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P(x, 0.6) P(x, 1.0) P(x, 1.6)

TAIILE I. The electron angular distribution function P(x, s) defined
by Eq. (1). Normalization such that J'o P(x, s)xdx=1. annular ring between r and r+dr at depth 3 (r and t measured in

radiation lengths) be (Eo, E, r, t)2mdrdE when the initiating
particle is an electron of energy Eo at t=0. %e define the mth
moment as
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0 0

These moments are calculated by an extension of the method
previously described. ' In this case one obtains {r ) as a function
of the parameter s, where s is determined from Eo and t by use of
the relation

log(EO/E) +xI'{s)t =0.
'AI'(s) is tabulated in Rossi and Greisen's' article.

The moments are most simply written as

&» (s))=(E./E)"p (s)
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where y=8'8/E„and 8' is the phot, on energy. Q(y, s) is defined
analogously to P(x, s).

Q{y, s) is singular at the origin. For s=i, Q(y, 1) appears to
go as 1/y for small y. ' Our method of moments is particularly
unreliable in determining the behavior of the function at the
origin if the function is singular. For s=0.6 and s=1.5 a 1/y
singularity for Q(y, s} is consistent with our results, although it
seems clear that for s=0.6 the singularity should be stronger
than for s=1.5. Mainly for ease in expressing the normalization,
we have assumed that the singularity is exactly 1/y for s =0.6 and
s=1.5. Our results are given in Table II, where we tabulate

TAIILE II. The photon angular distribution function 0(y, s). Tabulated
values are yo(y, s). Normalization such that J'0 0(y, s)ydy =1.

Figure 1 shows p (s) plotted for m = 2, 4, and 6.
From these moments we calculate the distribution function

P,(Er/E„s), where P„(Er/E„s)rdr is proportional to the number
of electrons of energy E at a depth corresponding to s in an
annular ring between r and r+dr. The normalization is taken as
Jo"P„(x,s)xdx=1, where x=Er/E„E,, being as usual approxi-
mately 21 Mev.

In a previous paper, ' we discussed this calculation for the
shower maximum. This corresponds to an s=1. In addition, we
have now calculated the two cases s=0.6 and s=1.5 which
correspond approximately to half and twice the depth at the
shower maximum, respectively.

The radial distribution is singular at the origin, this singu-
larity being of order r '" at the shower maximum, if we assume
Moliere's4 calculations to give an accurate picture of the shower
spread for small r. In calculating the present distribution function
we again assume the functions singular, but have no way of
specifying the order of the singularity. This means that we have
to guess the behavior of the function for small r. Since the major
contribution to the area under the distribution function, namely
(r ), comes from small r, the amplitude of the function is not

yP(y, s). Ke would like to emphasize that the accuracy of our
relative values for y greater than about 0.3 does not depend on
our assumption as to the singularity at the origin, and that these
values are probably good to within several percent.

~ This work was supported by the AEC.
I A. Borsellino, Nuovo cimento 7, 700 (1950).
~ We discuss an incident electron for the sake of definiteness, although

our results hold equally well for an incident photon, provided the energy E
one is interested in is much less than the energy of the incident particle.' L. Eyges and S. Fernbach, Phys. Rev. 82, 23 (1951).

«See the second of Eqs. (2.5S) to (2.60) in B. Rossi and K. Greisen,
Revs. Modern Phys. j,3, 284 (1941).
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'HE radial distribution of shower electrons can be determined
in the same way as the angular distribution. ' The procedure

is somewhat more involved in that one must calculate the mixed
radial and angular moments before obtaining the radial moments
alone. I.et the number of electrons of energy E to E+dE in the
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FIc. 1. Radial moments of electron distribution as
function of shower depth.

I.e



LETTE RS TO r H E E D I TOR

TABLE I. Radial distribution of electrons for s =0.6, 1.0, and 1.5. TA&LE I. Measured frequencies and ratios for solid chlorine compounds.
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greatly changed at large r so long as we continue the curve back
towards the origin smoothly and make (ro) unity. The shape of
the function for large r is correct, since it depends only on the
higher moments and not at all on the type of singularity. The am-

plitude, however, does depend to a slight extent on how well we
have guessed the behavior at the origin. The normalization, there-
fore, may be off by several percent. In Table I we present our
results for x&0.2, but we do not believe the value for x=0.2 to be
very reliable.

* This work was sponsored by the AEC.
I L. Eyges and S. Fernbach, Phys. Rev. 82, 287 (1951).' L. Eyges and S. Fernbach, Phys. Rev. 82, 23 (1951).
3 Rossi and Greisen, Revs. Modern Phys. 13, 285 (1941).
4G. Moliere, Cosmic Radiation, ed. Heisenberg (Dover Publications,

New York, 1946).
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ESONANCE absorption lines due to nuclear quadrupole
splittings were first observed by Dehmelt and Krugerl for

~

~

~

chlorine in trees-dichloroethylene at 90'K. The splitting is caused
by the interaction of the chlorine nuclear electric quadrupole
moment with the gradient of the electric field at the nucleus.
The electric field gradient can be considered to arise from charge
distribution within the molecule and from other charge distribu-
tions in the crystal lattice.

Resonance absorptions similar to the above have been observed
at this laboratory in several compounds. These are listed in
Table I. A frequency modulated regeneritive oscillator was used,
and the absorption lines were viewed on an oscilloscope. In making
frequency measurements, markers formed by harmonics from a
Signal Corps type BC-221 frequency meter were superposed on
the lines. The meter was calibrated with harmonics from a 1-Mc
crystal oscillator which in turn was calibrated against radio
station WWV at 10 Mc. The measured frequencies in Table I
should be accurate to 0.01 percent; however, the frequency ratios
may be somewhat better, because the harmonics selected for the
CP' and Cl~ measurements were such that only a small part of
the frequency meter dial travel was used. All frequencies listed
are the average of eight measurements. Approximately 25-cc
samples were used, and all observations were made at liquid
nitrogen temperature (80'K). The relative intensities of the Cl~
and CP' lines agreed satisfactorily with the isotopic abundance
ratio. In some cases two absorption lines were seen for each isotope.
A similar effect has been observed by Dehmelts for the iodine

Compound

SOClt

POCli

CH pCI2

CHCIi

C6HiC1

v(C13~) Mc

32.0908
31.8874

28.9835
28.9378

35.9912

38.3081
38.2537

34.6216

v(CIN) Mc

25.2935
25.1331

22.8432
22.8067

28.3673

30.1921
30.1500

27.2872

v(Cl&)/v(Clav)

1.26874
1.26874

1.26880
1.26883

1.26876

1.26881
1.26878

1.26879

resonance in SnI4. The effect was ascribed by him to crystallo-
graphically different sets of iodines in the lattice. Each set of
iodine nuclei thus experiences its own particular electric field

gradient. The splittings observed here could be caused by the
same effect. In forming the frequency ratios of Table I, the higher
Cl~ frequency (higher electric field gradient) line has been associ-
ated with the higher CP' frequency.

The frequency ratios in Table I should be the nuclear quadru-
pole moment ratio of CP and CP'. The average gives

Q(C1+)/Q(CP'} =1.26878&0.00015.

All of the eight ratios agree to within ~0.00005.
Dehmelt and Kruger's value for the moment ratio using trugs-

dichloroethylene was 1.2661~0.0002.
Geschwind, Gunther-Mohr, and Townes' have recently sum-

marized published values of quadrupole coupling ratios and shown
that in many cases the values for the ratio determined by different
investigators varied outside of estimated experimental errors. The
variation, at least in part, depended on the molecule used. This
was also true for the three accurately remeasured values by the
above authors for CH3Cl, C1CN, and GeH3C1, which gave ratios
of 1.2691~0.0003, 1.2682~0.0006, and 1.2670&0.0005, respec-
tively. These measurements were made by observing quadrupole
splittings in rotational transitions in the microwave region.
Gunther-Mohr, Geschwind, and Townes' considered that a
reasonable explanation of the variation in experimental values on
different molecules could be made by assuming a nuclear polariza-
tion by the external electric field. This effect is absent in the
measurements reported here.

*This work was performed for the AEC.
~ H. G. Dehmelt and H. II-.rQger, Naturwiss. 37, 111 (1950).' H. G. Dehmelt, Naturwiss. 37, 398 (1950).
3 Geschwind, Gunther-Mohr, and Townes, Phys. Rev. 81, 288 (1951).
4 Gunther-Mohr, Geschwind, and Townes, Phys. Rev. 81, 289 (19S1).
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OME of the most general implications of Einstein's new
theory' are considered in a paper to appear elsewhere. The

results obtained are described in the following shortened version.
By neglecting the cubes and higher orders of antisymmetric

field variables a simple expression for the affine field is found
in terms of the generalized nonsymmetric tensor g~p =g~p+gc, pV'

=A p+4 p, and its first-order partial derivatives g p ~, where
A p=g p=gp and 4 p=g p= —

gp . Iamindebted to thereferee
V' V'

of The Phys&a/ Reviver for directing my attention to a solution
of the I'-field obtained by Ingraham' in a slightly different way
from ours.

The antisymmetric part of the I'-field is given by

I'p~= —$Ip~+A ~4 p~~„ (&)

subject to the four conditions:

= 1'y=A "~'ay~ti=0,
V'


