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Since the energy loss of a slow heavy particle is due predominantly to recoiling atoms, ionization by
secondary heavy particles contributes a large fraction of the total ionization resulting from a slow heavy
particle that is stopped in a gas. If the secondary heavy particle ionization efficiency is low, the over-all
efficiency for the production of ion pairs is greatly reduced for low energies of the primary particle. The
secondary heavy particle ionization efficiency satisfies an integro-differential equation in which the ratio of
electronic to atomic stopping cross sections plays a critical role. Data by Madsen on the ionization by recoiling
particles in alpha-decay are used to set limits on the ionization by slow argon particles in argon, from which
it is possible to make crude estimates of the energy of fission fragments which fails to give rise to ionization
at the usual rate. In argon, ionization defects of the order of several Mev are to be expected.

I. INTRODUCTION

PARTICLE in its passage through a gas produces

direct excitation and ionization of the atoms of
the gas and also gives rise to recoil atoms. A fast heavy
particle (2>>vo=e¢*/%) loses energy primarily to elec-
trons. Ton pairs are produced at a rate per unit energy
loss (—dI/dE) which is very close to that for alpha-
particles, for the energy loss per ion pair w is largely
independent of mass, charge, and velocity of fast par-
ticles of fixed charge and the process of capture and loss
of electrons contributes relatively little to the energy
loss and ionization processes when the average particle
charge is large. For high velocities, w tends to approach
a value w® which depends on the nature of the gas and
is practically independent of the nature of the particle.
When the velocity of the particle falls below a velocity
of the order of v, energy loss to recoiling atoms pre-
dominates because of the neutralization of the particle
through the capture of electrons. Ionization then
proceeds through the quasi-adiabatic interpenetration
of the electron clouds of the particle and the gas atoms
and by means of secondary ionization arising from the
recoil atoms. If the secondary ionization efficiency is
low, the over-all efficiency for the production of ion
pairs is greatly reduced for low energies of the primary
particle. A heavy particle of velocity 7o has an energy
of the order of millions of electron volts (a proton of
this velocity has an energy of 25 kev). Hence, the
energy which fails to give rise to ionization at the high
velocity rate 1/w® can be rather large unless the
secondary ionization is highly efficient, as might be
expected for light gases, or there is a marked increase
in the efficiency of primary ionization, which seems
unlikely for ordinary gases.

II. IONIZATION EFFICIENCY

We write for the energy loss of the particle per unit
length of path

—dE/dx=N[b*+b"], 1)

where N is the number of atoms per unit volume of the
gas, and b° and ¥’ are the energy stopping cross sections

per atom for the loss of energy to electrons (inelastic
collisions) and to recoiling atoms (elastic collisions),
respectively, such a distinction being possible to a high
degree of approximation. Similarly, for the ionization
per unit length of path

EyM
—dl/dx=N[a°+ f dE'¢(E, E’)I’(E’)], (2)
0

where ¢¢ is the cross section for the production of ion
pairs (including ionization produced by ejected elec-
trons) in the collision of the particle with a gas atom,
and ¢(E, E') is the cross section per unit energy range
for the production of a recoil atom of energy E’ in such
a collision. The quantity I(E) is the total ionization,
primary and secondary, resulting from the stopping in
the gas of the particle of energy E; and I’(E’) is the
total ionization resulting from the stopping of a gas
particle of energy E’ in the same gas.! All secondary
ionization is associated with that part of the path of the
primary particle from which the secondary particles,
whether electrons or atoms, producing the ionization
originate, although some of the ion pairs may be widely
removed therefrom because of the motion of the sec-
ondary particles. The maximum energy transferred in
elastic collisions is

Ex' =4AMM'E/(M+ M"Y, 3)

where M and M’ are the masses of the particle and gas
atom, respectively. On combining the above relations,
we obtain

dl/dE= [ae+ f " B, E’)I’(E’)] / [b+5] @)

for the ionization, arising from both primary and
secondary processes, per unit energy loss of the primary
particle.*

! In this discussion all the gas atoms are to be assumed identical.

* Note added in proof. A treatment based on the statistics of
ionization gives integral equations for 7 and I’ from which Eq. (4)
follows at high energies. The expressions derived from the statis-
tical treatment have minor differences with those obtained from
the simpler arguments of this paper.
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The ionization efficiency is conveniently defined as
n=w°I/E. At very low energies all collisions are prac-
tically adiabatic and the ionization efficiency is zero.
It is seen from the definition of the constant w® that the
ionization efficiency approaches unity at high energies.

We introduce the two functions of the energy

p=wc?/(b+b), and A=b/(b+b), (5

the second of which is less than unity by definition. It
follows from Eq. (4) that the ionization efficiency satis-
fies the equation

EMm’
d(En)/dE=p+) f dERE, EY(E), (6)

to which is added the boundary condition 5(0)=0. The
kernel is

k(E, E')=o(E, E)E' / [ f

and #'=w°I’/E’ is the ionization efficiency of a gas
particle of energy E' in its own gas.?

The ionization efficiency %’ of a gas particle satisfies
the integro-differential equation

Ey’

dE'o(E, E’)E’]; )

EI
d(E,nl)/dE/=M/+k,f dEllkl(El’ E”)T]I(E”),
0
77,(0)=0) (8)

obtained from Eq. (6) by regarding the initial particle
as identical in nature with the recoil atom. The quan-
tities u’ and '\’ are functions of the energy E’ of the gas
particle and are defined in a manner corresponding to
the definitions of & and A given above. Likewise, the
kernel % (E’, E") for a gas particle is defined in a
manner similar to that given for the kernel for the
primary particle.

It is thus seen that the problem of the determination
of the ionization efficiency of a heavy particle requires
the solution of Eq. (8) for the ionization efficiency of a
gas particle. Once this solution is obtained, the ionization
efficiency of the primary particle is obtained from Eq.
(6) by simple integration.

III. IONIZATION DEFECT

The quantity A= E—w¢I, which we term the ioniza-
tion defect, is of particular interest, since it is a measure
of the degree to which the total ionization, when con-
verted to energy units by the use of the factor w®, fails
to give a true measure of the particle energy. An ioniza-
tion efficiency less than unity corresponds to a positive
defect; if n>1, the defect is negative.

If we write A= Ex with x=1—19, Eq. (6) becomes

EMm
d(Ex)/dE=(1— u—N)+) f JERE, EYYX/(E), 9)
with x(0)=1; x'=1—19'.

2 Any difference in w* for the primary particle and for the recoil
atoms is neglected.
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The quantity A is nearly unity for the low velocities
at which energy loss to recoiling atoms predominates,
and approaches zero for very high velocities. The
quantity 1—p—A=(b*—w’%?*)/(b*+?b") is zero every-
where if the rate of energy loss to electrons and the rate
of primary ionization (including ionization by ejected
electrons) are strictly proportional with the propor-
tionality constant w®. In any case, 1—u—A\ is small for
velocities at which energy loss to recoiling atoms is
highly predominant, and approaches zero rapidly for
high velocities. In the intermediate range it may con-
ceivably have values positive or negative which are
appreciably different from zero. In the discussion that
follows, 1—u—N\ in Eq. (9) is assumed to be negligible
and is set equal to zero for all energies.
Under these conditions the ionization defect is simply

E En’'
A= f dE f AE'KE, E)(E).  (10)
0 0

If 1—u'—N, which refers to the gas particles, is also
set equal to zero, the quantity x’ is determined by

E’
d(E’x')/dE,=k,f dE”kI(E,, E”)X,(E”),
0

xX0)=1. (11)

It is then readily seen that both A and A’=E’x’ are not
negative, monotonically increasing, bounded functions
of E and E/, respectively, provided A and A’ go to zero
sufficiently rapidly for high energies. Moreover, if \
is a monotonically decreasing function of E’, and if
dk'(E', E")/dE'<0, x' is a positive, monotonically
decreasing function of E'. Also under similar conditions,
x is a positive monotonically decreasing function of E.

IV. THE KERNEL k(E, E') AND THE STOPPING
CROSS SECTION b’

An elastic collision can be described with considerable
accuracy as the direct action of the screened nuclear
coulomb field of the particle on the screened nuclear
charge of the atom. The process is conveniently dis-
cussed with the aid of Bohr’s screening parameter?
¢=b/a, in which b is the collision diameter

L(M+M")/M')(ZZ ¢/ E),

and @ is the screening length aoZ—% In terms of
Es=2727'é%/a, the screening parameter is simply

§=M+M)Es/M'E=E,/E, (12)

where Ey=(M+M')Es/M’. In these expressions Z and
Z' are the atomic numbers of the particle and gas atom,
respectively, Z=(Zi4+2'1)}, and ao= #%/me?.

For ¢>>1, which is the condition of almost complete
shielding, the collision cross section is essentially the

3 N. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
18, nr. 8 (1948).
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kinetic theory area =d? with d=aoZ;}, where Z;
=(Z¥4+2'%)3; the mean energy transferred in a collision
is Ex’/2. For { >~1, which Bohr describes as a con-
dition of excessive screening, the principal scattering
is at a separation distance of about the screening length
a; the cross section is estimated by Bohr to be of the
order of 7a%/2.72, and the scattering is still approxi-
mately uniform in the center-of-gravity system. For
smaller values of ¢, coulomb scattering takes place
with a limitation of the minimum energy transferred
due to the effect of shielding on distant collisions
(minor screening).

Correspondingly, the order of magnitude of the dif-
ferential scattering coefficient is given by

Wdz/EM/,
o(E, E')~< wa*(M+M’')Es/M'EE,/,
ra*M Es*/M'EE",

(13)

for the three conditions of complete, excessive, and
minor screening, respectively, except that for minor
screening, scattering with recoil energies less than
MEg/M'E is negligible. For E<E,, the scattering
coefficient is practically independent of E’ in the entire
range 0 to E,’. However, for E, <E, it is practically
zero from 0 to MEg*/M'E and proportional to 1/E"
from the latter value to Ej/. It might seem reasonable
to compensate somewhat for the discontinuous be-
havior at E=E, in these estimates by requiring that
the collision cross section, which is the integral of the
scattering coefficient over E’, be continuous. This re-
quirement could be satisfied by multiplying the value
in (13) for excessive screening, which is the most
uncertain of the three expressions, by the number .
However, it is more satisfactory in the present dis-
cussion to require that the stopping cross section 4 be
continuous. For this purpose the appropriate factor is
log2=0.69.

Since the kernel 2(E, E') is independent of factors of
proportionality, only the dependence of ¢(E, E’) on E’
is important in its determination. Thus, in the approxi-
mation here described,

2E'/Ey"?, O0<E'<Ey, 0<E<E,,

0, 0<ELE,’
k(E,E)~ (14)

E2<E)

—— E,)<EXZLE)

2E' log(2E/E,)
where

E,)=MEg/M'E=MM'E2/(M+M'E (15)

is the effective value of the minimum energy transferred
in an elastic collision in a screened coulomb field.

The stopping cross section, as calculated from Eq.
(13) with the additional factor log2 for the intermediate
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condition, is

3md*E, 0<E<E,,
ima’E,log2, E,<E<E,,
3ma*(Es*/E) log(2E/ Ey),

4M M’
(MM

v

(16)
E2SE)

in which E;= (a/d)*E: log2 has been so chosen to make
the first two approximate expressions pass continuously
from one to the other. For an argon particle in argon
E;=113 ev, and the corresponding velocity is v,/95.
It is of interest to note that for E=E,, the screening
parameter, which is { = E,/E, has the value

d?/a? log2~1.452,373, a7

which is much greater than unity for a heavy particle
(Z>1) in any gas. The stopping cross section as given
by Eq. (16) increases linearly with E to E;, is constant
to E,, rises to a maximum at 1.36E; (the increase being
only 6 percent), and then decreases. It should be em-
phasized that the particular features of Eq. (16) are
highly arbitrary and that this entire description is at
the best only semiquantitative.

V. THE ELECTRONIC STOPPING CROSS SECTION

Inelastic collisions are possible for particle energies
above (M+M')/M’ times the energy e of the first
excited level of the particle or atom, whichever has the
lower energy. The corresponding threshold velocity is

v,=[2me/ peo Jtvo,

where u=MM'/(M~+M'), and eo=me*/#2. The thresh-
old velocity for argon particles in argon is ,/210.

An energetic heavy particle loses energy primarily
through the action of its average charge. The average
charge decreases as the particle velocity decreases
through the process of capture and loss of electrons.*
The electronic-stopping cross section in a gas of high
atomic number is approximately a linear function of the
velocity in the velocity range corresponding to electron
capture, giving rise to the familiar linear portion of the
range-velocity curves for fission fragments.

As the particle velocity falls below about va=1v,Z"},
which is a measure of average velocity of the slowest
electrons in the neutral particle, the mechanism for
inelastic collisions is no longer through an average
charge, which is practically zero, but rather through
the relative kinetic energy which induces transitions
during the interpenetration of the electron clouds of the
particle and atom. Statistical arguments indicate that
here again the electronic stopping cross section might
be expected to be proportional to the particle velocity.

These considerations suggest that the electronic
stopping cross section be expressed in ascending and

4N. Bohr, Phys. Rev. 58, 654 (1940); 59, 270 (1941). W. E.
Lamb, Phys. Rev. 58, 696 (1940); 59, 687 (1941). J. K. Knipp
and E. Teller, Phys. Rev. 59, 659 (1941). Brunings, Knipp, and
Teller, Phys. Rev. 60, 657 (1941).
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descending powers of the velocity in the following
manner:

(0, 0<v<,,
bi(v—2¢/va)+b2(v—2ve/va)*+ - -,

be= <9<, (18)
B1(v/v2)+ Bo+B_1(va/0)+ - -,

2, <v<~ 24, Z'vs.

Except for B,, we have very little theoretical basis for
the calculation of the coefficients in these series because
of the intrinsic difficulty of the theory of quasi-adiabatic
processes.

For B, we have the expression

Bi= (4met/mvavs"){log)n, (19)

which is obtained from the familiar formula for the
energy loss of a charged particle by replacing the par-
ticle charge by (v/v.)e and estimating the number of
atomic electrons effective in an encounter as (2/v,);
(log)s, is an average value of the usual logarithmic
factor for these electrons. It has been shown by Bohr?
that such a factor can be calculated from the stopping
of alpha-particles by means of

(20/va")(log)w=[(3/4k})+(1/4x) ] Lo, (20)

where L, is the total logarithmic factor for alpha-
particles. In this expression, k= 2Z% Measurements in
argon give® L,~13.9(v/v). From Eq. (20) we find
(log)n=~1.21 for argon particles in argon. For the
average light fission fragment in argon (log)s is found
to be 1.15 and for the average heavy fragment 1.10.

VI. IONIZATION BY SLOW HEAVY PARTICLES

The atomic scattering of a heavy particle is nearly
spherically symmetrical in the center-of-gravity system
if v <vy, where vo=[Z2'Z¥2m/uJtvo. The equation for x,
when written in terms of velocities, is

8 p° 1 r'e
=— dv———f dv'v3x' ("), v<uv,, (21)
v? 0 (1+b8/bv)v3,yl4 0 2

in which v'=2M/(M4-M’). Moreover, the secondary
atomic scattering is also spherically symmetrical if
v'v<vy, where vy’ =[(2)2Z"/34m/M J*v,. The equation
for x’ is

(10 5) @) ) = /o) [ e "X "),

X 0)=1, <v .

For simplicity, we neglect v, in Eq. (18) for b° and
suppose that &” is practically constant; we treat 6% and

(22)

8G. Mano, Ann. phys. 11, 407 (1934). N. O. Lassen, Kgl.
Danske Videnskab. Selskab, Mat.-fys. Medd. 25, nr. 11 (1949).

b’ similarly. For o' <vy’ and v <uv,, we write

b /b =By (v /v )+ By (v [0d V- -, (23)
be/b = B1(v/v2)+Ba(v/va)+ - - -,
and seek expressions in series form:
X=1—ai (/o) —anld/wP— -, g
X= 1—- al('l)/'l)z) - ag(‘l)/ﬂz)z— .
From Eq. (22) we find for the coefficients in x’:
10 45 3
al'— (25)

=—B/, a'=——B"4-B/, etc.
7 28 4

Using these, we obtain from Eq. (21) for the coefficients

in the expansion of x:

2 16
o= _Bl+—61/7’
3 21
(26)
1 4 15 1
ar=——BlP— =1y ——B1 ¥+ -Bat+-B'v? etc,,
2 7 28 2 4

in which y=1v"vy/v,.

In argon with a five percent admixture of air, the
ionization by single recoil particles in the alpha-decay
of Po, ThC, and ThC’ has been measured by Madsen.®
The recoil energies are 104 kev, 118 kev, and 170 kev,
respectively, and correspond to a velocity range of
0.14v, to 0.18v. We take’ Z=82, Z'=18, M =208
proton masses, and M’=40 proton masses and find
22=0.4932y, v2’=0.255vy, and v,’/v'=0.151v,. Hence, it
is seen that the primary atomic scattering is spherically
symmetrical but that some nonspherically symmetrical
secondary scattering is beginning to set in. We fit the
Madsen data with a;=0.91 and a,=—0.3. It does not
seem unreasonable to suppose that the values so deter-
mined are accurate enough to be used in Eq. (26), which
applies to lower velocities. The first expression in Eq.
(26) places upper limits on 8; and 8¢/, since it gives

(B1/1.36)4(B,'/0.37)=1. 27

The most that can be obtained from the second is that
0.6<(82/1.3)+(B://0.3) <1, (28)

indicating that quadratic terms in Eq. (23) are not
negligible even at these low velocities.

VII. IONIZATION BY ARGON IN ARGON

We discuss first the behavior of x’ for velocities
below vy’ on the assumption that terms in the velocity
higher than quadratic are negligible in both 4¢'/%* and
x'. We assume also that 8; and 8, in Eq. (28) have the
same sign ; they then are positive and 3;'<0.3. We seek
a lower bound for x’ in the range 0<9'<v.’". Using the

6 B. S. Madsen, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 23, nr. 8 (1945).
7R._C. Ling and J. K. Knipp, Phys. Rev. 80, 106 (1950).
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optimum value of 8y’ and the maximum value of 8y,
we find 0.53 for @’ and approximately zero for )/,
indicating that x’>~A0.5 on this basis. In any case

x >~[1-0.53("/vo) ] if ' <vy.

Above the velocity z.’ the equation for x’ is
1 V2 b \d(¥'%x’)
o))
! ‘Uz’ b’ dv’

v
— f Xl(v”)d'i'”/:i'”, (29)
vz")/lﬂ'

the solution of which is to have the value x/(z.’) at 2/,
as determined by the solution of (22). For an argon
particle in argon, »y’=0.25579 and v,/=0.3821,. We
write

b 1 2’ o
—= ‘ (—)[71’(—)+70'+~-'],
b’ log[ (2)%'/vs"] \ oo vy

’
72 <7,

(30)

where, if the descending series in Eq. (18) extends
down to vy,

' = (v /va)By'/ma*Ey’, v =~ B¢ /ma*Ey, etc. (31)

From Eq. (19) the value of v, for an argon particle in
argon is found to be 0.127.
It is readily seen that

29" 2% (v2")+ X (v /V2) f 'N'dv’

’

<oty <2 f oNdy'. (32)
0

The integral in the lower bound has the asymptotic
value 7.8, for large values of ' if Eq. (30) is used in
N, with y,/=0.13, v,/=0, etc.

VIII. IONIZATION BY FISSION FRAGMENTS

Extensive studies have been made of the ionization
produced by fission fragments when they are stopped
in various gases. Ionization yields are usually converted
to energies by comparison with the ionization of an
alpha-particle of known energy. The ionization of an
alpha-particle is directly proportional to its energy
over a very wide energy range because the energy lost
to recoiling atoms is but a small fraction of the energy
of the alpha-particle and hence, even if the recoiling
atoms have a reduced ionization efficiency, the total
ionization yield of the primary particle is largely unaf-
fected. The situation is quite different with fission
fragments in a heavy gas such as argon. A reduced
efficiency of the recoiling gas atoms brings about an
appreciable decrease in the ionization yield of the
fragments.
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There is some indication, from experiments on fission
fragments from U?¥ produced by thermal neutrons,
that these particles have positive ionization defects.
Estimates of the energy based on ionization yields® are
appreciably smaller than the calorimetric measurement
of Henderson.® Recently Leachman!® has shown that
certain differences between fission fragment mass and
ionization distributions can be attributed to a variation
in w, the energy loss per ion pair, with fragment mass.

For v <w,, the quantity x is given by Eq. (21). For
72 < v, we have

8 o do e
= _f J vx/(v')dr’
vWo  (1489/0)*y"

1 pv dv
Y _
22y, (140¢/8)v~" log(V22/vs)
v

X (v) "X ()dv’,

v'v22/20

79 <1, 3

Lower and upper bounds for the ionization defect are
given by

Ez[X('vz)+x'('y'vg/(2)*)vf2f ?AdY ]

2

<AL2Eqw,~? f oAdv.  (34)
0

The integral in the lower bound has the asymptotic
value 9.6v,? for large values of v if an expression similar
to Eq. (30) is used in A, with y;=0.10, v,=0, etc., where

v12= (vo/va) B’ J[AMM' wa?Ey/ (M+M')?].  (35)

The value 0.10 for v, is the result obtained from Eq.
(35) for both the average light and the average heavy
fission fragments in argon.!!

IX. NUMERICAL ESTIMATES

Owing to our lack of knowledge concerning the ratio
of the stopping cross sections for velocities below ,,
which is the velocity at which the neutralization of the
particle by electron capture is practically complete, it
is not possible to do better than make very rough
estimates of the actual magnitudes of the ionization
efficiencies and ionization defects for various particles.
We describe briefly a sample calculation which has been
made on the basis of what would seem to be reasonable,
although quite arbitrary, assumptions.

8 Flammersfeld, Jensen, and Gentner, Z. Physik 120, 450
(1943); W. Jentsche, Z. Physik 120, 165 (1943) ; M. Deutsch and
M. Ramsey, MDDC 945 (1946) ; D. C. Brunton and G. C. Hanna,
Can. J. Research A28, 190 (1950).

9 M. C. Henderson, Phys. Rev. 58, 744 (1940).

10 R, B. Leachman, Phys. Rev. 79, 197 (A) (1950).

11 We use Z=37 and M =95 proton masses for the average light
fission fragment, which give v,=0.30020 and v,=0.33070; and

Z =55 and M =139 proton masses for the average heavy fragment,
which give v,=0.3632, and v,=0.4002,.
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Equations (22) and (29) are solved numerically for
an argon particle in argon using, for 4/, only the
first terms in the series (23) and (30), with 8,'=0.24 and
v1'=0.13. The value for 8’ is that obtained from Eq.
(27) under the assumption that By'/vy’ = Ba/vs. One sees
that there is introduced a discontinuity in /8" at v/,
which might be expected to be smoothed out by higher
terms in the series, were they included. It is found that
x'=0.78 at v/ =1,"/V2, 0.72 at vy, 0.53 at 22y, 0.40 at
3y, etc., and that x"—12(vy’/v)? as —, corre-
sponding to an ionization defect of 780 kev for an argon
particle of very high velocity. The asymptotic value
9%’ is very closely the mean of the values obtained from
the upper and lower bounds in Eq. (32).

For the average light fission fragment, we take
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B1=0.31 and v,=0.10, and for the average heavy fission
fragment, we take $,=0.38 and v,=0.10, other coef-
ficients in the series expressions being put equal to
zero. We then obtain, in argon, an ionization defect
of 2.5 Mev for a light fragment of energy 98 Mev and
an ionization defect of 4.2 Mev for a heavy fragment
of energy? 67 Mev. These quantities are rather insen-
sitive to the the behavior of 4¢/b” for velocities below s,
since the contribution of the second integral of Eq. (33)
is much larger than that of the first. However, a be-
havior of b*/8" which is radically different than that
assumed would lead to quite different values for the
ionization defects of both argon and the fission frag-
ments.

2 Knipp, Leachman, and Ling, Phys. Rev. 80, 478 (1950).
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A Rapid Method of Calculating log(ft) Values for g-Transitions

S. A. M0szKOWSKI
Institute for Nuclear Studies, University of Chicago, Chicago, Illinois

(Received July 17, 1950)

This paper contains several graphs and nomographs which make it possible to obtain, very quickly, log(ft)
values for most B-decays. The use of these figures is discussed.

I. INTRODUCTION

ETA-DECAYS can be divided into several classes
of allowedness and forbiddenness according to
their logo(ft) values.!* In conjunction with Gamow-
Teller selection rules, such a classification agrees, in
nearly all cases, with predictions from the nuclear shell
model.>~* This paper contains several graphs and
nomographs which make it possible to obtain, very
quickly, log(ff) values for most 3+ emissions, 8~ emis-
sions, and K-captures.

Log(ff) can be written as the sum of three additive
terms. The first term, log(fot), is the value for a B-decay
if the effect of the coulomb field is ignored and if there
is no branching. The second term, log(C), is the coulomb
correction term. The third term, A log(ft), appears if
there is branching. In this paper all logarithms are taken
to the base 10.

II. CONSTRUCTION OF THE FIGURES
(a) Construction of Nomograph for log(fst)

fo for BT emission is given by the formulas:
Wo
fo= [ W= v wyaw,
1

! E. Konopinski, Revs. Modern Phys. 15, 209 (1943).

2 L. Nordheim, Phys. Rev. 78, 294 (1950).

3 M. G. Mayer, Phys. Rev. 78, 16 (1950).

*E, Feenberg and K. C. Hammack, Phys. Rev. 75, 1877 (1949).

and
Jo=[(W/30)— (3/20)W o>~ (2/15) JL(W*—1) !
+(2.302/4)W o log[Wo+ (W —1)*].

where Wy is the maximum energy of the B-particles,
including rest mass, in units of mc?

For K-capture, fj is given by fo=(W,+ Ek)>. Here
Eg is the binding energy of a K-electron, which, of
course, depends on the atomic number of the decaying
nucleus. fo depends only on W, for 8% emission. For
K-capture, one can write for f,, instead of the above
expression :

Jo=W¢.

The error introduced by ignoring Ex in the expression
for fo is negligible except for large Z and small W, as
discussed in Sec. ITI. Here ¢ is the half-life in seconds for
all modes of decay.

The nomograph of Fig. 1, for getting logfe values,
consists of three columns; a, b, and ¢. Column a contains
two sets of entries of energies E,. For 8 emission, E, is
the maximum energy of the S-particles in Mev, not
including the rest mass, and the entries on the right side
apply. For K-capture, E, is the decay energy in Mev,
and the entries on the left side apply. The spacing of
energies on Column ¢ is not uniform but is proportional
to log(fo). Column b gives ¢ in seconds, days, etc. The
spacing is uniform in log(f). Column & is constructed
exactly halfway between Columns a and ¢. Column ¢



