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The Density of States in Light Nuclei

CHARLES L. CRITCHPIELD AND SOPHIE OLEKSA*
Department of Physics, University of j/linwesota, MieeeaPolis, Minnesota

(Received December 26, 1950}

The number of states of energy less than 25 Mev is calculated for a simple model of a nucleus of 20 nucleons.
Kinetic energy and the effect of symmetry on the potential energy were considered to be the only systematic
contributions to the excitation. A method of classihcation of states by supermultiplets, using mainly their
projections on the S-T plane, is presented. An empirical formula for level density in light nuclei is deduced.

I. INTRODUCTION

HE neutron scattering measurements of Barschall
et ul. at Wisconsin and of the group at Minnesota'

have made valuable additions to our knowledge of the
energy levels in light nuclei. These results, combined
with those on proton capture and the mell-known
frequency of resonance capture of slow neutrons in
heavy elements, provide a considerable body of em-
pirical information on the density of energy levels in
nuclei, at least for relatively low angular momentum.

Unfortunately, the empirical evidence cannot be con-
sidered to be complete, except in limited instances,
because of practical dd5culties in the resolution of in-
dividual peaks and in the identiication of the angular
momenta of the resonance levels. Moreover, the statis-
tical theories axe not wholly adequate to an interpreta-
tion of most of the more precise information since this
covers a range of intermediate mass numbers, 20&A
&40, in which such theories barely apply, even for low
angular momenta.

In order to assist in the study of nuclear energy
levels, we have undertaken a computation of the level
distribution in a model nucleus. For this purpose, we
have chosen A = 20 as a compromise between feasibility
and a reasonable representation of light nuclei. The
work, thus, goes farther than the previous study by
Bardeen and Feenberg' in that it relates the kinetic and
potential energies to an explicit nuclear model, with
mere recent estimates of the importance of the potential
energy, and, therefore, leads to a more complete de-
scription of the angular momenta and parities of the
levels. The underlying assumption remains the same;
namely, that the over-all density of levels in the true
nucleus with A =20 is essentially the same as that cal-
culated in the model which considers the kinetic energy
and the effect of symmetry on the potential energy to
be the main systematic contxibutions to the energy of
excitation. It is also assumed that spin-orbit splitting,
correlations, coulomb energy, etc. , remove the degene-
racy left by considering only kinetic and symmetry ef-
fects, except, of course, that a state of total angular mo-

*In partial fu16llment of the requirements for the doctoral
degree.

'Hornyak, Lauritsen, Morrison, and Fowler, Revs. Modern
Phys. 22, 291 (1950};R. K. Adair, Revs. Modern Phys. 22, 249
(1950}.

~ J. Bardeen and E. Feenberg, Phys. Rev. 54, NS (1938).

& „(r)= c(x/2k„r)&J, +&(k„r)P&"(e)e'"p, r(R (1)

=c'(n/2k r)&H&+g&" («„r)P& (8)e' 4', r) R

H&+&,&'&(«~)J&+&,(k„R)' J&+t(k„R)H&+&,—&'&(«D)'=0, (2)

and J&+~(k„r;)=0 for &p
—I values of &r;& (R. If the

potential energy of the well is zero for r &R and

pp
———k'kp'/2p, r~R,

then ~„=ho'—k„', with p, as the xeduced mass of the
nucleon.

The determination of the solution for k and x of
Eqs. (2) and (3) was effected by graphical methods and
by using recursion relations to determine the functions.
Thus Eq. (2) is readily proved to be equivalent to

(&(kR)+»&(«R) =0,
with

$&(x)=xJ&-t(x)/J&+k(x)»&(y) =pyH&-k'"(py)/«+k'"(py)

Pp(x) =x cotx, »p(y) =y,

5 (x) x /(2~ 1 6-&) '9&(y) = y'/(2~ —1+&&&-&).
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mentum (nuclear spin) j is (2j+1)-fold degenerate. No
claim is made concerning the exact location of any
individual level.

A secondary purpose of this work is to enlarge upon
a calculational scheme which may be adapted to
machine computations for more complex nuclei, either
for level densities or for ground-state calculations. The
A = 20 results are also used to dexive a rough empirical
formula for level density which may be applicable to
light nuclei. Qualitatively, the results of the work
presented here are similar to those of reference 2.

II. MODEL OF THE NUCLEUS A=20

The calculations below are similar to those made on
lighter nuclei by Feenberg and Phillips' and by Motz
and Feenberg. 4 It is assumed that the nuclear wave
function can be written as a sum of products of in-
dividual particle wave functions. The individual nuclear
waves are taken to be the stationary states of definite
n, l, and m for a particle moving freely in a spherical
potential of finite depth' inside the radius R:
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The value of the nuclear radius assumed here is that
deduced for the ground states by signer's analysis, ~

8=1.45A&&10 "cm
(5)=3.07&(10 "cm for A=20.

In this model the depth of the potential is assumed to
be the same for neutrons and protons. Since the value
chosen for the depth is an arbitrary matter, we have
chosen such a depth that 16.8 Mev is required to
remove a neutron, leaving the residual nucleus in its
lowest state. A description in terms of individual
nucleons probably is better served by such a choice than
by matching the total binding energy. The e6'ective
depth for protons may be a little lower, but the exact
choice of Vo is a minor detail which need not be con-
sidered too closely.

Wigner's analysis' is also used to obtain the mag-
nitude of the eBect of symmetry on the potential
energy. A state belonging to the supermultiplet (STY)
has a positive potential energy V (in addition to a
constant negative potential):

V = ', J-(5(S+4)-+T(T+2)+P],
1.=40/A Mev, S&T) F.

It is in this description of the potential energy that the
method of this paper and that of reference 2 departs
from the earlier statistical analyses of Bethe' and of
van Lier and Uhlenbeck. s In those papers the number of
states was computed for a given number of neutrons
and protons without counting the multiplicity of states
that can be obtained by exchanging charge between
neutrons and protons. Hence, they approximate the
eGect of symmetry by implying infinite Heisenberg
forces.

III. CALCULATION OF SYMMETRY CHARACTERS

The kinetic energy of a given configuration is deter-
mined by the number of particles in each of the indi-
vidual orbits; 1s, 2p, 3d, 2s, 4f, etc. The next step is to
determine the number of states of given orbital angular
momentum that can be obtained for a given con-
figuration. This is done without reference to whether a
nucleon is a neutron or proton, or to its spin orientation.
A given configuration has a certain maximum value M
for the sum over individual quantum numbers m, which
is obtained by putting as many nucleons into the
highest m orbits as possible but no more than four to
an orbit. The number of ways of selecting individual
orbits in order to obtain sums over m; lower than M
is then determined by inspection. In principle these
sums run from M, M—1, . to —M but the deter-
mination is stopped at Zm;= 0 because of the symmetry
in positive and negative values of Zm;. When Zm;&M,
there are, in general, a number of possible arrangements

E. %'igner, Urliversity of Penrjsylvania Biceetenend Corlference
(University of Pennsylvania Press, Philadelphia, 1941).' H. A. Bethe, Phys. Rev. 50, 332 (1936).' C. van Lier and G. E. Uhlenbeck, Physica 4, 531 (1937).

of nucleons each of which is characterized by a number,
~4 of orbits 611ed by four nucleons, vs by three nucleons,
~& by two, and v& by one. It is convenient to denote
each such arrangement by the symbol I v4v3vmvg}.

However, a given set of values v4, v3, v~, v~ may occur
more than once for a given Zm; if there are alternate
ways of distributing the nucleons among distinct orbits
of distinct n, l, m quantum numbers.

After one determines the number of ways a value of
Zm; can be achieved in terms of the }v4vavmv&} dis-
tributions, the next point of interest is the number of
ways in which a particular {v4vsv2v&} can be achieved
with a given number of neutrons and protons and a
given net spin. Each distinct arrangement of charge
and spin represents, of course, a distinct wave function,
and functions of definite symmetry type are linear super-
positions of them. It is to be noted first that v4 orbits,
which are occupied by four nucleons, have no freedom
as to composition. Furthermore, substitution into any
of the s 3 orbits, occupied by three nucleons, is restricted
by the Pauli principle so that the freedom of choice is
the same as in a singly occupied orbit so far as spin and
charge are concerned. The third zeta-component,
I'g ——2Zs, ~» in Wigner's notation, ' diBers in sign for
threefold and singly occupied orbits, but the necessity
for taking this into consideration is so rare among the
lower supermultiplets that it is convenient to ignore it
except in the special cases in which it is decisive. This
means that we are interested primarily in distributing
E neutrons and P protons among which occur o.

upward spins and P downward spins in v&+v& singly
occupied spaces and v2 doubly occupied spaces. The
numbers X and P are not true neutron and proton
numbers, nor are a and P true spin numbers, but rather
"excess" numbers related to the v's and to spin com-
ponent S, and isotopic spin component T~ by

P+P= o+P= vi+vs+2v~,
Tr= ,'(N P), S,=-,'(a-—P)—.

Let p be the number of orbits (n, l, m) occupied by
two protons and n the number occupied by two neu-
trons; then v2 n p is—the—number occupied by one
neutron and one proton. By combinatorial analysis, one
readily computes the number of arrangements in a
given }v4v~v2v~} and given n and p. The total number
of wave functions occurring with particular values of
S.and Tr is a sum over all n and p.

fs*rr(v, ~ +»)=2 ZI
v &n ) Evg n p)——

( vq+ vq ) (1V+P—2n —2p l
xI IIEP v2 p+n) L a n p—)— ——

fs't
where

I I
=et/yt(x —y) f

9 E. signer, Phys. Rev. 51, 106 (1937).
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TABLE I. Reduction of space arrangements.

I Y4V3P3V1 I

(2000I
I1101
I1020)
I1012j
0210

I1004
0202
0121

t0113I

I0105I

z~(sr').
(000}
(110)+ (000)
(200)+ (110)+ {000)
(211)+ (200)+2(110)+ (000}

(21—1)+ (200}+2{110)+(000)
(222)+3{211)+2(200)+3(110)+(000)
(220)+ (211)+ (21—1)+ (200)+4(110)+2(000)
(310)+ (220)+2(211)+2(21—1}+3(200)+5(110)

+2(000)
(321)+2(310)+ (222)+3(220)+3(21—1)+6(211)

+5{200)+9(110)+3(000)
(332)+4(321)+5(310)+5(222)+6(220)+15(211)

+5{21-1)+10(200)+15(110)+4(000)

The numbers fs,rr form a matrix in the S Tspac—e
with elements corresponding (in our case of 20 particles)
to positive and negative integral values of S, and T~.
They are the sums of the numbers of arrangements of
the nucleons and indicate nothing concerning the sym-
metry of the wave function. Since the potential energy
of the nucleus is assumed to depend strongly on the
symmetry character, the next step is to determine the
composition of a given arrangement {v4vsvsvtI as a sum
of arrangements having de6nite symmetry. The most
convenient manner of designating states of de6nite
symmetry is the (STY) formalism of Wigner. The sub-
states for a given (STY) are readily computed, as
shown in reference 9, by expanding those for the four-
valued spin in terms of the substates of the three-valued
spin and expanding the latter in terms of the ordinary
two-valued spin. All substates of supermultiplets used
in this work were determined by this method. Summing
over the Yr, one gets the projection of a given (STY)
on the S—T plane

method used for resolving the ambiguities was to
examine in detail the distributions of charge and spin
corresponding to a {v4vsvsvtI. Suppose we have an
f-matrix containing (STY) projections for which S)3
so that we need to determine how many (222) and how
many (220) supermultiplets are contained in it W. e con-
sider the total of all distributions with {v4tsvsv, I that
canbe achieved with 1V P=—4and ct—/=4(S, = Tr=2)
and calculate I'p for each. There will be so many states,
q~, for Y|——2. Of these a certain number, r2, will be
substates of supermultiplets with 5&2, which we have
determined by signer's method cited earlier. Hence,
the number of (222) supermultiplets must be qs rs —As.
mentioned previously, the number of examples requiring
such explicit consideration is so small as to make the
method of expanding in terms of projections on the
S—T plane convenient.

IV. CLASSIFICATION OF STATES

The lowest state of 20 nucleons is assumed to be a
(ls)'(2p)"(3d)'=s'p"d' configuration. All other con-
figurations obtained by promoting nucleons into orbits
of higher kinetic energy and having a total increase of
kinetic energy less than 25 Mev were determined. The
number of ways of constructing states of given L, and
the supermultiplet composition of each was determined
by the method described above. If the sum of the
(STY); for a certain L. be denoted by tf(L,), the
number of states of definite L is tf(L),

States of L=O, 1, 2 . are designated 5, I', D
respectively, in the customary way. The potential
energy of each supermultiplet was calculated from

(S,Tr) =err(S.Tr Yr), (9)
TABLE II. classification of states of excitation less than 25 Mev.

where the subscript m refers to a given supermultiplet,
(STY)=w. The problem is, then, one of reducing the
matrix with elements given by Eq. (8) to

f&*T'r =Z- ts-(S*2't) a t (10)

thereby reducing all arrangements {v4vsvsvtI to sums
over supermultiplets m with multiplicity a„.The results
for the arrangements used in this work are given in
Table I. In most instances the expansion of fs,rr, Eq.
(10), is unique. There are exceptions, however, since
the projection on the S Tplane of (211) and (—21—1)
are identical, and. also the projections of (222) and (220)
are linearly related through lower supermultiplets, vis'."
ProjectionL(222)+ (211)+(200)j

=Projection{ (220)+ (110)+(000)j. (11)

Actually, the ambiguity in (211) and (21-1) is unim-
portant so far as the energy is concerned, Eq. (6). The

"The next such relation is Projectiont(330)+{211)+{200)j=Projectiont (332)+(310)+(000)j.

Ki- Poten-
netie tial Total Super-

Config- energy energy energy multi-
uration (5fev) (Mev) (Mev) piet I. states

s4p12d4 0
s4p'2d's 5.4
s4pl2d4 0
s4p12d2s2 j.Q.8
s4pl2d4 Q
s4plld6
s4p'2d's 5.4
s'p "d'f 14.5
$4p12d4 0
s4p"ds' 16.2
s'p'2d's 5.4
s'p"d4s 18.2
s'p~d2s' 10.8
s'p~cPsf 19.9
s4p"d6 12.8
s4p"d's 5 4
s'p~s' 21.6
s'p~d3f 14.5
s'p~cPs 10.8
s'p~d6 23.1
s'P"d3s 23.6
s4p~d4 0
s4p'2ds3 16.2
s4p"d6 12.8

0 0
0 5.4
8.0 8.0
0 10.8

12.0 12.0
0 12.8
8.0 13.4
0 14.5

16.0 16.0
0 162

12.0 17.4
0 18.2
8.0 18.8
0 19.9
8.0 20.8

16.0 21.4
0 216
8.0 22.5

12.0 22.8
0 23.1
0 23.6

24.0 24.0
8.0 24.2

12.0 24.8

(000) SD'G2HIL
{000) SDFGI
(110) P O2F3G H2IK
(000) SDG
(200) S2D FG'I
(000) 5'P'D'F" G"H"I'K'L'M2X
(11.0) SPD'F2G2HI
(000) SP3O F6G4H4I3K2LM
(211) P2DF'GH
(000) D
(200) PD FGH
(000} S'P'D'F"G"H'I'K'L2M
(110) SPDFG
(000) P D F3G H2IK
(110) S2P18D37F30G30H26I19K12L2M3+

(211) P2D2F2GH
(000} S
{110) S P7D9Fll GioH9IOK4L23II
(200) SDG
(000) SP O'FG4H3I3K2LM
(000) SP6D'F'G6H4I2K
(222} D
(110) D
(200} S'P'2D'6F'8G'6H"I8K6L2M
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(STY) (2&+2)(2~+2)

(000)
(110}
(200)
{211)
(220)
(222)
(310)
(321)

11
13
ii 15
13
11 13
11
13 15 17
13 15

(332) 13

31 33
33
31 33 35
31 (33)' 35
33
31 (33)2 (35)2 37
31 (33)' (35)' 37

31 33 35

51
53
53 55
55
51 (53)2
51 (53)2

57
53 55

55 71 73
(55)2 73 75

57 75 77

TAMX III. Double multiplet composition. (the exponents in Table II mean the number of distinct
states of given I.), since all isotopic multiplets contain
Tr= 0. In F (and Na"), however, Tr=1 and the isotopic
singlets cannot contribute. In 0'0 (and Mg'0), only the
isotopic quintets and higher contribute. The resulting
numbers of levels at each excitation in Ne20 are shown
in Table IV for j values 0 to 6. In Fig. 1 we plot the
total number of levels with j=0 and excitation equal
to or less than U. For comparison, the experimental
value for Ne~ is shown s,s a point (25 levels) at 15 Mev
and the prediction of Bethe's statistical theory'

Eq. (6) and added to the kinetic energy of excitation.
Restriction of the total excitation to 25 Mev eliminates
most of the states that have any appreciable kinetic
energy because of the high potential energy of states of
low symmetry. The results on symmetry character and
J values are given in Table II.

The remaining step in the calculation is the com-
bination of the possible spins in each (STI') with the
orbital angular momenta in order to form states of
de6nite total angular momentum, j. For this purpose
it is convenient to use the "double multiplet" expan-
sion" of the (STY); i.e., express the projections, Eq.
(9), as sums of products of the isotopic and ordinary
spin multiplets (T, T 1, , —T)X—(S, S—1, , —S)
and designate them by the double number (2T+1)
X(2S+1). The components of (STY) of interest are
shown in Table III. In applying the results in Table III
to Ne"*, all spin values are to be used and added vec-
torially to the I.'s with which each occurs in Table II

TAsz.E IV. Number of states of particular J value at a given
excitation.

Is(U) =) pe(x)dx,
I

ps(U) =0.6S 4ee, S= (3U/2. 30)&.

(12)

80 I20
200

ae l00
70

I
50

I
cO 3C

2C
O

lO
R 7

I0

AU IN MEV
I60 200 240 280 320 360 400 440 480 520

i

BETHE'S STATISTICAL
.THEORY

6 8 lO l2 l4 l6 I8 20 22 24 26
ENERGY IN MEV

The agreement between theory and the experimental
point in Fig. 1 is partly accidental, inasmuch as it
cannot be claimed either that all levels in Ne~ below
15 Mev have been found experimentally, or that all

Configu-
ration

Total
energy
(Mev) J=O J=2 J=2 J=3 J=4 J=5 J=6

FIG. 1.Total number of states in Ne' for j=0 and both parities.
The point {g) indicates the total number of levels observed to
date.

s4p12$4

s'p~d3s
s4pl2d4

s'p~d2s2
s4p12d4

s4plldg
s'p~d3s
s4p12d3f
s4p12d4

s'p"ds'
s'p"d's
s4plld4s
s4pl2d2s2

s'p~d2sf
s4plld6
s'p~d3s
s'p~s4
s4pl2d3f
$4pI2d2s2
s3p12ds
s4plld3$
s4pl'Rd4

s'pI2ds3
s4plld5

0 1
5.4 1
8.0 4 10

10.8 1
120 6 7
128 2 6
23.4 3 11
14.5 1 3
16.0 7 16
16.2
174 3 9
182 2 7
18.8 3 7
19.9 2
20.8 43 122
21.4 8 20
216 1
22,5 16 43
228 3 3
23.1 1 2
236 1 5
24.0 2 2
24.2 2
24.8 33 99

2
1 1

16 17
1

14 12
9 11

15 16
3 5

22 21
1

23 12
9 11
7 7
2 3

177 204
27 25

63 71
6 4
3 4
6 7
3 2
3 2

138 157

2 1 1
1 1

16 12 9
1

13 7 6
11 10 8
12 9 5
4 4 3

18 11 5

10 7 3
10 9 6
5 2
2 2 1

200 173 131
19 11 5

70 59 44
5 2 1
4 3 3
5 4 2
1

145 121 85

» F. Hund, Z. Physik 105, 202 (1937};H. A. Jahn, Proc. Roy.
Soc. (London) 201, 516 (1950).

the levels which have been found have j=0. The two

deviations, however, tend to cancel rather than add.
The agreement between our results and Bethe's cal-
culation for j=0 is also astonishingly good, indicating
that disregarding the charge exchange is a reasonable
device for allowing for symmetry effects in level

density.
On the other hand, the statistical theory predicts a

factor (2j+1) in the level density of higher j, and, as
found in the previous work of Feenberg et al. , the actual
ratio of the number for j=0 is much less for high j and
low excitation. One is usually interested in the total
number of levels up to a certain value of j. Hence, we

present in Table V the ratio of the total number of
levels of j less than or equal to j to the total number
of j=0 for several energies of excitation.

In using the information in Table V for the inter-

pretation of nuclear reactions one must bear in mind the
in6uence of potential barriers in favoring certain
angular momenta and parity.
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TABLE V. Ratio of total number at levels with j&j „to
number with j=0.

TABLE VI. Comparison of j=0 level numbers for isobars.

A Lr jmaa =0
Excitation

(Mev)
Negro

Tg ~Q
Fso Na 0& Mg

1 —1 2 -2
Total number of states

200
280
360
440

1.0
1.0
1.0
1.0
1.0

2.0 4.1
3.8 7.6
4.1 8.1
3.7 7.6
4.0 9.0

6.0
11.7
12.2
11.9
26.0

8.0
15.2
15.6
16.0
25.0

9.0
17.8
18.1
19.4
36.0

9.9
19.4
19.4
21.9
49.0

0
8

12
16
20
24

1
6

13
26
34

108

2
Il
14
56

114
255

2
5

11
16
72

163

U. APPLICATION TO NUCLEI IN GENERAL

The computations for Ne" have been made in the
hope that they might serve as a model for the inter-
pretation of other nuclei. The same detail can be pre-
sented, of course, on the basis of the work above, for
Po and CPo We present however, only a comparison
between total numbers of levels with j=O and both
parities at various excitations in Table VI. It will be
noted that Po has a higher level density than Ne" or
0".This effect was shown first by Bardeen and Feen-
berg. ' It might be thought, off hand, that the omission of
the isotopic singlet states in the enumeration for F",
and both singlets and triplets for 0', would reduce the
number of levels below that of Ne". Actually, this
effect is counterbalanced by the fact that the lowest
states in F~ and O~ have lower symmetry than does
that of Ne". Hence, a given excitation falls in a region
accessible to higher supermultiplets and greater multi-
plicity.

We shall generalize the application to nuclei for
which the ground state is not a (000) state in the fol-
lowing way. If the ground state is (SpTpFo), the over-all
level density is related to that for a (000) nucleus by
adding the Majorana potential to the excitation in the
latter and 6nding pp(U') instead of pp(U), where

U'= U+(20/A)LSp(So+4)+Tp(Tp+2)+ Yp']. (13)

On the other hand, the true level density is less than
pp(U'), because the lower double multiplets no longer
contribute. Let us approximate the relative number of
double multiplets by the factor

with A=20 the double multiplets are significantly
reduced in number if U'(30.

As for an empirical form for Ip(U), we have assumed
the following

inLIp(U)]=a+b lnU+cU& (15)

and have determined the best ht to the step-curve in
Fig. 1, by the method of least squares. The resulting
values are

a = —2.06, b = —1.31, c= 2.21.

In order to genera, lize Eq. (15) to nuclei of other values
of A and (000) ground states we note that Bethe's
result for Ia for the case j=0 LEq. (12)] is A ' times
a function of the product AU. We assume Ip(U) to
have the same functional dependence and obtain

lnLIp(U) j=4.87—1.31 lnA U+0.49(A U) ~—lnA. (16)

Generalizing to other values of A and other than (000)
ground states, we substitute U' from Eq. (13) for U
and add the term given in Eq. (14). We determine X

to give a reasonable ht to the calculations for F" and
O~. The result is

lnLI (U)]=4.87 —1.31 lnA U'+0.49(A U') P

—lnA —200(S '+ T ')/A U'. (17)

We estimate the validity of Eq. (17) to be restricted to
values of AU'&800. The total number of levels with
j=0 and with a given parity is then —,I(U), and the
total number with higher j is to be estimated by use of
Table V. Finally, the empirical formula for the density
of levels of j=0 and given parity is

expI —X(So'+To')/A U'} (14)

where X is an unknown, constant energy. The expected
order of magnitude of ) is several hundred Mev, since

p(U) =
2U'

(Sp'+T ')
0.245(A U') ~+ 200 —131 I(U).

AU'


