.

The general form of the solution (5) permits a simple
examination of the effect of a coulomb field deviation
on the small distance behavior of the wave functions.
For the leading terms we have (ii&0)

N2 ——C2r',

nuclear size in P-decay exhibit this effect rather strik-
ingly. ' From (6) it is clear that the short-range coulomb
field deviation is important only for low angular
momenta, as expected. This follows, since, for large
j,~b(1—x) and the details of the field V at small r
become unimportant.

(B) Normalization

For the continuum, the normalization constants C;
in (5) can be determined only if (5) can be joined to
the asymptotic solutions. In the case of the finite
nucleus, where V is a coulomb field for r)E (the
nuclear radius), the joining is very simple. Actually, all
that is needed in this case is the ratio p= ui/u2 at r= E,
and then the constants C; drop out. For bound states,
the joining condition at r=E fixes the eigenvalue 8',
and the normalized solutions are determined as follows.
Consider two stationary-state time-dependent wave
functions 0'; and 0 I, corresponding to energies 8;- and
8'&, respectively. Then

div (4;*e4i )+8(4;*4,)/Bt =0,

where e is the usual Dirac matrix vector. Carrying out
the time diBerentiation and inserting the time inde-
pendent wave functions f; and pl„we then integrate
over a closed volume and obtain

P,*a Pi,dS=i(Wi W, ))—~f; Pgdr,

where n„ is component of e along the outward normal,
and dS is an area element of the bounding surface.
Now let W', = TVI,+&V so that

(9)

um= — Vw(x)dx.
2j+2 o

(6b)

Therefore, of the four radial functions for given j, two,
namely, ui(~ &0) and u2(N:) 0) are sensitive at small r to
coulomb field deviations. For the other pair, the indicial,
behavior is chief determined by the angular momentum
and not by the fiel V. Calculations of the eGect of finite

Since
~

V~ &&W, usually, we write ui in the form

C2ri+4
u, =g,r i'

I
Vr""dr'= -~ Vw(x) dx) (6a)

~o 2j+2~o

where we have introduced x=r'/r and the normalized
weight factor w(x) = (2j+2)x"+', (0~&x&~1). Similarly,
for ~&0,

NI ——Cir~,

On specializing to the representation used above and
applying (9) to a spherical shell of radii ri and r2, we get

au, au, — ~

ui —u2 = (ui +u2 )dr,
88' 88' rj

which can be obtained directly from (1). If we consider
a solution regular at the origin (but not necessarily so
at ce) and take ri ——0, r~=r, we obtain

r

u228pr/BW= — I (ui2+u22)dr,
Jo

where p=ui/us and the subscript I.indicates regularity
at the left end of the interval (0, ~). The left side of
(11) is evaluated at r, and on the right side, I. solutions
are to be understood. Next, consider a solution regular
at ~ (but not necessarily so at r=0) and take ri r, ——
r2 ——~. Then,

u2'Bpa/BW= )t (ui'+u2')dr,
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and again R implies regularity at ~, the left side of
(12) is evaluated at r, and on the right side, E solutions
are to be understood. If lV is set equal to an eigenvalue

W„, ui and u2 (with phases suitably chosen) are con-
tinuous at r (but Bpr/BWWBps/BW), and for the
normalized solution, we obtain

u2'(r) =
I [(Ops/BW) (—8pL/BW) fr, w „I ', (—13a)

u, =v, 1—
J 6,(r')u, (r')P(r')dr

p v'

—6;){ v, (r')u, (r')P(r')dr'
0

= v, — I G;,(r, r')u, (r')P(r')dr'
0

(14)

ui2(r) =p'uP(r). (13b)

By means of (5) and (4c) one can evaluate pr, . If an
analytic solution is known for points beyond r (a
coulomb field solution, for example) giving pR, the result
(13) provides a relatively simple procedure for normal-
ization and avoids the use of indefinite integrals, which
often cannot be evaluated analytically. This result is
also rather convenient in a simpler 6eld V (such as a
coulomb 6eld). In this case, if a solution regular at the
origin is known for all W, the normalization integral is
given by (11), with r= m in terms of the asymptotic
behavior at ~, and, if a solution properly behaved at
~ can be represented in analytical form for all W, the
result (12) with r=0 gives the normalization in terms
of the behavior of the solutions around the origin. '

(C) Phase Shifts

We again consider the situation in which V= Vo(r)
(a coulomb 6eld, say) for r) R and V= Vi(r) for r(R.
Then, of course, the wave functions for r)R are com-

pletely determined in terms of the phase shifts for each
partial wave (labeled by «). The regular and irregular
solutions of (1) for V= Vo are denoted by v; and v, ,
respectively. Then the integral equation obtained by
use of the Green function for (1) is, with P(r) = V—Vo,

subject to the normalization condition

&1V2 V2V1=—i. (13)

In (14), the Green function (matrix) is

G;,(r, r') = v, (r)v;(r'), r') r
= v;(r) v;(r'), r) r'.

The properly normalized solutions e; and v; have the
asymptotic behavior

vi—+[(W—1)/p]& sin(, vi~[(W —1)/p]& cost,
v2~ [p/(W —1)]~cosy, v,~[p/(W —1)]&sing,

(1/)

where p= (W' —1)& is the electron momentum and P is
the total phase. ' For e;, the asymptotic behavior is
taken to be

ui~[(W —1)/p]&(sing+ tan8 cosg),
u2~ —[p/(W —1)]&(cosg—tanb sin/).

It follows from (14), (17), and (18) that'

tanb= —t v, (r')u, (r')P(r')dr'.
~o

(18)

In this form the phase shift, 6, is not stationary with
respect to variations bg, . To obtain the phase shift from
a variation principle, we proceed in complete analogy
with Schwinger s derivation of the corresponding non-
relativistic phase shift. The 6nal result for the relativ-
istic generalization of Schwinger's variation principle is

QQ poQ QQ

drP(r)u, (r)u, (r)+ dr dr'P(r)u;(r)G, ,(r, r')u, (r')P(r')
Jo "o "o—cotb=

QQ -2

drP(r)u;(r)v, (r)
~Jo

(20)

10 —iy

I i 0&

A more convenient form of variation principle is
obtained by putting (1) in hamiltonian form. Then,
with the normalization (18) and the regularity condition
u;(0) =0, we 6nd that

' Defined for coulomb fields in reference 2.
6 A similar result has been obtained by G. Parzen, Phys. Rev.

80, 261 (1950).
~ J. M. Blatt and J. D. Jackson, Phys. Rev. ?6, 18 (1949).

The difference between our result (20) and their result (2.11)
arises from the different definitions of the Green function.

T. Kato, Phys. Rev. 80, 475 (1950).

More specific results can be obtained in analogy with
the treatment of corresponding nonrelativistic prob-
lems. '

F[u]= tanb —
)~ u,y,,[(du, /dr) a, «u«]dr (2—1)

is stationary for the correct wave function. In (21)

'A corresponding result for the nonrelativistic case has been
given by %. Furry, Phys. Rev. ?1, 360 (1937).


