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This paper is concerned with the calculation of the angular and radial distributions of electrons and
photons at the maximum of a cascade shower. In Sec. II(A) we calculate the moments of the distribution
functions in a shower neglecting collision loss of electrons, i.e., for energies E much greater than the critical
energy e. In Sec. II(B) we derive expressions for the moments when collision loss is not negligible. These
expressions are in the form of a series in ¢/E, and are valid down to a few times the critical energy. In
Sec. IIT we use the moments to calculate the distribution functions for energies down to a few times the

critical energy.

I. INTRODUCTION

N interpreting experiments on large air showers, one
often must know something about the angular and
radial distributions of the electrons and photons in
them. A considerable amount of work has been done
on this subject. Some of this work has been concerned
with finding the mean squares of the quantities of
interest rather than the distribution functions them-
selves. Roberg and Nordheim,! for example, have calcu-
lated quite accurately the mean square angles and
displacements integrated over the shower for electrons
and photons down to rather low energies. Belenky? has
done the same for electrons, although somewhat less
accurately. Also, there have been several calculations
of the mean squares at the shower maximum for very
high energies® and some calculation of the mean squares
as a function of depth.*

There have also been attempts to calculate the
distribution functions at the maximum. Belenky® has
calculated the angular distribution of electrons under®
Approximation A and in the same approximation
Moliére” has calculated the radial distributions of both
electrons and photons and the angular distributions of
electrons.

Although it is quite difficult to calculate the distri-
bution functions, it is easy to calculate their moments
accurately in Approximation A. If one does this, and
compares the moments derived from Moliére’s functions
with the accurate ones, it appears that Moliére’s high
energy functions are in error, particularly for the large
values of the argument. This is shown in Sec. II. Now,
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knowing the moments of the distribution functions one
might be tempted to see how much he can deduce from
them about the nature of the function. Of course, there
are recondite theorems which state that under certain
conditions (which are satisfied for the functions we
consider) the functions are uniquely determined from
the moments. These theorems are useless for our
purposes, since to use them one must have fairly simple
analytic expressions for the general moment. These are
not available. It appears, however, for the functions we
consider—which we can assume on physical grounds to
be monotonically decreasing and “smooth”—that one
can deduce the function over most of its range with
considerable accuracy from a knowledge of only the
first few moments. Only the behavior at very small
arguments is not determined. We have no rigorous
proof for this statement, but several test examples
which we have tried successfully have given us con-
siderable confidence that it is true. These are discussed
in Sec. III. In Sec. II(A) we have calculated the mo-
ments under Approximation A, and compared our
results with the moments derived from Moliére’s func-
tions. In Sec. II(B) we show how one can obtain
expressions for the moments in the form of “asymptotic”
expansions® which hold to two or three times the
critical energy. Finally, in Sec. III(A) and III(B) we
calculate the actual distribution functions for energies
down to about twice the critical energy using the
moments found in Sec. II.

The basic assumptions of our calculations are that
the scattering angles are small and that the asymptotic
expressions for radiation and pair production are valid.
The calculations hold for any element for which, at the
energy considered, these assumptions are valid.

II. MOMENTS OF THE DISTRIBUTION FUNCTIONS
IN SHOWERS

(A) Approximation A

In this section we derive expressions for the moments
of the angular and radial distribution functions in a

8 We have not been able to prove that the series we derive are
asymptotic in the strict sense, although they appear to be useful
for computation; by analogy to the German term halb-konvergent
they might better be called half-asymptotic. We shall, however,
simply call them “asymptotic.”
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large shower for energies much greater than the critical
energy.® We shall consider the distribution functions
which have been integrated over the length of the
shower. These will also be the distribution functions at
the shower maximum, since the dE/E? energy spectrum
of particles at the maximum is the same as the energy
spectrum integrated over the length. Also, it will be
convenient to assume that the showers we consider are
initiated by a single electron of energy E,; but the
results are really independent of this particular bound-
ary condition so long as the initiating particles have
energies much larger than the energies of the electrons
or photons in which we are interested.

We specify the lateral position and direction of an
electron or photon in the shower by the coordinates x
and y in a plane perpendicular to the shower axis and
angles 6, and 6, in two perpendicular planes whose
intersection is parallel to the shower axis. We call r the
vector (x,y) and 6 the vector (8., 8,). We denote by
w(E, 0., 8,, x, y) or, more briefly, m(E, 0, r) the number
of particles of energy E at the point (x,y) in dxdy
traveling at an angle (0,6, in d6.d8, and by
v(E, 0, 0,, x, y) the analogous quantity for photons.
Then, the diffusion equations which describe the
propagation and scattering in the shower are!®

8(Eo— E)3(x)5(v)8(6.)8(8,) = La(, v)

VORWE S o or or
_‘+_) - 0:‘-—_ 01,——, (la)

4F*\ 00,2 46,2 ox dy
0= La(m, v) —0:(3v/0x) —0,(3v/9y). (1b)

Using the notation of Rossi and Greisen,!! we find the
integral operators L; and L, to be

La(m, v)=2 f V(E/u, 8, W(u)du/u

- f [r(E, 8, 1) (1/1—o)m(E/1—, 6, £) J(0)do

+edn(E, 0,1)/0E, (2a)

La(m, v)= f (W /0, 8, £)(5) (do/v) — oy (W, 6, ). (2b)

In this section we will set e equal to zero. This is
Approximation A of Rossi and Greisen. Defining 7. (E)
as

ran(B)= [ f f | TR

X (xm0,"+y™0,")d6.d60,dxdy, (3)

9 The essential results of Sec. II(A) appear in an unpublished
thesis by one of us (L. Eyges, Dissertation, Cornell University,
1948). These results were derived independently by Professor
John Blatt and incorporated into his lecture notes. We are very
grateful to Professor Blatt for allowing us to see copies of these
notes. We have profited from several illuminating observations
in them, as well as from suggestions for notation.

10T, Landau, J. Phys. (U.S.S.R.) 3, 237 (1940).

11 B, Rossi and K. Greisen, Revs. Modern Phys. 13, 240 (1941).
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we have

(xmozn_*_ ymoyn)average for= 7rmn/ Moo= <7rm n)a (4)

electrons

where g is just fwice the electron track length; i.e.,
moo=2-Z(Eo, E)=2-(0.437E,/E?). 3)

{ymn(W)) is defined analogously. Now we get a recursion
relation for mm» and vym,. We multiply Egs. (1a, b) by
(x™0,*+y™0,") and integrate over x, vy, 6., 6,. The
terms containing derivatives with respect to the spatial
variables are then transformed by integration by parts
and we find that our equations become

0= L]("rmn(E): 7mn(W))+ (E32/4E2)n(n— l)ﬂ-"“ n-2(E)
+m7|'m—l. n+1(E)y (63)

0= L2(amn(E)7 'Ymn(W))""m'Ym—l, n+1(E) . (6b)

Equations (6a,b) have a solution of the following
form:
Tmn(E) = aMnE8m+n/Em+n+2’ (7&)

'Ymn(W) = anESm+n/I/Vm+n+2, (7b)

where am, and B, are independent of E and W. If we
substitute from Egs. (7a,b) into Egs. (6a,b), we are
led to the following equations, for Es#E,:

0= —A(m~+n+1)an,+B(m+n+1)Bmn

%E.ﬁn(ﬂ—- l)am, 'n—2+ M&m—1, n41y
O= C(m+n+ l)amn_ Uﬁmn+mﬁm—l. n+1-

The functions 4, B, C appearing here are the same as
those in ordinary shower theory and are defined by
Eq. (2.17) of Rossi and Greisen’s article.

Since g and 7o are known, one can solve Egs.
(8a,b) by successively putting: m=0, n=2; m=1,
n=1; m=2, n=0; m=4, n=0; m=3, n=1, etc. We
have calculated o, and B, for m, n up to m+n=10,
and then used Eq. (4) to find (mm») and {yma) over the
same range. The moments for which m-+# is odd vanish
by symmetry.

The infinite sequence of moments thus obtainable
determines in principle the distribution functions which
we desire. We shall see in the next sections what can be
deduced concerning the distribution functions from the
partial sequence actually calculated.

Here we shall use these moments to check Moliére’s
and Belenky’s calculations of the distribution functions.
Moliére has derived expressions for the radial distribu-
tion functions, integrated over all angles, for both
electrons and photons and the angular distribution
function, integrated over all lateral displacements, for
electrons.” Belenky has calculated the angular distribu-
tion of electrons.® To assess the correctness of Moliére’s
and Belenky’s calculation of these functions we have
calculated? {r")y, and (") from their distributions
and compared these moments with those derived from

(8a)
(8b)

1242=32249% and ##=06,>1-0,%
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TasLE 1. Exact moments in Approximation A and comparison with those derived from the distribution functions
calculated by Moliere and Belenky.®

Electrons: {r")ay «(E/Ed)»
Moliére Exact®

Electrons: {6)ay (E/EJ)"

Photons: (r")ay-(W/E)»  Photons: {ra)p, «(W/Eg)n

n Moliére Belenky Exact Moliere Exact Exact
0 1 1 1 1 1 1 1 1
2 0.830 0.725 0.602 0.655 0.570 1.02 1.13 0.176
4 6.40 7.24 1.72 1.43 0.959 16.0 26.4 0.178
6 1.06X 102 4.95X10? 30.4 6.56 3.10 5.45X10? 3.34X 108 0.415
8 2.76X10° 1.38X 108 1.12X10% 51.6 16.1 3.19X10¢ 1.36X10¢ 1.69
10 1.03X10° 1.03XX108% 5.42X10¢ 620 121 2.85X108 1.34X10° 10.4

» Similar results for the exact radial moments of electrons have been obtained by Nordheim, Osborne, and Blatt, Proceedings of the Echo Lake Cosmic

Ray Symposium, December, 1949.

the above calculations, using, e.g., for electrons
(Tmo) = (&™+y™ )= 2x™)p= 2r™a(COS™B)ar
(o) = (0="In+(0y")n=2(0="}n= A8")n{COS" ) .
The results are given in Table I.

(9a)
(9b)

(B) Asymptotic Expansions for the Moments

We now consider the problem of finding the moments
for energies where collision loss of electrons is not
negligible, i.e., when we retain the term edw/dE in
Eq. (2a). First, consider the equations for the track
lengths, neglecting scattering. We call the electron
track length Z.(Eo, E) and the photon track length
Z4(Eo, W). They satisfy the following equations:

S(Eo—E)=L\(Z+, Z,),
0=Ly(Zx, Z,).

(10a)
(10b)

How to obtain an asymptotic solution for these equa-
tions which is valid down to energies a few times the
critical energy is well known.®® One assumes that Z,
and Z, have their high energy forms, modified by a
correction factor in the form of a series in ¢/E and
/W ie.,

0.437E, «

e n
2,
=0 E
0437E0§ b (é )"
W2 am \E/

If one substitutes these expressions into Egs. (2a, b),
one gets the following infinite set of equations:

[b.B(n+1)/0]—and(n+1) }
= (n+ 1)dn_1 n= 1, 2.0

Z.(Eoy, E)= (11a)

Z'y(EO’ W) =

(11b)

(12a)
b,=C(n+1)a, (12b)

These equations can be solved for @, and b,. Setting
ao=1, one gets for the electron track length:

0437E, € e
Z(Ey, E)= (1-—- 1.638—+42.799—
E2 E E2

e e
—5312—+411.18—+- - - ) (13)
B3 E*

13 Reference 11, p. 293.

It is possible to take forms somewhat different from
Egs. (11a,b) for Z, and Z,. Following Rossi and
Greisen, e.g., one can assume

2 2
Z(Ey, E)= 0.437E0/E2(1+a1i+ AN ) . (14)
E E

Using the binomial expansion, Eq. (14) can be brought
into the form (11a) and the relationship between a,
and an can be determined. Doing this, one gets the
well-known expressions of Rossi and Greisen; namely,
Eq. (2.96) of their paper. Similar results can be obtained
for Z,.

We would like to emphasize that this last form for
the track length is arbitrary in that one could assume
series expansions in ¢/E and ¢/W, raised to any power,
and then determine the coefficients in the same manner
as above. The essential behavior of the series is not
changed by writing it in a form other than that of
Eq. (13). Thus, both Eq. (13) and Eq. (2.96) of Rossi
and Greisen, seem to be valid down to ¢/E~3%, and
break down for higher values. It is true that for numer-
ical computation one sometimes needs fewer terms in
the series when it is in the latter form. On the other
hand, the coefficients in Eq. (13) increase more slowly
and in any computation, if one continues either of the
series up to the point where the terms begin to increase,
they give the same answer.

Now let us turn to the problem of calculating the
moments when energy loss is taken into account. One
transforms Eq. (la,b) by integration by parts and
defines mmn and ym. as before. Equation (2a,b) still
holds with the understanding that in the operator
Li(Tmn, Ymn) One retains the term dmn,,/dE. One can
find a formal solution of these equations by setting

m+n ©
"mn(E)“ Zamn(l)( ) (15a)

Emtnt2 1=

ﬂmn sm-{—n ®
ma(W)= b . 15b
¥ ( ) Wmtnt2 l§0 (W) ( )

On putting these expressions into Egs. (6a,b) and
equating to zero various powers of ¢/E and ¢/W, one
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TasLe II. Electron moments including correction for
ionization loss.
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[ TasLE III. Photon moments including correction for
ionization loss.

m _ [{rm)av] e=o " - 1{67)av] o - - [{rmav] e=o n - [{67)av] e-
R e ravcmirov7n FIC L rors pwvomerroys T NG 7w st rerrovr TR L ors v Yoy o
amo® am® Bmo® Bon(D)

T, 4 6 Y2 4 6 N, 4 6 D 4 6
1 173 1.60 152 1 0813 0915 102 1 132 1.16 121 1 0836 0916 1.01
2 —116 =202 —253 2 —0.747 —0950 —117 2 —0766 —110 —195 2 —0556 —0755 —0.952
3 257 542 662 3 146 209 28 3 154 252 266 3 0949 150  2.23
4 —760 —19.6 —30.8 4 —373 =605 —931 4 —38 —771 —13.0 4 —215 =398 —6.70

gets the following set of equations, for =0, 1, 2---:

amnamn(l)A (m+ n+ l+ 1) - ﬂmnbmn(l)B(m‘}' "+l+ 1)
+ (m+nt+1+1)cmatma0

= %ESZM«(n_ l)am. n—2a(l)m, n—2

+mam—l, n+1a(l)m—]. nt1; (163-)
amﬂamﬂ(l)c(m+ n+Il+ 1) - Uﬁmnbmn(l)
+m6m——l, n+1b(l)m~l. n+1= 0. (16b)

In these equations @mn@=0m.,®=1 and am.=0.
For =0, Egs. (16a, b) are identical with Egs. (8a, b).
Thus, the quantities ams and Bma are known from the
work in Sec. II(A). The quantities @m,P? and b.,¥ can
then be determined successively in the following
sequence:

@05, bos® ; age®, bgs?; - -
au®, by®- -
a20®, bao® - -

—a®, by ®;
~—a20D, ba®;
=0, boa®

ao4(2), b04(2). cey etc.

As before, we are not directly interested in Tm, and Ym»
but in these quantities divided by o and <o, respec-
tively. If we then formally carry out this division
using moo=2Z,, voo=2Z, as given by Eq. (13), we get
expressions for ., and ym. again in the form of the
high energy expressions multiplied by a series in powers
of ¢/E or ¢/W. For convenience in computation we can
convert these series to the form

(nn(E))e= (Tmnbems [}:am,s»( )JW

)= rms o /[ £ 500 (W)]m+

We will not present here our numerical results for all
the quantities am.® and Bma‘?, since they are probably
of no great interest. The quantities of real interest are
(r"(E))» and (8"(W))a. In the Tables IT and IIT we
present our results for these quantities.

It is hard to estimate the range of validity of the
series in the denominators of the expressions in Tables
II and III. First, we have derived them purely formally,
and in the process have divided dubiously convergent
series into one another. Also, it is clear that for small
values of E/e and W/e they diverge rather violently,
particularly for the higher radial moments. Neverthe-

less, it is probably satisfactory to compute with them,
provided one terminates the series when the terms
start to increase. The reason we believe this to be so is
that the series for the track lengths in Eq. (13) seems
to show the same dubious convergence, but they have
been checked and found to be quite accurate for E/e
greater than two or three. As a further check we have
compared our results for the mean squares with the
fairly accurate calculations of Roberg and Nordheim
and have found good agreement down to about five
times the critical energy, and even at twice the critical
energy our results do not differ from theirs by more
than 20 or 30 percent.

It is worth noting that our results for the moments
of the angular distribution are valid down to somewhat
lower energies than for the radial distribution. This is
also true for the higher order moments; from Tables II
and III we see that the series for the higher radial
moments converges more poorly than for the angular
moments of the same order.

III. THE DISTRIBUTION FUNCTIONING
(A) Approximation A

We now turn to the problem of calculating the actual
distribution functions under Approximation A, using
the moments found in Sec. II(A). We shall concern
ourselves with the angular distributions integrated over
all displacements; from symmetry this distributions are
a function only of 6= (0.2+6,?)!. Similarly, the radial
distributions are a function only of r= (x2+4?)}. More-
over, from the structure of the equations, the distribu-
tions depend on (E, r) and (W, r) through the combi-
nations Er/E, and Wr/E,. We can denote both of
these quantities by x without confusion. The angular
distributions depend on Ef/E, and W6/E,, both of
which we call y; 7 is measured in radiation units and 6
in radians. We shall call P.(Er/E,)=P,(x) the radial
distribution of electrons and Ps(E6/E,)=Ps(y) the
angular distribution of electrons. Similarly, we call
Q.(Wr/E,)=Q.(x) the radial distribution of quanta and
Qs(WO/E,) the angular distribution. The distribution
functions are defined so that P,(Er/E,)rdr is propor-
tional to the number of electrons of energy E in the
annular ring between r and r+dr, and Py(E6/E.)6d8 is
proportional to the number of electrons of energy E in
the solid angle between 6 and 6+df. We will choose
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normalization so that f;*P,(x)xdx=1and So*Ps(y)ydy
=1 and similarly for the photons.

We assume that knowledge of the first few moments
of a “reasonable” function essentially determines the
function over a limited range. This assumption is based
on the results of several “experiments” in which we
tried to reconstruct known functions from a knowledge
of the first four even moments alone. The functions
chosen for this test were roughly of the same form as
the expected distribution function. After trying various
analytical schemes!* we found that the most convenient
method for reconstructing the function was simply to
graph an arbitrary function, calculate its moments
numerically, alter the function as indicated by the
discrepancies from the correct moments, etc.

If one can extrapolate conclusions from the examples
we tried, it would appear that it is readily feasible to
fit a function over most of its range to within a few
percent, even when not much care is taken in fitting
the highest moment.!> One cannot determine the be-
havior at the origin, however, with any certainty. This
fact is particularly bothersome because one often wants
to know the cosmic-ray distribution functions near the
origin. The reason that the behavior at the origin is not
determinable is as follows. The integrand for the nth
moment is of the form x"*f(x), and for increasing » the
maximum of this function moves farther and farther
along the x-axis. Moreover, this integrand vanishes
very strongly for small x, so the high moments are
essentially independent of the behavior of the function
at the origin. Thus, most of the information about the
origin is contained in the second moment; but the
integrand even of this vanishes very strongly at the
origin. For example, if f(x) has a 1/x singularity, the
integrand behaves like x2. We feel particularly keenly
here the fact that we know only the even moments.
Knowledge of f; would help considerably in the fitting
the function for small «.

Consider now the radial distribution of electrons. As
we have explained, our method of fitting functions by
their moments does not give the behavior near the
origin. For the higher moments Moliére’s function
seems to be quite inaccurate; but the second moment,
which depends most sensitively on the behavior near
the origin, differs from the correct value by only 12
percent. It seems reasonable then to assume that
Moliére’s function is essentially correct for small x, and
to start calculations on this basis. Actually, we reversed

4 While this work was being prepared for publication, we
received a copy of a paper by L. V. Spencer and U. Fano entitled
“Penetration and diffusion of x-rays: VII. Calculation of space
distributions by polynomial expansion.” One of the points of
their paper seems to be the same as that of this section; viz., the
first few moments of a reasonable function essentially determine
the function over a limited range. Unfortunately, the neat method
of polynomial expansions that they describe is not directly
applicable to our problem, since our functions may be singular at
the origin.

18 For further details see L. Eyges and S. Fernbach, UCRL
Report No. 943, Angular and Radial Distributions of Particles in
Cascade Showers.

the procedure and used the higher moments first; i.e.,
we found the form of the function for large x and worked
down toward the origin. If one can base an estimate on
the examples cited, our function should be quite
accurate down to about an x of 0.4. Our function also
joins smoothly to Moliére’s at this point. In Table IV
we present our results.

In calculating the radial distribution of photons there
is again the difficulty that the distribution function has
a singularity at the origin. For this case also the second
moment as calculated from Moliére’s distribution func-
tion is not far off. We have felt justified in assuming his
distribution function to be correct up to x=0.4, and cal-
culating the function for higher values from the mo-
ments. The results are given in column 3 of Table IV.

The calculations of the angular distribution of
electrons is somewhat simpler than for the above two
cases, since there is no singularity at the origin. Our
results are given in the fourth column of Table IV.

The angular distribution of photons can, of course,
be calculated by the same methods we have used for
the other distributions. Alternatively, it is clear on
physical grounds that it is determined once the angular
distribution of electrons is known, since photons are
not scattered, but inherit their angular distribution
from parent electrons of higher energy. Mathematically,

TasLE IV. Distribution functions in Approximation A.

x=Er/E, or Wr/E. y=E6/E, or W8/E,

xory Pr(x)» Qr(x)b Po(y) Qo(y)°
0 9.27
0.1 7.13
0.2 7.62 7.33 5.35 8.60
0.4 2.74 1.12 278 2.19
0.6 1.01 3.73X107! 1.52 7.68X1071
0.8 4.84X 10! 1.96 8.20X 107! 2.86
1.0 2.52 1.21 4.46 1.18
1.2 1.47 8.58X 1072 2.32 4.56X1072
1.4 8.72X 1072 6.04 1.18 1.96
1.6 5.36 4.55 6.04X 102 8.6X1073
1.8 3.49 3.48 2.90 3.82
2.0 2.26 2.67 1.46 1.72
2.2 1.53 2.08 7.13X1073 7.82X10¢
24 1.02 1.62 3.56 3.58
2.6 7.20X 1072 1.29 1.74 1.66
2.8 5.16 1.02 8.29X 10~ 7.79X107%
3.0 3.73 8.25X 1073 3.92 3.59
3.5 1.74 4.70
4.0 8.72X 10 2.73
4.5 4.52 1.5
5.0 2.51 9.70X 10~
5.5 1.46 6.04
6.0 8.80X 1075 3.82
6.5 2.46
7.0 1.60

a For 0 <x <0.2 we assume Moliére's distribution function to be valid.
In expanded form it is

P:(x) =21.37x71/3—30.79 4+66.75x5/3 —66.99x2 - - .

t:iFor 0 <x <0.2 we again use Moliére’s distribution function (renormal-
ized) ; viz.,

0n(x) <3194 exp [ —2x/(0.1)}] | 0.806 exp [ —2x/(3.25)}]
" 2x/(0.1) ' 3.25 )

o For 0 £y 0.2
Q6(y)= (3.44/y)e348v,
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TasLe V. Distribution functions for E=10e. Normalization
of P.(x), Qr(x) is arbitrary. So®Ps(y)ydy=1. x=10er/E,,
y=10e8/E,.

xory Pr(x) Qr(x) Py(y)

7.33

2.50

1.12
6.36X107!
3.73

2.63

1.96

1.53

1.21
8.1X1072
5.73

413

3.13

2.33

1.37
8.22X1073
5.28

3.32

2.15

1.30
8.03X107
4.80

3.06

107t

N =Wk o

X107t

5% 102 54102

OO PBLWANFRAT0 RN

X103

0210~
5.40X10
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this is clear from Egs. (2b) and (3b), which give

OuES/E) = (1/0) f Po(E0/ E)(0)du/v.

If we take ¢(v)=1/v and write y= E6/E,, we have

0o(3)=(1/0) f Po(y/a)da e

Now to a rough approximation Pe(y) is just an expo-

nential,
Py(y)~12 exp[— (12)%y].
Therefore,

1 dv
i) =02/0) [ expl— (12)1y/a5 =y~ expl— (12)]

is a rough approximation to the angular distribution of
photons. We have improved on this approximation by
the method of moments, assuming that the above
expression for Qs(y) is approximately correct near the
origin. Our results are given in the last column of
Table IV. ,

It is interesting to compare the results of our calcu-
lations of the distribution functions with those of
Moliére. For the sake of brevity we shall simply
describe the main features of this comparison. Consider
first Py(y). Our calculations agree with Moliere’s to
within a few percent up to about y=1.7. Beyond this
point Moliére’s function becomes smaller than ours,
by a factor 0.91 at y=2 and 0.36 at y=2.5. Around
y=3 Moliére’s function becomes negative. Our calcu-
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lations of Q.(x) also agree with Moliére’s to within a
few percent up to x=0.5, where they begin to differ;
but at no point up to =35 do they differ by more than
25 percent. Our values for P,(x) show the greatest
disagreement with those of Moliére. There is good
agreement up to about x=0.6, but at this point
Moliére’s function begins to drop below ours and be-
comes lower by a factor 0.85 at x=1.2. Moliére’s curve
then approaches ours, crosses at x=1.8 and becomes
larger by a factor 2 at x=3.5. Then, it again approaches
ours and crosses it at x=35.5.

(B) Effect of Collision Loss

Now we turn to the problem of calculating the distri-
bution functions for energies where collision loss is not
negligible, using the moments derived in Sec. II(A).
There are no essential differences in this work from
that of Sec. ITI(A); the main difficulty here is that for
the lowest energies with which we deal the behavior of
our series for the moments is rather dubious. For
energies down to about five times the critical energy
the latter difficulty is probably not very serious; our
expressions for the moments are probably accurate
within a few percent. Moreover, we are helped by the
following fact: as one goes down in energy the distribu-
tion functions become steeper and their shape over the
range of interest becomes less sensitive to the less
accurate higher moments.

Also, when collision loss is included, we have less
knowledge of the behavior of the functions at the origin.
In Approximation A we could rely more or less on
Moliére’s calculations; in the present case we must
guess. The best guess seems to be that the singularities

TasLE VI. Distribution functions for E=35e. Normalization
of P.(x), Q-(x), Qs(y) is arbitrary. So=Pe(y)ydy=1. x=>5er/E,,
y=5€0/E,.

xory Py(x) QOr(x) Py(y) Q)
0 o . 11.2 .
0.1 8.29
0.2 9.9 7.33 6.05 9.0
0.3 4.7 2.50 4.37 4.2
0.4 24 1.12 3.14 2.15
0.5 1.4 6.36X1071 2.24 1.20
0.6 8.0X 10! 3.73 1.57 6.60X 107!
0.7 48 2.63 1.10 3.70
0.8 3.3 1.96 7.7X1071 2.00
0.9 2.34 1.53 5. 1.20
1.0 1.70 1.21 3.75 7.20X1072
1.2 9.00X 1072 7.87X1072 1.74 2.80
14 5.1 5.43 7.7%X1072 1.10
1.6 3.10 3.90 3.36 4.5X1073
1.8 1.90 2.83 1.40 1.7
2.0 1.20 2.06 5.6X1073 6.7X107!
24 5.3X1073 1.15 7.8X10™ 8.0X1075
2.8 2.50 6.57X1073 1.12 7.2X107¢
3.2 1.27 3.98
3.6 6.70X 10 245
4.0 3.70 1.57
4.5 1.88 9.17X10™4
5.0 1.05 5.35
5.5 3.13
6.0 3.47X107® 1.87
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at the origin is the same as for high energies. Thus,
from Table II we see that the effect of collision loss on
the moments is least for the lower order moments, i.e.,
for small distances and angles. It does not seem unrea-
sonable then to guess that the behavior of the distribu-
tion functions for small values of their arguments is
unchanged from that when collision loss is neglected.
At the very least, it seems certain that, since P,(x),
Q-(x), and Q4(y) are all singular at the origin in Approxi-
mation A, they will also be singular when collision loss
is included. This is confirmed by our calculations. We
cannot determine the order of the singularity by our
method of moments, but can determine that the singu-
larity exists. This shows up when one reconstructs the
distribution functions for large values of the argument
and then tries to continue the function in toward the
origin. It turns out to be impossible to fit all of the
moments with a function which is not singular. We
have reconstructed P,(x), Q-(x) and Qy(y) for E=10e
and the first two of these functions for E=3e in the
manner indicated above, i.e., by starting with large
values of the arguments and working toward the origin.
If we can judge from the examples mentioned above,
our functions should be quite accurate down to about
x or y about 0.4 and not be off more than by about 50
percent down to 0.2. Our results are presented in
Tables V and VI.

In Approximation A, Py(y) is finite at the origin. As
far as one can tell from the moments, it is also finite
when collision loss is taken into account. If one assumes
this, it is possible to reconstruct the function down to
y=0. Unfortunately, we cannot estimate the accuracy
of our function for very small y. The results are given
in Tables V and VI for E=10e¢ and E=Se.

For E=10¢, x=0.2 corresponds to a distance of
r=0.2E,/10¢ radiation lengths. For air at sea level, for
which e=88 Mev and =300 meters, this corresponds
to a distance of 1.4 meters. For Pb for which e=6.7 Mev
and r=0.51 cm, this corresponds to a distance of 0.3
mm. We should like to remind the reader that the
assumptions implicit in our calculations of the distri-
bution functions are that the scattering angles are
small, the asymptotic expressions for pair production
are valid, and that Compton effect is négligible. The
dlstnbutlon functions given in Table V and VI are
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TasLe VII. Distribution functions for E=2e¢. Normalization of
P,(x), /Q,(x), Qo(y) is arbitrary. JSo®Ps(y)ydy=1. x=2er/E,,
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thus more accurate for light elements than for heavy
ones. For air, for example, E=2e corresponds to 176
Mev, where the assumptions above are fairly well
satisfied. For Pb, on the other hand, E=2¢ corresponds
to 13 Mev; at this energy the scattering angles can-
not be considered small nor are the asymptotic cross
sections valid.

We have also calculated the distribution functions
for E=2e. For this case, the expressions for the radial
moments are probably very inaccurate, and our radial
distributions may very well be quite inaccurate. The
numbers in Table VII thus represent more a guess at an
extrapolation than a calculation. The angular distribu-
tion functions are probably somewhat more accurate
than the radial functions since the expressions for the
angular moments converge much better than for the
radial moments. But even so, one cannot put much
faith in even the angular functions for the reasons given
in the last paragraph. The remarks made above con-
cerning normalization and the behavior of the functions
at the origin apply here also.



