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By extending considerations given by Dyson, general rules are obtained for isolating divergent parts
from integrals corresponding to overlapping graphs, and a proof is obtained for the appearance of an extra
factor Z,™! from “b divergences.” In the last section the possibility of renormalization for scalar meson-

nucleon interactions is demonstrated.

I. INTRODUCTION

N his treatment of spinor electrodynamics Dyson?
has defined operators A,, =¥, and IT* corresponding
to the three types of primitive divergent graphs in the
theory. In the calculation of the contribution to T,
arising from a reducible vertex part Vg it is possible to
break Vz down unambiguously into an irreducible
vertex part plus various inserted self-energy (S) and
vertex (V) parts. The divergences introduced by the
latter can be removed in a well-defined manner because
any two of the insertions made in Vg are either com-
pletely non-overlapping or else are so arranged that one
is completely contained in the other. This procedure
fails, however, in the calculation of the contributions
to =* or II* from reducible self-energy graphs. Con-
sidering, for example, the electron self-energy, there is
just one irreducible graph W, (Fig. 1). V parts inserted
at one of the two end vertices @ or b appear simultane-
ously as vertex insertions at the other vertex. Corre-
spondingly, the contribution to Z* arising from a
reducible part Wz is, in general, an integral which
involves divergences corresponding to each of the ways
in which Wr might have been built up by insertion of
V parts at either or both vertices of W;. Dyson has
called these “b-divergences” and their expected effect
is appearance of an extra factor Z;~! in his Egs. (88)
and (89). In order to demonstrate the possibility of
renormalization, it is vital that this factor should
appear; and it is the purpose of this paper to attempt a
formal proof. The considerations presented here throw
some light on the prospects of renormalization for
scalar electrodynamics.

II. SEPARATION OF OVERLAPPING DIVERGENCES

Dyson? (unpublished) has defined a formal mathe-
matical procedure for the isolation of the divergent
part from an integral representing overlapping diver-
gent graphs. This procedure is illustrated most readily
by an example.

Figure 2 represents an electron self-energy graph
which could be obtained by the insertion of a V part at

LF. J. Dyson, Phys. Rev. 75, 1736 (1949), referred to as D II,
in this paper.

2 The only published calculation for an integral corresponding
to an overlapping (fourth order) graph is that of R. Jost and
J. M. Luttinger, Helv. Phys. Acta 53, 201 (1949), who have
followed Dyson’s procedure.

vertex a or b of Fig. 1. Here
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Not only is the double integral over f¢; linearly diver-
gent, but it also diverges logarithmically if the integra-
tion is performed over either f; or #,, while the other
variable is held fixed. In order to isolate these diver-
gences, we use (here and in the subsequent work) the
invariant separation procedure outlined in Sec. VI of
D II.
Rewrite Eq. (1) as follows:

Gvu(?a b, t2) =Yy

)

Z(Ws, P)=e4f f dtidto[ Fu(p, 01)Gru(p, b, L) H (D, t2)

—F#(PO) tl)GVP(Poa tl: O)HV(PJ t2)
"“F#(P: tl)(’w(?oy 0’ t2)Hv(P0y t2)]

+e4(fdt1Fp(Po; 8)Gou(po, 1, O))

x( f dtH ,(p, t2))+e4( f a4 F (p, t,))

X( f dtsGu(po, 0, t2)H (o, tz)), (2)
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where p*+x2=0, iypo+«=0. If

fdtlF#(?O; tl)GVI‘(PO: tly 0) = LO'YH

f dGop(Poy O, 1) H (o, 12)= Ly

then we write

(W, p)=e‘ffdt1dt2[R(P, ty 1) ]

ey f v H(p, t)dls+ALs f Fup, )yt (3)

where R(p, t, ) is the expression within square
brackets in Eq. (2).

The terms within the square bracket are such that if
2, is held fixed, the integration over ¢, is convergent if
the first and the second terms are combined—this
second term being obtained by putting in those factors
of Fu(p, t0)Guu(p, b, t2)H,(p, t2) which contain ¢, all
momenta other than f; equal to their free particle
values—while, if #; is held fixed, the first and the third
terms in the square bracket combine to give a con-
vergent !, integration.

Algebraically, it is impossible to find a single term
which if subtracted might make the ¢ and ¢, integra-
tions convergent simultaneously. Even as it stands,
the expression within the square brackets, is, as a
whole, convergent neither over #; nor over f;, nor has
this subtraction made any difference in its degree of
divergence when the double integration is performed.
However, when f, is held fixed and the integration over
4, is performed, the third term in the square bracket

- f f A0dtaF u(, 0GP0, O, 1) oy 1)

can be written

_ < f f Aidts[F (P, t1)— Fu(po, 1)

— (b= 10)(8/ 3D oy 1) Gonlpor O, 1) H. (B0, tz))>
~ [an@uton )+ 0= p0)0/09E,p0 1) )

><< f @43Gyu(po, 0, t2)H,(po, ¢2)>-
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The integrand in the first angular bracket, ( ), above
is absolutely convergent as far as the #; integration is
concerned, while the second angular bracket, { )} ),
is a product of a divergent constant L; with a term of
the form A+ B(yp—ik). Hence, with ¢, fixed, the
integral of R(p, t1, t2) over #; consists of an absolutely
convergent part together with a divergent part, the
latter being unambiguous and fully determinate. Since
a similar result holds for /5, we can say that the expres-
sion in the square bracket is “‘convergent” in a special
sense over both the ¢ and f, integrations. It is to be
emphasized that this has been made possible because,
in the second (and also the third) term in the square
bracket, the overlap factor G no longer appears as
a function of two variables and so the integrand
Fu(po, t1)Gru(po, t1, 0)H,(p, t2) splits into a product of
two functions, each a function of a single variable.

In order to obtain the absolutely convergent (and
physically significant) part of Z(W,, p), we now perform
the final separation. Thus,

Z. (W, p)= 6“ffdt1dlz[R(P, ty, t2) — R(po, b, t2)
—(p—10)(8/3p)R(po, 1, 1) ].  (4)

If Eq. (4) is written out in full, we notice the basic
point of this procedure. Whereas, in Eq. (4), we have
subtracted terms with a view to securing convergence
over the double integration, we have also succeeded, by
the same step, in making Z.(W,, p) convergent for each
of the two ¢ and ¢ integrations. The part which we
designated above as the unambiguous and fully deter-
minate divergent part of the ¢ integration, has in fact
canceled out.?s The first subtraction in Eq. (2) made
the expression ‘‘convergent” in our special sense over
and 5, the final subtraction in Eq. (4) made it absolutely
convergent over all the #, {; and f, integrations. With
the final step we have succeeded in isolating from the
integral, divergences corresponding to the inserted V
parts as well as the divergence corresponding to the
over-all S part.

III. GENERAL RULES FOR THE SEPARATION
OF DIVERGENCES

The procedure of Sec. II for the separation of diver-
gent parts can be generalized to apply to any divergent
n-fold integral howsoever complicated by overlapping
or non-overlapping insertions. Consider a graph having
7 basic® momentum-vectors #; associated with internal
lines, such that the momentum vectors of the remaining
lines are expressed in terms of these # vectors. The
contribution to the corresponding matrix element is an
integral, I, over » variables.

In general the integral will consist of a product of
functions of each variable #; (and possibly of momenta
corresponding to external lines) with overlap functions,

28 This has happened because the integrals multiplying L, and

Ly in Eq. (3) are themselves self-energy integrals.
3 P. T. Matthews, Phil. Mag. 41, 185 (1950).
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i.e., functions of two or more variables, ¢;. If a set of
variables #,¢5- - -t is held fixed, the integration over the
remaining variables will be called a “subintegration.”
To estimate the convergence of each subintegration we
employ the considerations given in Sec. V of D II and
merely count the powers of the relevant ¢ in the numer-
ator and the denominator of the integrand. An n-fold
integral, I, will be absolutely convergent if, besides
the final integration, the subintegrations over all of the
smaller sets of variables ¢;, t#;, tiit, ---, are also
absolutely convergent for all possible choices of the
basic variables. If by merely counting the powers of
¢t; we find that an integral is itself convergent, while
any one of the subintegrations is not, the integral will
be called “superficially convergent.”

In general in an n-fold integral over f#ify -4y a
subintegration over #,- - -f, can be made convergent
only if we subtract from the integrand terms in which
those factors in the integrand which are functions of
tr41, **-tn only are left unchanged, while in the re-
maining factors the external momenta (which now
include ¢,41, - - -t,) are given their free-particle values.
Thus, to fulfill the condition of convergence over all
subintegrations, we must subtract from the integral
divergent terms corresponding to each subintegration,
the degree of divergence of the integrand for a particular
subintegration, in general, being unaffected by sub-
tractions corresponding to other subintegrations.

The considerations of Sec. IT can now be generalized.
We define true divergence over a subintegration #;fo- - - ¢,
as the divergent part finally to be subtracted corre-
sponding to this subintegration, in order to make the
subintegration absolutely convergent, after the terms
involving divergences corresponding to f;, ¢it;, titite, « -+,
subintegrations have already been sepa-
rated. Anticipating the procedure to be formulated, we
shall find that the above-mentioned divergences, corre-
sponding to these latter integrations over smaller
number of variables are themselves their true diver-
gences. Thus, for example, to obtain the true divergence
over t4f, subintegration we hold, first, all variables
except #; fixed and subtract from the integrand diver-
gent terms corresponding to #;, leaving the rest of the
integrand unchanged; similarly, holding all variables
except ¢, fixed, we subtract divergent terms corre-
sponding to #;. Finally, holding all variables except #,¢,
fixed in this new integrand, we subtract divergent terms
corresponding to the double integration. These last
constitute the true divergence over ff; subintegration.
The integrand after the separation of all these divergent
parts is absolutely convergent as far as #¢, subintegra-
tion is concerned.

We can now give, in analogy with Sec. II, unambig-
uous rules for the separation of divergences from an
n-fold integral. Before making the final subtraction
corresponding to the n-fold integration which will make
the remaining integral an absolutely convergent one,
we subtract from the integrand divergent terms corre-

Lig+ ey, * -
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sponding to each of the subintegrations f;, t#;, tijtk,
-+, hts - -tn—y. The divergent term to be separated
corresponding to the i#;i; subintegration would, for
example, consist of an n-fold integral over #ts- - -1, in
which the part of the integrand containing #; or f; is
such as to give, on integration, the true divergence
corresponding to #;i; multiplied by those factors in the
original integrand which contain neither #; nor ¢ and
have thus been left unchanged. In this expression, the
integration over all variables other than #;; will corre-
spond to a graph which we shall call the “reduced
graph,” and the corresponding integral the ‘“‘reduced
integral.” Thus, in Séc. II, Jfdiyy,H,(p,t:) and
JdiF (P, t)vu are reduced integrals.

Our final result can be stated thus. The entire diver-
gence to be separated from an n-fold integral is equal
to the true divergence over the #; integration multiplied
by the reduced integral over f---f{, plus the true
divergence over the f, integration multiplied by the
reduced integral over #/;- - - ¢, and so on, together with
the true divergence over the ¢, integration multiplied
by the reduced integral over #st4-- -4, and so on, to-
gether with similar sets of terms ending finally with the
true divergence over the final 4y -+, integration.
After all these divergent terms have been isolated,
the remainder is an absolutely convergent integral.

The maximum possible number of terms which may
need to be isolated is 2»—1. Of course, not all of the
subintegrations will be divergent, a considerable number
being “superficially” convergent, so that no corre-
sponding separations will need to be made.

It may be possible (and indeed as we shall see later,
it is possible in some special cases) to secure the actual
convergence of certain subintegrations before the true
divergence of the n-fold integration is separated. How-
ever, that this last separation will always leave behind
an absolutely convergent integral as remainder, would
follow from a generalization of considerations given in
Sec. IL.%»

A few remarks on superficial convergence will be
relevant at this stage.

(a) In spinor electrodynamics all graphs with four or
more external lines (except graphs corresponding to
scattering of light by light) are at least superficially
convergent. The “‘scattering of light by light” itself is
not a genuine primitive divergent on account of the
gauge invariance of the theory. It should, therefore,
always be possible to find other graphs which when
combined with the graph in question should give a
convergent result. We shall therefore treat the integrals
corresponding to the ‘‘scattering of light by light” too,
as being at least formally superficially convergent.
Opening two or more lines in a connected self-energy
graph always leads to superficial convergence in the
connected®® part of the remainder and so does the

3 A general proof of this will be published elsewhere.
3b Any part of a connected graph is joined to the rest by at
least two lines.
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opening of one or more lines in a vertex part, unless, of
course, so many lines are opened that the only connected
graph left is a V part. These considerations will immedi-
ately give the number of superficially convergent
integrations, when dealing with S or V parts.

If an internal line ¢ in a graph contains a self-energy
insertion with associated momenta ¢, #s, - - -£,, then the
subintegrations over #f;, tti;, -, thiz- - -t,—1, --- (but
not 5+« -¢,) are superficially convergent. ¢, being an
internal line, itself belongs to a loop, which at the very
worst consists of two electron lines, with but two
external photon lines, the whole forming as far as
ity - -1, integration is concerned, a photon self-energy
graph. Opening one single line belonging to the self-
energy insertion inside ¢ gives at worst a scattering of
hght by lxght graph. Thus the subintegrations #;, .,

N -+t,_s, -+ are certainly superficially conver-
gent, whlle with the convention adopted above for the
scattering of light by light graphs, the subintegrations
over the last set #f,- - are also superficially
convergent.

(b) If two sets of variables (¢;---¢;) and ({q- « - f») are
such that the corresponding graphs do not overlap and
if the integration over each set has been made conver-
gent, then the product of these convergent integrands
is also convergent over the subintegrations /;, f4, tifa,

, bit* *tita + - tp. For integration of functions with no
overlap terms certain new features arise. Taking a
simple example, the integral Jfdhdt:F(p, t)G(p, t2)
has no overlap term, and thus, if both #; and #, subinte-
grations are divergent (in this example logarithmically),

bpq, v

ffdhd‘2[F(P, t1) = F(po, t) LG (p, t2) —G(po, t2) ]

is absolutely convergent. We notice that the divergent
part separated is

f f At F(p, 1)G(po, 1)
+ F(po, 81)G(p, t2) — F(po, 81)G (po, t2) 1.

Although it loses its precise significance, we may still
formally retain the expression ‘“‘true divergence” over
Iy for SAdiF(po, t1), over ¢, for Sdt:G(po, t2), and over
hits for — SIS dtidisF (po, 11)G(po, t2). The negative sign
before the true divergence from /s integration, when
overlap does not occur, makes the use of our general
rule inconvenient for non-overlapping graphs.

The above remarks do show, however, that for non-
overlapping graphs it is immaterial in what order
divergences are removed, while for divergences arising
from graphs one of which is completely contained in the
other, Dyson’s prescription of successive removal start-
ing from the innermost insertion is a particular case of
the general rule given above. We shall illustrate this
rather more fully by considering self-energy insertions.

(c) Suppose a line ¢, in a graph I, contains a self-
energy insertion with momenta ¢y, ¢, ---¢,.. It will be
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convenient to remove divergent parts from the integral
corresponding to subintegrations ¢y, « - <tits, -+ +, fila - 4.
After the “true divergence” over Iify--f, has been
removed, the subintegration over this set is left abso-
lutely convergent. The momenta associated with the
self-energy insertion in line ¢ define (except for £), no
overlap function with any other momentum variable
to in I. According to Remark (b), if the integrand is
made convergent over f, its convergence over i,i;,

< “talily- + - L, is already assured. Remark (a) shows that
the same result holds for the only variable (f) which
does have overlap functions with these variables. At
this stage the only integrations in which #, t,, ---¢,
appear explicitly are the ft¢,- - - ¢, subintegration, and
other subintegrations in which these variables appear
as a group. But from considerations given by Dyson
we know already that, for questions of convergence, this
group will behave precisely as though the line ¢ had no
insertion inside it. This shows that it is immaterial
whether we retain the variables ¢, fs, - - -¢, or perform
the integration over them at this stage; the latter
procedure implies replacing Sr(f) by S.(£)Sr(t)/2w,
which is precisely the result one would get if one
followed the procedure of successive removal as de-
scribed in D II. By using results on superficially con-
vergent subintegrations derived by applying Remark
(a), a similar proof could be constructed to show the
validity of the procedure of successive removal for
divergence arising from V parts one of which is com-
pletely contained in the other.

IV. APPLICATION TO ELECTRON
SELF-ENERGY GRAPHS

We shall now apply the above considerations to the
case of electron self-energy graphs. According to the
Dyson-Feynman procedure for obtaining the effective
radiative corrections to any physical process, one draws
the relevant irreducible graphs and then replaces Sr by
Sri', Dr by Dpy, and v, by T, in the corresponding
integrals. One already uses the same procedure for
calculating T, itself (Sec. VII, D II); one draws all of
the irreducible vertex graphs and then makes the above
substitutions. We attempt to obtain a similar set of
self-energy graphs in which these substitutions can be
made unambiguously—only in this case this set of
graphs will not be irreducible. For this purpose we
establish the following categories of self-energy graphs.

Category [1] consists of the sole irreducible self-
energy graph in Fig. 1.

Category [2] consists of all graphs formed by in-
serting* at the end vertex b in Fig. 1 all irreducible V
parts of any order in e. The first end vertex of each
category [#] will be called @ and the last &, although
sometimes, for clarity, we use @[, and .

To obtain the graphs in category [3] insert at by all

4 End vertices of self-energy graphs, vertex graphs, or Compton
graphs, are the vertices where the external electron line enters or
leaves the graph.
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irreducible vertex parts, and so on for all subsequent
categories.

Continuing the above procedure we obtain an infinite
number of categories, each (except [1]) containing an
infinite number of graphs. Figure 2, for example,
belongs to category [2]. All graphs in [#] can, in fact,
be built up in precisely » different ways from the graph
in Fig. 1 by the insertion of vertex parts at agy; or by
or both. Further, all graphs in [#] could equally well
have been built by insertions at a{,—;; rather than at
btn-11. This complete symmetry will be found to be
important for the subsequent proof.

A graph belonging to [#] will contain precisely
(n—2) photon lines such that if these are opened (i.e.,
their associated integration variables held fixed), the
graph splits into two vertex parts. Given a graph in
[#n] we denote by L' the divergent constant arising
from the irreducible V part which was inserted at b(,_y
in order to obtain this particular graph in [#], by L
the “true” divergent constant arising from the reducible
part which was inserted at b(,—2 to obtain this graph
in [#], and so on. This last ¥ part is reducible because
its end vertex has as an insertion the V part with the
divergent constant L;'. Similar definitions apply for
LG, L2 - - -. We shall now prove the following lemmas.

Lemma 1.—Denote by [n] the integral corresponding to a
particular graph in the category [#]. We have the following result.

(W= (Lol ln—10+ Lln— 204 Liln—314: - -+ Lar{1])
F(L[n—1]+L2[n—2]+ L [n—3]+ - -+ Ly*1[1])
[ Ll [n—2]+ L L (n—3]+ L Le¥[n—4]+- - -
+L2L[n—~31+ LAL2[n—41+ - - -
+E[nl*J (5)
where
S*=Am+B(yp—iK)+Zemm,*.

A and B characterize the true divergence from [#], and [#n—r]
stands for an integral corresponding to a certain graph in category
[n—r] obtained from [#] by successive removal of V parts from
a or b as the case may be.

Proof —It is convenient to associate the basic variables with
the photon lines in the graph. Suppose [#] has & basic variables
of which »—2 are critical. The photon line # starts from an,
while #; ends at bn).

For the proof we shall systematize our procedure as follows:
we hold each one of the variables ¢ initially fixed, in turn, and
remove all of the divergent terms corresponding to all possible
subintegrations over the remaining (n—1) variables. Of course,
in following this procedure we shall have to guard against sub-
tracting a divergent term more than once. However, holding #
fixed we make the removal unambiguously corresponding to the
subintegrations tl, ey tk—l, tltz, ceey txlk_), lzta, LR ',tztk._l, Yy ‘1‘2‘3,
s+, htyr+fr—1. This immediately gives us the terms in the
first bracket of Eq. (5) by our general rule. The constants L/,
Lg2, ---, etc., come from the successive reduction of a reducible
vertex parts. It is to be emphasized that the first line in Eq. (5)
is the result of the removal of divergences, corresponding to all
the above subintegrations, due regard being paid to those sub-
integrations which are superficially convergent [see Remark (a)].
Now holding ¢, fixed we remove divergent terms corresponding
to all the possible subintegrations over subsets of variables
t2, 83, -+ -tr. A number of these terms (those, for example, corre-
sponding to subintegrations over £y, t5, - *k_1, dobs, - babg_1, - <,
etc.) have already been removed. However, the subintegrations
from these subsets which still remain, i.e., over fx, file—1, - - -tids,
o bdk1br—2, (barring those which are superficially con-
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vergent), cover the successive divergent parts of the (reducible)
vertex graph one obtains by opening the line ¢ and are just
sufficient to give us the second bracket in Eq. (5). The maximum
number of subintegrations corresponding to which divergent terms
still remain to be separated is 2¥~2 at this stage. These terms
must be separated by holding each of the remaining £—2 basic
variables initially fixed. Of these only (»—2) are critical. As noted
earlier, opening a critical line splits the graph into two discon-
nected segments with no overlap term between them. As an
example, let us assume £, to be the first critical variable, occurring
from the left. Holding it fixed, we notice that the only divergent
terms yet to be separated are the true divergences corresponding
to the subintegrations #itx, titafk—1, tilabi—2, - - -, those corresponding
to t, tx, bibk—1, tefe—2, -, etc., already having been removed.
Since these are the true divergences for integrations over non-
overlapping parts, we shall get a negative sign before the sepa-
rated terms as noted in Remark (b). This leads to the isolation
of divergent terms of the form —L,'Ly[n—2]. Starting from
end @ and opening all the critical lines, we shall get all the sub-
tracted terms on the right-hand side of the Eq. (5). It remains to
prove now that holding each one of the remaining (£—#) lines
fixed gives no further divergent terms to be separated. We notice
that every other line, if opened, converts the graph into a C
part,® which we know to be at least superficially convergent in
spinor electrodynamics. If the C part obtained by opening a line
is reducible, the only insertions its irreducible skeleton has are
vertex parts, inserted at its end vertices. But the divergent terms
corresponding to the subintegrations over the variables associated
with these vertex insertions have already been removed by the
successive removal performed by holding # and # fixed initially.
Thus, these C parts give no further contribution to Eq. (5).
This establishes the lemma.

If we had started with basic variables associated with electron
rather than with photon lines, opening a basic line would convert
the graph into an M part®—again at least superficially convergent
—and similar considerations would apply.

Lemma 2—This is a restatement of Remark (c) for the par-
ticular case of graphs in these categories. The divergent separa-
tions after inserting S parts in all the lines or V parts in all the
internal vertices (all vertices except a and b) of [#] are given by
the divergent parts corresponding to the subintegrations over the
internal variables of the insertions [as in Remark (c)], together
with the divergent terms to be separated from [n], where Sr(?)
is replaced by S.(£)Sr(¢), Dr(t) by Dr(t)Dc(t), and v, by Auc(?, ¢').
As a concrete example, we see that if a photon self-energy graph
is inserted in a line ¢ of [#], such that Dr()II*()=C+D.(?),
then the resulting integral is equal to C[#]+4[nJ%, where [#]*
is the integral obtained by replacing Dr(#) by D.(t)Dr(t) in the
integrand. The proof is exactly similar to that of Remark (c).

If we now desire to construct all self-energy graphs up to a
given order e2%*2, say, we draw all of the graphs in the various
categories defined above up to this order. No graph belonging to
category [£+2] or higher will be needed, the lowest order graph
belonging to the category [k+2] being of the order ¢¥+4, Taking
each one of the graphs drawn above, V and S parts will be inserted
in its internal vertices and all its lines. No insertions are ever to be
made in the end vertices of the graphs of any category. If the graph
in which insertions are being made is of order 27, these insertions
need only consist of graphs up to the order (2k—2r+-2).

It is easy to verify now that the above procedure gives accu-
rately all self-energy graphs up to order (2k+42) and that no
graph appears more than once. Among them we shall, of course,
find all the graphs which could have been obtained by insertions
of vertex parts up to order 2% at the vertices a (or ) of the funda-
mental self-energy graph in Fig. 1. To verify the appearance of
all vertex parts, up to the given order, we notice, for example,
that by the very principle of their construction the graphs of

8 A Compton graph—a graph with 2 external photon and 2
external electron lines.
8 Mgller graph—a graph with four external electron lines.
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category [3] represent the insertion of vertex parts in the end
vertices of graphs of category [2], while the insertions in their
own end vertices are given by the graphs of the higher categories.

Correspondingly, adopting the procedure in Sec. VII of D II
of dropping the divergent constants when they appear, if we
assume that Sm’, Dpy/, T} are defined up to order e2* by, respec-
tively, Sr plus Sr multiplied by a finite sum of products of
S(W,t), Dr plus Dp multiplied by a finite sum of products of
D(W, 1), and v, plus a finite sum of Ay(#, ¢), we can obtain Sp’
up to the order e?**2 by drawing all of the graphs in the various
categories, up to the order ¢2¥*2  and then substituting in all lines
Sr', Dm’ (defined as above) instead of Sr and Dp, and T, in all
internal vertices instead of vy,. The v, occurring at the two end
vertices are always to be left unchanged. Once again, in a graph
of order 2r belonging to any one of the categories, it will only be
necessary to substitute Sgy’, etc., up to the order (2k—2r+2).

Lemma 3.—If by the above changes in all of the lines and
internal vertices of an integral arising from a graph in category
[%] we obtain an integral [#]%, then
(1= L [n— 14 L2X[(n—=2*+ LM [n—3]*+- - -

+ L (=114 L2 (n—2*+ L [n—3T+- - -
—{La* L [n— 174 LX L {n =31+ - )+ Z* (1%,

where L,!* stands for the “true” divergent constant from the V
part introduced at a{n—y) in [#—1]¥in order to obtain [#]X. The
definition of the other constants is similar. Noticing that Sm’(¢)
and Dry'(#), and Ty, as defined above, behave precisely as do
Sr(?), Dr(t), and v, as far as the power of variables involved and
the question of convergence are concerned, the proof follows from
Lemma 1.

Lemma 3 immediately gives the following set of
equations

[1 X=2%p
[2 6= (La™+Ly>)[1 2%y
[33¢= (L™ L[ 2P (L2 L 1€
— L}y X[ 1A 2%

(6)
If in each equation the ZX’s are once again understood
as defined up to the requisite order and a summation
is carried out over all graphs, we obtain, by summing
up Egs. (6),
OF+027- - +IeH1P)A -2+ L)

=Z* b Z¥ppt 2y (7)
where, following Dyson’s definition of L,
L= L X+ L%+ L4 -
=Ly*+Ly>+L>+---. (8)

It is to be understood that the terms in the factor
(1—2L+L? on the left-hand side of Eq. (7) in fact
only appear to the order needed. The symbol [r]X
now stands not only for an individual graph but for all
of the graphs in the category [7] with the inser-
tions which have been needed to build up S/, to
the required order. The right-hand side, consisting
of the “true” divergent and the absolutely convergent
parts of all the self-energy graphs up to the given
order is, in Dyson’s terminology, precisely equal to
A(e)+(1/27)B(e)Sr1+(1/27)S.(e)SF. Equation (7)
is the result of substituting Sr)’'(¢), Dr’(e) in all the
lines and T, (e) in all but two vertices of the various
graphs in our categories. Thus [1 PX+[2}X+ .- will
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be called Z,* (corresponding, but not equal to Z,* in
D II), and we obtain

SrZ1*(e)=—2miokSp+(1—L)2[A(e)Sr
+(1/2m)B(e)+(1/2m)S(e)].  (9)

Equation (9) replaces Dyson’s Eq. (88). Here the term
involving &x has been added to take account of the
self-energy graph consisting of a point.

To proceed with the rest of the proof for the possi-
bility of renormalization, we follow Dyson’s arguments
closely. Since no overlaps occur for V parts, their struc-
ture gives immediately a proof of Eq. (96) in D II; i.e.,
Zy=1—L(e). We notice now that a self-energy graph
of order 2r, belonging to any of the categories [#],
contains » photon line, 2r—1 electron lines, and 2r ver-
tices. A substitution of I',=Z,7'T ,(e1), S¢’'=Z:Sr/(e1),
D¢’'=2Z3Dry(e;), made in the internal vertices, and all
the lines gives an e factor, €27 Z;72+2Z>~1Z;". An extra
factor Z;2 appears from Eq (9), and one thus obtains
a possibility of absorption of these factors in charge
renormalization if we choose Zy=1+ B(e;)/2r. It may
be emphasized, once again, that in this manner of proof
all constants and operators, and the charge renormal-
ization itself are defined up to the requisite orders. A
similar proof can be constructed for photon self-energy
graphs, where, once again, insertions at one end vertex
appear simultaneously as V-insertions at the other end
vertex. It will be found to be expedient, in that case,
to associate basic variables with electron lines in order
to be able to remove practically all possible divergences
with a single choice of basic variables.

(A) Pseudoscalar and Scalar Meson-Nucleon
Interactions

The considerations given so far apply with minor
modifications to exhibit the possibility of renormaliza-
tion for the scalar theories of nuclear interaction. The
possible primitive divergents for the interaction of
scalar and pseudoscalar mesons with nucleons are the
same as for spinor-electrodynamics.® But, whereas in
electrodynamics graphs representing scattering of light
by light do not in fact constitute a genuine primitive
divergent, the corresponding graphs in meson theories,
with four external meson lines are definitely logarithmi-
cally divergent. Further, in electrodynamics, graphs
with three external photon lines could be paired with
others obtained by reversing the direction of internal
electron lines and were thus shown to vanish by an
application of Furry’s theorem (D II, Sec. IV). Since
“‘charge-conjugation” does not lead to a reversal of
sign in the case of scalar theories, graphs with three
external meson lines present a new type of primitive
divergent.

However, if Furry’s theorem does not apply, we can
still exclude graphs with odd numbers of external
meson lines if the mesons are charged, by charge conser-
vation. Also, for neutral pseudoscalar mesons, Dyson
has shown, by using reflection properties of the relevant
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wave functions, that such graphs are in fact not
divergent.”

In the sequel we shall consider pseudoscalar (charged
or neutral) and scalar (charged) theories. Thus, besides
the primitive divergents in electrodynamics the only
new feature would be the divergent graphs correspond-
ing to the Mgller scattering of two mesons (M-parts).
Following a suggestion first given by Matthews, it will
be proved that the divergences arising from these M
parts can be canceled consistently by adding an appro-
priate é-type interaction between mesons to the
lagrangian. We consider in detail only the case of
pseudoscalar neutral meson, the remaining cases being
almost identical.

Following Matthews we write the interaction hamil-
tonian as

Hy(2)=if(x)ys¥ (x) (%) — hedro (x) ¢ ()
—30K°¢*(x) — oM ().

The corresponding graphs will have, besides the
vertices with two nucleon and one meson line incident,
also vertices with two nucleon, two meson, or four
meson lines incident. These last will be called 4-vertices,
while graphs formed entirely from 3-vertices will be
called the “original graphs.”

The following remark will apply to all except meson
self-energy graphs, which will be considered later.

Corresponding to any original graph (formed entirely
from 3-vertices), which itself represents a Mgller scat-
tering of mesons, or contains M parts inside itself, there
exist in the theory graphs formed by replacing the M
parts by 4-vertices in all possible ways. It is easy to
verify that for a field theory with ¢* as the only inter-
action term there are two primitive divergent graphs,
graphs with two external meson lines (meson self-energy
graphs), and graphs with four external meson lines
(M parts).

We shall call a graph “simple” if it does not contain
an M part inside itself, or is a Mgller graph which
cannot be formed by joining two or more M parts. We
shall retain the definition of reducibility of a graph as
adopted in electrodynamics. Thus, a graph may not
be “simple” but may still be irreducible if it satisfies
the criteria of irreducibility as in electrodynamics.

To choose the constant S\ we proceed in three steps.

(1) Consider the category of all original M parts
which are both “simple”” and irreducible. If 6\ is chosen

7 Note added in proof.—Dyson has, in fact, proved that the con-
tribution F($1, ps, ps) from any graph with just three meson lines
(1:1, p2, P3) in neutral pseudoscalar theory vanishes identically.

be a vector obtained from p by space reflection. Since
¢(Pl)¢(P2)¢(P8)F(1’1’ P2, PZ) 18 a scalar, F(ply P2, Pa) isa pse“ldo'
scalar function and therefore F(p)= —F(p). (This can be demon-
strated by a more explicit mathematical proof.) But F(p) is
invariant under a proper Lorentz transformation; for example,
under a space rotation, through 180° about an axis in line per-
pendicular to 1 and ps, which transforms p; to P, and p; to P,
and since p1+pa+ps=0, also transforms p; to Ps. Therefore,
F(p)=F(p). Hence, F (») must vamsh identically.

The author is indebted to Mr. F. J. Dyson for kindly com-
municating the proof.
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equal to the sum of their true divergences (the true
divergence of an M part consists of a constant), the
term —d\¢* suffices to cancel all divergences arising
from the above graphs. 8\ is thus a power series in f.

(2) Now consider the category of all original irre-
ducible M parts which are not simple. Before removing
the true divergence from the over-all M part, divergent
terms have to be removed corresponding to the M parts
inside the graph in accordance with the procedure given
in Sec. III. We illustrate the points involved with a
simple example. Figure 3 represents an (irreducible)
M part obtained by joining two simple M parts. The
corresponding integral is given by?®

f “’fdtldtgdtadh[Trace VS (p+11)vsS (pt+t—12)
XS (ti—q)vsS(41) JA(t) A(p+g—12)
X[ Trace vsS(p'+15)vsS (8:)vsS (1) v6S (84— ')
XveS(P'+ts—t)veS(p' 13— 1) JA(fa—1s).

The integral is logarithmically divergent with respect
to the #, f3ts, and fi564 subintegrations, besides being
logarithmically divergent with respect to the final
4-fold integration. The remaining subintegrations are
at least superficially convergent.

The divergent terms to be separated before the true
divergence over ffs3ts is separated, in order to leave
behind an absolutely convergent integral are

(BN f dadtudteA ) A(p-+g— 1)

X [Trace vsS(p'+123)vsS () veS (ta) vsS (ts—¢')
XysS (P +ta—12)vsS(p'+t3—12) JA(ts—1s)

4 (8X)of* f dtrdts[ Trace vsS(p+t1)vsS(p+11—12)
XS (t1i— q)vsS () JA(L)A(p+g—12)
— (N)(N)e f AW AGp+q—1),

where

(3M)1=f* f dt\[ Trace S (pot£1)vsS (Pott1—t20)
XvsS(ti—q0)vsS (1) ]
(8N)=f® f dtsdty[ Trace vsS(po'+13)vsS (ts)
X v5S (84) Y6S (t4— 90) 1S (po+ 24— t20)
X v8S(po’+ 23— t20) JA(fs— 1)

Po=qo=po'=q0'=tw, po*+K*=0
8 S and A stand for Feynman’s functions.

and
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(8N)1, is the true divergence over #;, (0)\)2 over f3ls, and
—(8X)1X (6\)2 over titsts. The negative sign before the
latter follows from the considerations about non-over-
lapping graphs given in Remarks in Sec. III.

Now we notice that on account of the presence of
— 0A¢* term in the hamiltonian with 8\ (for the present)
chosen as the sum of true divergences from all irre-
ducible simple M parts, there are three other graphs of
order f* in the theory, viz., the graphs in Fig. 4. Since
O\ contains among other terms (6\); and (8X),, we may
assume that in the graphs drawn in Fig. 4 —(6)),¢*
acts at the 4-vertex marked 1, and —(8X).¢* at the
4-vertex marked 2. Quite obviously the sum of contri-
butions from these four graphs suffices to cancel all the
divergent terms exhibited so far. The true divergence
from the #;85¢5t4 integration (6X); which still remains to
be separated from (1) to leave behind a convergent
integral will now be added &\ to already formed and
we secure the cancellation of all divergences if for
this process the graph consisting of a single 4-vertex
— (8)\) 3¢ is also taken into account. Thus if we consider
all (irreducible) M parts which are not simple, only the
true divergence over the final integration need be added
to the A term formed by adding the true divergences
from all irreducible simple M parts. The result is of
general validity and holds for the general case of an M
part formed by joining any number of simple M parts.

It may be noticed that the operation of taking the
trace does not interfere with the separation of diver-
gences corresponding to an M part which is contained
inside another. The reason is that nucleon lines run in
loops while (in the case of original graphs) meson lines
do not run continuously, thus making it possible to
localize M parts unambiguously in this theory.

(3) 68X so far has been obtained as a power series in f,
and is equal to the sum of true divergences from all
irreducible M parts. Considering reducible graphs now,

T2
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we have to consider the effect of inserting .S and V parts
in all the irreducible M parts. Since Sr'=Z>Sr:'(f1),
AF'=Z3Ar/(f1), and T'5=Z,~'T'\5(f), we replace Sr(p)
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by Sri'(p), Ar(p) by Ar/(p), and vs by T':13(p, p’) in
all the lines and the vertices of the original irreducible
M parts. An irreducible M part of order 2r contains 2r
3-vertices, 27 nucleon lines, and r—2 meson lines. The
above substitutions give f*Z, 2 Z2"Zs" =75’ as
the f-factor outside the integral corresponding to this
irreducible M part, while the integral itself can be
written as the sum of divergent and convergent terms,
both expressed as power series in f;. Extending the
arguments given above for irreducible graphs we readily
see that finally SA(f1)=Z52X M 4(f1), where M (f1) is a
power series in f; (starting with a term f;*) each of
whose terms corresponds to the true divergence of some
original M part.

So far we have proved that with the above choice of
S\ not only can all divergent terms be separated from
the integral corresponding to the original M parts to be
canceled, but further that the new M graphs introduced
into the theory because of the term —éA¢* in the
hamiltonian are also accounted for.

Similar arguments prove that if we are considering
graphs corresponding to any other process (except
meson self-energy graphs) which contain M parts inside
them, a combination of the original graphs for the
process, with graphs obtained by replacing the M parts
by 4-vertices in all possible ways will always lead to a
cancellation of all divergences arising from the contained
M parts, in the original graphs. The rest of the proof
for the finiteness of the S-matrix follows D II.

(B) Meson Self-Energy Graphs

We now consider the case of meson self-energy graphs.
By joining up an incoming meson line to an outgoing
meson line in any M part we obtain a meson self-energy
graph. Conversely, in a meson self-energy graph, if any
meson line is opened, we obtain an M part. Just as it
was impossible to make the substitution T',; for v, at
the end vertices of a self-energy graph in electrody-
namics unambiguously, similarly, it is impossible to
make an unambiguous substitution Ar,’ for Ap (or
Sri’ for Sr) if we desire to obtain a higher order meson
self-energy graph from one of lower order.

However, the procedure for isolating divergences
from M parts, outlined in Sec. III, leads to an essential
simplification. The principles involved can be illustrated
once again by considering a simple example.

Figure S represents a meson self-energy graph, in one
of the nucleon lines of which a nucleon self-energy
graph is inserted. The corresponding integral is

11(p) =+ [ dtdi Trace 1S p)vsS()
XvsS(t1—t2)vsS (1) JA(22).

The integral is logarithmically divergent for the #
subintegration, linearly divergent for the ¢, subintegra-
tion, and quadratically divergent for the ¢,f; integration.
The divergent terms to be separated in order to leave
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behind an absolutely convergent integral are the
following :

1 f dtydts Trace [vsS (b1~ po)vsS(t1)

X758 (b1—t20) v5S (4) JA (o) ¢ f dhdty

X Trace [vsS (ti— p)v>S () { vsS (bro—t2)vs
+{(t1—t10)9/ Bty s =t10(vsS (f1—t2) v5) } S(t) A(t2) ]

+ {f“fdtldtg Trace [vsS(ti— po)vsS(th)

XvsS (t1—12)vsS (1) A(t2) — v5S (F1— po) vsS (1)
X ¥sS(f1—120) 7S (1) A(t2) — ¥5S (tr— po)vsS (1)
X {vsS (10— t2)ys+{(}1—410) 8/ Ot1)ti =t10

X (veS(t1—22)v5) } S(t1)A(22) ] } l

1 [ dudel (o= pouta/3p)
+5(0—00)u(p— £0),(3/34)(3/3p,) }p =0
X Trace [vsS(ti— ) vsS (1) vsS (ti—1s)
XvsS(t)At) — vsS(t1— p)vsS(41)

X {v6S (bro—2t2) s+ ((t1—110)8/ Ot 1) 11 = 110

X (vsS(thi—t)vs)}SE)A(L) ] (10)
where .
1yt +Ko=to"+K?=0
and
t202+K2 = P02+K?‘ =0.
Let

f‘*ertl Trace [vsS (61— po)ysS(t1)
XS (tr—t20)v5S () J= 8),

f?fdtm v6S (bro—12) vsA(t) = A

and let the expression in double brackets, {{ }}, in
Eq. (10) be equal to A’. Then among others the follow-
ing are divergent terms separated:

oA f A1)+ AP f it
X Trace [vsS(ti—p)veS(t)S ) yvs]+4".  (11)

The integral with Af? as coefficient will be canceled
by being combined with the integral arising from the
nucleon mass renormalization term —é&kfy in the
hamiltonian, while 4’ is similarly canceled by a proper
choice of 8«? in the term — dx2¢% To cancel s\ SdtA(2:)
we can combine it with a meson self-energy graph

? The divergent terms shown here corresponding to #%fs integra-
tion are of the form A’+ B(p2+k2)+C[ po(p— po) * where C can

be shown to be a finite constant. C[po(p— po) P is thus properly
to be included in the convergent part of IT*.
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obtained by replacing the M part by a 4-vertex as we
have so far been doing; but now we notice that

A'= A" — 5\ f A,

Fic. 6.

PP

where A" is that value of the meson mass renormaliza-
tion constant which it would have if M parts were not
divergent in the theory; i.e.

A " =f4fdt1dlg Trace [755‘(51— Po)’)/ss(tl)

X ysS (l1—t2)vsS (81) A(t2) — ¥5S (1= po) ¥sS (£1)
X {vsS(tro—2t2)vs+((b1—210) 8/ Otr)t1 = t10
X (vsS(ti—22)vs)} SE)AR) ],

so that (11) can be written as
A"+ Aﬁfdtl Trace [vsS(ti— p)vsS (41)S (¢1) 1.

Further, since 8\ is not a function of p, the divergent
term separated corresponding to #; gives no contribu-
tion to the charge renormalization constant set out
in the last integral in Eq. (10) as part of the coeffi-
cient of (p—po)u(p—po)». The result is that the di-
vergent terms to be separated in order to obtain an
absolutely convergent integral from a meson self-energy
graph are precisely the same as if M-parts were not
divergent in the theory, this result holding for only
those M parts which are obtained by opening a single
meson line in a meson self-energy graph. A further
consequence of this is that the self-energy graph in
Fig. 6, unlike other graphs containing 4-vertices, has
to be considered separately and is not like others a
compensatory graph.

The reason why the result shown to hold true for the
particular example can be generalized is this. Let us
first consider a meson self-energy graph belonging to
any category [#]. The meson and nucleon lines or the

FiG. 7.

vertices in [#] do not contain any S or V insertions so
far. In order to remove the divergence from the M part
formed by opening a meson line we must associate one
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of the basic variables, say, t,, with the particular meson
line being opened. The true divergence corresponding to
the subintegration fst3- - -#; is a constant (8A) and the
reduced integral is necessarily SAr(¢1)d%;. Thus, when
the final true divergence over #ils---#; is separated,
Ar(l) not containing the external momentum p,
contributes — A JSdtAr(f;) to A’ and makes no contri-
bution to the charge-renormalization constant at all,
precisely as in the particular example. The effect is the
same as if M parts were not divergent in the theory,
and the mass renormalization constant were not A’
but 4”.

F16. 9.

It must be emphasized that the above result holds
only for those M parts obtained by opening one meson
line. We shall call such M parts “final” M parts. Thus,
for example, the self-energy graph shown in Fig. 7
containing the M parts with the loops marked 1 and 2
is necessarily to be combined with three other graphs
in Fig. 8 just as in Sec. V(A).

So far we have restricted our considerations to graphs
belonging to a category [#] in which S and V parts
have not been inserted. To bring out the new features
involved we consider another example. Figure 9 shows
a meson self-energy graph belonging to [2] in which
the M divergence is associated with the ¢; loop. In the
line /> we insert the self-energy graph in Fig. 5, which
is itself a modification of the graph in [17]. The resulting
graph is shown in Fig. 10. M divergences are now

Fre. 10.
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associated with the subintegrations over 3, ¢, {143, and
hists. Considering the line /; by itself, from the argu-
ments given before it is obvious that we need not make
an explicit separation of the M divergence corresponding
to f5. If now the ‘“mass-renormalization constant”
corresponding to the line p is considered, it will be seen
that not only is it unnecessary to separate the diver-
gence corresponding to #fsf3 subintegration (for which
only one variable 7, is held fixed), but the same applies
for the ¢; and #¢; subintegrations. The reasoning for all
cases is similar. For example, the true divergence over
{1 is obtained by putting, among other variables, p equal
to po wherever it occurs in the integrand. When the
mass renormalization constant corresponding to line p is
being separated, its part corresponding to ¢, is the same
as above, no further change being necessary, since p has
already been replaced by p,. Thus, A'=A"—true
divergence over ¢;Xthe reduced integral over (fafsls
—true divergence over #¢;Xreduced integral over fof4
—true divergence over ?,/sf5X reduced integral over .
Similarly, we can see that the ckarge renormalization
constant is precisely the same as if these M parts were
not divergent in the theory. From our definition, that
M corresponding to the subintegration ¢; was the “final”
M part contained in the meson self-energy graph (of
Fig. 5) inserted in line ¢, while ¢; was the “final” M part
for the line p in Fig. 9. Because of the insertion in #,,
new M divergences /i, lilsf3 arise; since they can be
associated with p, we shall call the divergences corre-
sponding to #,, tfs, and titals also “final” divergences
associated with the line p in Fig. 10. This is an extension
of the definition of “final” M-divergence.® In general,
the result can be stated thus: given a meson self-energy
graph of category [#], the insertion of a meson self-
energy graph with a number of final M divergences in
any of its meson lines will increase the number (and
complexity) of the M divergences in the entire graph.
It will always be possible to associate these new diver-
gences as the final M-divergences corresponding to
some meson line, making it possible to prove that no
explicit separation of corresponding M divergences is
needed. We have the result that the mass and charge
renormalization constants for meson self-energy graphs
are precisely the same as if these “final” M parts were
not divergent.

The same results (only simpler to prove) hold for
insertions of S and V parts in the nucleon lines and
vertices of graphs of categories [7].

The only meson self-energy graph which still needs to
be considered is the graph in Fig. 6. All other meson
self-energy graphs with 4-vertices act as compensatory
graphs like those in Fig. 8. The corresponding integral is

— () f AR (dt= — M o(f) 25 f Arl (s,

10 Analytically a final M-divergence inside a meson self-energy
graph may be defined such that its reduced integral is independent
of the external momentum of the meson line.
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so that finally we choose

ok’= —-(l/m')Zg“(fl)[A”(fl)—Md(ﬁ)fAm’(t, fl)dt].

This completes the proof.

On account of the results above regarding “final”
M-divergences, it will be found expedient to associate
basic momenta with nucleon rather with meson lines in
graphs belonging to any category [#]. This choice will
remove all the significant divergences with a single
choice of basic variables.

The case of the meson self-energy has been treated
at length because it will serve as a prototype for
renormalization in other theories such as scalar electro-
dynamics, where both C and M parts are divergent and
it is not possible to make an unambiguous insertion of
S parts in meson or photon lines.
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The general rule for the separation of divergences
given in Sec. IIT will also apply to other theories such
as scalar electrodynamics; but the considerations given
in the remarks will not, because both C and M parts
are divergent in that theory, leading to overlaps of
considerably greater complexity. It is, in fact, in scalar
electrodynamics that the power of the general rule
formulated in Sec. III exhibits itself. General consider-
ations on that problem will be published shortly.

The author is deeply indebted to Mr. F. J. Dyson for
indicating the considerations of Sec. IT in an extremely
helpful discussion, without which this work would not
have been possible, and to Dr. N. Kemmer for con-
tinual help and encouragement. The tenure of a
scholarship from the Education Department of the
Government of Punjab, Pakistan is gratefully ac-
knowledged.
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Emission of Protons from the Compound Nucleus F$*
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The emission of protons from the reaction N*(a,p)O0'7 was studied by photographic emulsion technique.
Two groups of protons were observed, of Q values of about —1.16 Mev and —2.0 Mev for E,=3.6 Mev
and 4.2 Mev. The yield per million incident a-particles has been estimated at 0.348 and 0.409 for the two
resonance levels, 3.6 Mev and 4.2 Mev, respectively. The angular distribution of protons in the CM system

has a maximum at §=90° for the two ground states, and, for the excited states, it is isotropic.

I. INTRODUCTION

HE reaction O0'"%(d,p)0O'7 and the reaction
N*¥(a,p)O" both lead to the formation of the
compound nucleus F'$*, It is known! that the former
reaction yields two groups of protons. For E;=0.575
Mev, which corresponds to an excitation of 8 Mev in
F'8 these two groups had Q-values of 1.75 Mev and
0.8 Mev, according to the observation of Pollard and
Davison.? At this excitation, which is provided by
a-particles of energy about 3.6 Mev, only one group of
protons has been observed in previous experiments for
the second reaction, although two groups might be
expected, unless forbidden by selection rule. The
presence of two groups of protons in the reaction
N*¥(a,p)O" has, in fact, been demonstrated by Pollard
and Davison,?2 but in this case, the energy of the
a-particles was about 5.2 Mev.

The purpose of the present experiment was to
investigate, by emulsion technique; (A) the group
structure of the protons, at low bombarding energies of
the a-particles, arising from the reaction N%(a,p)0';

1J. D. Cockroft and W. B. Lewis, Proc. Roy. Soc. (London)
A130, 463 (1936). Guggenheimer, Heitler, and Powell, Proc. Roy.

Soc. (London) A190, 196 (1947).
2 E. Pollard and Perry W. Davison, Phys. Rev. 72, 736 (1947).

(B) the yield of the process; and (C) the angular
distribution of the protons.

II. EXPERIMENTAL DETAILS

The oa-particles from polonium were channeled
through a circular slit, the arrangement of which is
shown in Fig. 1. It consists of two circular brass disks
D, fitted with guard rings R, cut at sharp angles. The
strength of the source is 1 mc deposited at one end of
a wire W and introduced into the slit through the guide
G which holds the source centrally between the two
disks. The position of the source 0 can be viewed
through holes H drilled at the center of each disk. The
two supports S and the guide channel G subtend an
equal angle at the center. This facilitated the calculation
of the solid angle through which a-particles emerged.

TaBLE 1. Proton groups from N*(a,p)O".

E, No. of Ep Q Ratio
(Mev) protons R, (Mev) (Mev) (1) /(D)
3.6 (I) 1986 54.5 2.45 (a) —1.154+0.04 0.12
(II) 245 28.5 1.60 (b) —2.0 £0.04
4.2 I) 2321 75 3.02 (a) —1.18+0.04 0.12
II 291 46.2 2.20 (b) —2.0 =0.04




