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Statistical Theory of Pressure Broadening*
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The statistical theory of pressure broadening is developed for any interaction law in which the potential
energy is inversely proportional to some power of the distance between the molecules, including cases in
which the forces change sign. MarkofPs method is used. Special attention is given to the broadening pro-
duced by dipoles and by quadrupoles.

If the volume occupied by the gas is 4sR'/3, the proba-
bility density with respect to r is

I. INTRODUCTION

0 calculate the contour of a spectral line under
the most general conditions is a very dificult

task. It is customary to use the phase integral method
because of its analogy with the classical Lorentz treat-
ment, although this method is sometimes not exact.
The statistical theory, ' on the other hand, has its own
major shortcomings, being correct only for slow per-
turbations among the molecules. However, since it
represents a limiting case of both the correct theory
and the phase-integral method, its simplicity makes it
often a useful guide.

p(r) dr =3ridr/R',

and that with respect to $,

p(~)«=l«
It is desired to find the probability W»(V) that, in

the presence of X perturbing molecules, the potential
energy P;»V; shall have the value V. This is most
easily determined by the use of MarkofF's method. ' The
calculation is analogous to Holtsmark's evaluation of
the probability for a given electric field strength at a
point in a gas. '

According to MarkoH's analysis,

II. THEORY

The statistical theory is based on the following con-
siderations. The distance between the two energy levels
involved in a spectral transition is a function, Bo+V, of
the position of all perturbing molecules, since the per-
turbation V= +;V;, which is present in addition to the
normal energy difference, Eo, depends on the con6gura-
tion of all molecules surrounding the radiating one.
Accordir g to the statistical theory, the in.tensity of the
spectral line at an energy V (i.e., a frequency V/h) to
one side of its undisturbed position, Eo, equals the
probability of those con6gurations of perturbers which
yield the value V. Our problem is, thus, one of calculat-
ing the relative volume of configuration space in which

P; i»V; equals some given V, Ebeing the numb'er of
molecules interacting with the emitter.

The potential, V;, due to the ith molecule depends
on r;, its distance from the radiating molecule, and a
set of other variables like angles and spins. Usually the
latter, here to be denoted by $,, are separable, and V;
depends on r; in accordance with a simple power law.
%e, therefore, set

W»(V) =(1/2n))~ e '~ Ar»(p)dp,

where

N

A»(p) = JI p($)d$J~p(r)dr expLipcr «(t)j

The last expression can be written

A»(p) = f1 3B(p)/2R' j»,—

provided

1 ~R

B(p)= d$ I 1 exp[ipcr «(—$)))r~dr

0

If the number density of molecules is n, so that X
=4sNR'/3, the limit of A N as R~~ is

V;= cr; «($,).
A(p) =expL —2w«B(p) j,

8'(V) = (1/2s)
~

exp[ ip V 2x«B(p) jdp—. —
—1, )~&0

«(5) =
+1, $&Q

* Assisted by the ONR.
' T. Holstein, Phys. Rev. 79, 744 (1950); H. Margenau and

S. Slalom, Phys. Rev. 79, 213 {1950}.

We now turn to the evaluation of B(p).

~ S. Chandrasekhar, Revs. Modern Phys. 1S, 1 (1943).' J. Holtsmark, Ann. Physik 58, 577 {1919).

The function «(g) has a vanishing mean. When this
characteristic is satis6ed, the Precise form of «($) is and Fq. (1) becomes in this limit
relatively unimportant, leading only to diBerent nu-
merical factors than we shall encounter by putting
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After integrating over $,

F00

8(p)=2 (1—cospv)r'dr, with v=cr "'. (2)
Jp

On expressing the volume element in terms of pt'=l',
we have

l4

l.2
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provided m& $. In fact, 8 does not exist unless this
inequality is satisfied, and H' fails to have meaning in

that case.
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IV(V) =—

~' exp( —ng p""') cospVdp.
p

For V=o, this integral can be evaluated directly. The
probability that the total potential shall be zero, is

W(0) = (m/3s) I'(m/3)/(ng„) ~"

The intensity at the center of a "statistically"
broadened line, therefore, decreases with ~z™.

For 6nite V, our result can be written in the form

W(V) =(1/ I Vl)I-(V/Vo), (3)

the function I being dehned by

I (*)= I expL —(n/x)" jcosudu,

and Vo ——(ng )~'~ represents a convenient unit for
measuring the energy; it is a measure of the potential
energy of two molecules at their mean distance of
separation.

I 2 3

l'ro, 1. Line contours for dipules and quadrupoles. The ordi-
nates are proportional to the intensities, and x is proportional to
the frequency displacement.

theories. 4 The present considerations become applicable
to these cases at high pressures and, possibly, at low
temperatures. But since the statistical eGect is always
basically present and yields a lower limit for all ob-
servations on the broadening of lines, these results may
not be without interest.

For m=3 (dipole broadening)

Vo= s2x nc, I3(x) =x/(1+x-'),

W(V) = Vp/s. (V'+ Vp').

This represents the usual dispersion curve with half-
width Vp. In an earlier publication' the fact that the
statistical theory yields a distribution of this form
when many perturbers cooperate was merely stated,
but the statement was met with some doubt. '

For other values of m the integrals must be evaluated
by numerical computation or series expansion. This
has been done for a number of instances. As an example,
Iq(x)/x is plotted, together with Ia(x)/x, in Fig. 1.
Note that x= V/Vo=hv/pro in terms of frequencies,
where hvp is the frequency displacement at the mean
distance of separation of the molecules.

'For large values of V, W(V) becomes proportional to
V ' " . If one considers only binary interactions,
W(V) ~dr;/dV, , where r;=4' 3/3. This also leads to
V ' ', but with a somewhat diferent factor than that

III. APPLICATIONS

Interesting cases are, (a) broadening by permanent
dipoles (m=3, e.g., ammonia) and, (b) broadening by
quadrupoles (m=5; e.g. , oxygen). These have usus, lly
been considered from the point of view of impact

4%. V. Smith and R. Howard, Phys. Rev. 79, 132 (1950);
R. Beringer and J. G. Castle, Phys. Rev. 81, 82 (19SQ); M. Mizu-
shima, unpublished work. More general considerations may be
found in P. Anderson, Phys. Rev. 76, 647 (1949).

~ H. Margenau, Phys. Rev. 76, 121 (1949).
~ See the comments relating to this point by Smith and Howard,

reference 4.



HEN RY MARGENAU

g g~+ zgII (z4zi /3)cz/1' t t 3/wlei ddt

1
W(V) =— exp( zzg—'pzt") cos(pV+g"pzi")dp. (4)

1l Q

appearing in the asymptotic expansion of Eq. (3). Now define
This is in agreement with expectations, since the large
energies are predominantly caused by single impacts
of the molecules.

A wholly diferent Physical situation arises if the Then since J3r&
i)=g*( ) we have

forces do not change sign, as in the interaction between
nonpolar molecules. We then take 1=1.Equation (2)
is replaced by

B(p) =2 (1 e'&")—r'dr This distribution is not symmetric and has a mean dif-
ferent from zero. Indeed, as might have been expected,

=z-', (c(p()" t " e"dt

=-,* exP[zxzzr(2 —3/m)](c ( P ~

)""1'(1—3/m).

The last step involves a partial integration which is
possible only if m&3. For smaller values of ns the dis-
tribution does not exist. This condition is more drastic
than in the case of forces which change sign.

"W(V)vdv=4 ~ "V,~,xd.,
4

The most interesting case for an application of Eq.
(4) is to the broadening caused by Van der Waals
forces, for which m=6 and g'=g". The details of this
problem have been worked out already' in a manner
less compact than the present.

' H. Margenau, Phys. Rev. 48, 755 (1935).


