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Electric Excitation and Disintegration of Nuclei. I.Excitation and Disintegration of Nuclei
by the Coulomb Field of Positive Particles*
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General formulas for the cross section for the 2'-pole excitation
{or disintegration} of a nucleus by the electric field of a non-
relativistic positively charged projectile have beeh obtained by
using the Born approximation; the finite size of the nucleus has
been taken into account. For electric dipole and quadrupole
excitation a more accurate eva)uation has been made in which
the initial and final states of the charged projectile are described
by the exact coulomb field wave functions.

The cross section for electric 2'-pole excitation of a nucleus by
the field of a charged projectile is proportional to the corresponding
photo-excitation cross section; the proportionality factor may be
interpreted as the number of virtual electric 2'-pole quanta in the

field of the charged projectile. In the electric dipole case, the cross
section for the inelastic scattering of a charged projectile is shown
to be proportional to the cross section for the production of con-
tinuous x-rays by deflection of the projectile in a coulomb 6eld.
Thus a relation is established between the virtual quanta repre-
senting the coulomb field of the projectile and the real quanta of
the x-ray spectrum corresponding to the scattering process.

The theory of electric transitions has been applied, in some
detail, in a discussion of two cases in which it seems likely that
these transitions play a significant role. These two cases are {1)the
inelastic scattering of deuterons and {2) the electric break-up of
the deuteron when it "collides" with a target nucleus.

tions may be expected to play the major role because
once a deuteron enters the nucleus, the probability that
a deuteron will be emitted is very small; and the much
more probable event in which a single nucleon is
evaporated from the excited compound nucleus does not
yield an inelastically scattered deuteron. We shall show
that the angular distribution of the inelastically scat-
tered deuterons obtained experimentally agrees with
that to be expected on the basis of electric transitions.
A second example of a reaction involving deuterons in
which electric transitions may play a significant role is
the stripping process. This process, in which one of the
nucleons is stripped oG the deuteron as it passes the
nucleus, may be due to electric interaction or to direct
nuclear encounter of one of the nucleons of the deuteron
with the target nucleus.

The excitation of a nucleus by the electromagnetic
field of a charged projectile is very closely related to the
corresponding photo-excitation. This relation is seen
readily if one uses the quantum-mechanical analog to
the semiclassical method of virtual quanta. 4 The cross
section, o„ for excitation by the electromagnetic field
of a charged projectile can be written in terms of the
photo-excitation cross section, r&», as follows:

I. INTRODUCTION

HEN target nuclei are bombarded with positively
charged projectiles, nuclear excitation or disin-

tegration may take place by either of two competing
processes: (1) A direct nuclear interaction may take
place in which the projectile enters the nucleus, thereby
forming an excited compound nucleus which decays by
the emission of a &-ray or a particle; or (2) the target
nucleus may be excited or disintegrated by the electro-
magnetic field of the charged projectile. Under condi-
tions most favorable for electromagnetic excitation, the
cross section for process (2) should be given roughly by
the product of the fine structure constant (e'/bc = 1/137)
and the photo-excitation cross section.

Thus, generally speaking, we may expect the excita-
tion by direct nuclear interaction to be more probable
than excitation by electromagnetic interaction. How-
ever, we may expect transitions induced by electromag-
netic interaction to play a significant role if either of the
two following conditions is fulfilled: (1) The transition
energy is small compared to the coulomb harrier
energy. In this case the excitation energy can be supplied
by electric interaction even though the projectile misses
the nucleus by several nuclear diameters. (2) Because
of special conditions the probability of excitation by
direct nuclear interaction is small.

The smallness of the cross section for the "electric
excitation" of nuclei by positively charge projectiles has
made experimental detection diKcult, with the result
that although the electric excitation process has been
looked for in the past' only recently has rather clear-cut
evidence for the occurrence of this process been ob-
tained. This evidence has been obtained in the inelastic
scattering of deuterons. "In this case electric transi

* Supported in part by the DNR.' Lark-Horovitz, Risser, and Smith, Phys. Rev. 55, 878 {1939).
K. H. Rhoderick, Nature 163, 848 (1949). H. V. Halban, privat
communication {unpublished).' Greenlees, Kempton, and Rhoderick, Nature 164, 663 {1949}.

3 J. R. Holt and C. T. Young, Nature 164, 1000 {1949).

o.(E;, E)=.V(E;, E)o &»(E), (1)

where E is the excitation energy, E; the energy of the
incident projectile, and X(E, E;) is the number of
virtual quanta (per unit energy) of energy E in the
electromagnetic field of the charged projectile which
are available for producing the transition. If the final
energy level lies in an energy continuum (as in the case,
for example, when a disintegration is produced), the
cross section for the transition is obtained by integrating

'The quantum mechanical analog of the method of virtual
quanta has been used by E. Guth and C. J. Mullin /Phys. Rev.

e 76, 234 (1949)j to describe the disintegration of nuclei by electrons
in the Born approximation. A general discussion of the methoti,
also in the Born approximation, has been given by ig, Lax an(i
H. Feshbach (unpublished).
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over all permissible transition energies:

0,= )I Ne&~'dE (2)

The number of quanta, N(E, E;), is given by a matrix
element involving only the projectile's coordinates and,
therefore, is independent of specific assumptions made

in choosing a mode1. for the nucleus.
In the past, recognition of electric excitation has been

hampered by the lack of an adequate theory. Crude
estimates of the cross section for electric excitation have
been given by Landau~ and Keisskopf. 6 An exact
formula for the total cross section in a special case has
been given by Guth' who employed Ehrenfest, 's

theorem to reduce the rather complicated electric
matrix element to the matrix element for the production
of bremsstrahlung by a particle deflected by a coulomb

6eld.
The principal objective of the present paper is to

give a detailed treatment of the excitation and. disin-

tegration of nuclei by the electric Geld of nonrelativistic,

positively charge particles. This treatment should

facilitate comparison of theory with experiment. In Sec.
II-A formulas for the cross sections for electric 2'-pole

excitation are developed using the Born approximation.

Since the coulomb deBection of the projectile should

decrease the overlap of the projectile's wave functions

occuring in the electric matrix element. the Born ap-
proximation should yield an upper limit for the correct
electric excitation cross section. In Sec. II-B, cross

sections for electric dipole and quadrupole excitation

are developed by using the exact coulomb wave func-

tions to describe the initial and 6nal states of the

charged. projectile. The quantum mechanical analog of

the method of virtual quanta is applied to the electric

excitation of nuclei by nonrelativistic positively charged

projectiles in Sec. III of this paper; expressions for the

numbers of electric dipole, quadrupole, and octupole

quanta in the electric field of the charged projectile are
derived. In the electric dipole case, the relationship is

established between the virtual quanta representing the

coulomb 6eld of the charged projectile and the real

quanta of the x-ray spectrum corresponding to the

scattering process. In Sec. IV the theory of electric

excitation is applied to the electric break-up of the

deuteron in flight. In Sec. V the theory of electric transi-

tions is applied in a detailed discussion of two cases in

which it seems likely that these transitions play a sig-

nificant role. These two cases are (1) the inelastic scat-

tering of deuterons and (2) the electric break-up of the

deuteron when it "collides" with a target nucleus.

& I. Landau, Physik. Z. U.S.S.R. 1, 88 (1932).
6 V. Weisskgpf, Phys. Rev. 53, 1018 (1938).Weisskopf assumes

the projectile's wave functions to be constant over the region
extending from the c}assical turning point to in6nity.

7 E. Guth, Phys. Rev. 68, 280 (1945).

II. CROSS SECTIONS FOR ELECTRIC EXCITATION

In this section we shall develop the theory of the
excitation of a nucleus by the coulomb field of an
incident, nonrelativistic, charged projectile.

Cross sections for the excitation of a nucleus through
the interaction of the electromagnetic Geld of relativistic
electrons with the electric dipole, magnetic dipole, and
the electric quadrupole moments of the nucleus have
been obtained by Wick. In the nonrelativistic limit
%'ick's results differ from ours because he neglected the
Gnite size of the nucleus. We shall assume that all
projectiles which penetrate into the nucleus give rise
to nonelectric processes. Since we wish to exclude all
nonelectric processes from our considerations, we shall
set the interaction between the projectile and the
nucleus equal to zero when the projectile is within a
certain distance, ro, from the center of the nucleus. This
distance will be taken as the sum of the "radii" of the
nucleus and the projectile. The extended range of
nuclear forces also modifies the projectile's wave
functions outside the nucleus. This latter eGect plays a
significant role only in the angular distributions of par-
ticles scattered through rather large angles and will be
neglected here.

Ke neglect the nonzero extension of the charge dis-
tribution of the projectile. This procedure is correct
when the projectiles are protons, but is an approxima-
tion when deuterons or a-particles are used. Thus the
interaction between the nucleus of charge Ze and the
projectile of charge se is given by

where r is the coordinate of the projectile, and. R„ is
the coordinate of the p,th of the Z protons in the
nucleus. Making the multipole expansion:

V= P P (ze'/r)(R„/r) "P Leos(r, R„)]=+V~, (4)
fr=1 rs 0

where (r, R„) is the angle between the vectors r and R„.
The n= l term of this series gives the interaction between
the projectile and the electric 2'-pole moment of the
nucleus and gives rise to electric 2 -pole transitions. If
we assume that the nuclear states are classified by
parity and angular momentum, the terms in the series
can be considered separately.

We shall work in the center-of-mass coordinate
system. Using first-order perturbation theory, the cross
section for an electric 2 -pole transition is

der/dQ= L2Ã/h(2j/+1)]P ) (X2b [ Vg [ gyes) [ ', (9)
a, b

where V& is the interaction between the projectile and
the electric 2'-pole moment of the nucleus, x~ and x2

8 G. C. Wick, Ricerca Scient. XI, 49 (1940).
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are the initial and final states of the projectile (nor-
malized, respectively, to unit fiux and unit energy), u

is one of the 2j~+1 initial nuclear states belonging to
the initial level A, and b is one of the 2j&+1 Gnal

nuclear states belonging to the Gnal level B. The in-

tegrals over the projectile's coordinates extend from ro

to inGnity.
In the usual case, in which the nuclear moments are

randomly oriented, the angular distribution of the
inelastically scattered particles is symmetric about the
direction of incidence of the projectiles. In all cases
which we shall consider it is possible to choose a direc-
tion in terms of which the product X2*X~ has axial sym-

metry. Taking this axis of symmetry in, say, the n

direction, and using the addition theorem for the
I.egendre polyomials, the matrix element occuring in

Kq. (5) can be factored, and we obtain

system. The integral over the particles coordinates can
be carried out readily and yields

M1I2 —16&2K2((—2)[ j& &(Kro)/(Kr&)(
—1]2

j,(x) is the spherical bessel function of order q.
The cross section for electric 2 -pole excitation is then

do (ng) ' kgkg j ( g(Kro) '

dQ 4Z ) 2g~+1 (Kr

The angular distribution is given by the factor
K'(' '&[j( &(Kro)/(Kro) ' ')'. The effect of the finite size
of the nucleus on the angular distribution shows up in
the factor in brackets. If one allows ro to go to zero, this
factor becomes a constant, and the angular distribution
is given simply by the factor E'(' ".

On integrating over all angles of scattering, one has

do/dQ= [2s/k(2j~+1)]M~a'W~',
where

where
o=8s (»&/Z)'Mps'B&/(2j&+ 1), (10)

and

MAB El(bl ER»'2 ([«s(», R»)halo)I'
a, b p, 1

MgQ —
] (xQ ~

se'Pg[cos(», r)]/r'+'
~

x&) [
'.

The number of virtual electric 2'-pole quanta in the
electric Geld of the projectile is thus given by

Si= (2»/kP) MggdQ.

(A) Cross Sections in the Born Approximation

In the Born approximation the incident and scattered
particles are represented by plane waves with wave
numbers k& and h2, respectively. The cross section for an
electric 2 -pole transition is given by

The electric 2'-pole photo-excitation cross section gg&»

is proportional to Mza'. Writing o 8' = PM~a'/(2j~+ 1)

o(= (2so((»/kP)) "M,PdQ.

II
(ki+kl)ro j& &2(y)

2l—2
y.

y

The integration for B~ can be carried out, but the
general result is rather complicated and will not be
given here. For l= 1, 2, and 3 we shall obtain relatively
simple expressions for B~.

From the transformation properties of P&[cos(K, R))
it is evident that the square of the nuclear matrix
element (M~s') is proportional to the sum of the
squares of the elements of the irreducible (traceless)
multipole moment tensor for the 2'-pole transition
A~B. In the following paragraphs we shall evaluate
3f~~2 in terms of the multipole moments for dipole,
quadrupole, and octupole interactions.

(1) Electric Dipole Tm»sitions

Ke introduce the electric dipole moment of the
nucleus, 9, which has the cartesian components

2
D;=x;=P x,„.

p=l

dQ 42sZ) 2jx+1

I
exp(iK r) E~[cos(K, r)g

M~/= )

(8)
The cross section for electric dipole transitions is ob-
tained by setting l= 1 in Eq. (9). lf we average over ail
directions of R„we obtain

e -2

P R»P~[cos(K, R„))
&Av

M»'=P g(bl R„"P~[cos(K,R„)ll s) Hence, for randomly oriented nuclear moments

n~ sZe'/koz, ——

K=kg —kp, K=
~
K~ = Ik, '+k~' —2kiks cos8j,

where

where g is the scattering angle in the center-of-mass is the square of the electric dipole moment of the



nucleus for the transition 3—+B. Thus, for electric
dipole transitions

The elements of the quadrupole moment tensor
satisfy the equation:

da 4 (ni) ' D~a' kA

dQ 3 &Z & 2j.g+i E'

Sx (n q' D.
-8„

3 Eg) 2jg+i
(12)

tg ip 3 tj

Since averaging over all directions of the vector R yields

[IE'F [«s(K R)]I']"=o2 IQ" I-'=i"o 2 IQ''I"-,

it follows that for randomly oriented nuclear moments
where

Bg——f[2(ki+»)ro] —f[2(4—ko)ro],

f(x) =Ci(x)+ (cosx —x sinx —1)x'.

Ci(x) is the cosine integral:

Ci(x) = —(cost/t)dt
J,

The relatively complicated function Bi can be ap-
proximated in a very simple way in certain cases of
physical interest. Thus in the case that 2(k&+k.)ro is

small compared to unity,

8 ~
—in[(k &+ko)/(k &

—ko) ].

where
M.g

o"-——
3Qg o "/10,

d~ 6 (n, ) Q„- g, (Ar(,)-
ft'(2 5 EZ ) 2jg+1 A. rf)

12m (nqp -
Q qe-

5 EZ j 2jg+1

Q»"=2 Zl(blQ''la) I'
rz, b iI

is the square of the traceless quadrupole moment for
the transition .1—+8. Consequently, from Eq. (9) we
obtain

In the physically important case that 2(k&—ko)ro«1
and 2(k,+k,)ro»1,

B,=ln[o/2p(k, —ko)ro],

with

Bo=F[2(kg+ ko)ro] —F[2(kq —ko)ro],

F(x)= (2/roox')[cosx+x sinx —1—~oxo].

where ~=base for natural logarithms, lny= Euler's
constant: y= i.781. It is interesting to note that the
last formula yields a total cross section which divers
very little from that which is obtained by using a
point nucleus in performing the integrations over the
projectile's configuration space and taking account of
the nonzero size of the nucleus by limiting the recoil
momentum imparted to the nucleus to values &~k/ro.
This latter procedure, which has been used by DancoP
in describing the electric break-up of the deuteron,
yields the result

8,= in[1/(kq —ko)ro],

which is just slightly larger than our value of 8I.

(2) Electric Quadrupole Transitions

The differential and total cross sections for electric
quadrupole transitions are obtained by setting l,=2 in

Eqs. (9) and (10). We introduce the quadrupole
moment tensor Q which has elements Q,,=x;x, and the
irreducible quadrupole moment tensor Q' which has
elements Q,,'=Q;, ~IS;;, where I=x'+y+z' is the
trace of the quadrupole moment tensor. From the
transformation properties of Fo[cos(K, R)] it is evident
that the square of the nuclear matrix element, M~~', is
proportional to Q~o", that is, proportional to the square
of the traceless quadrupole moment for the transition
A~8.

' S. M. DancoR, Phys. Rev. 72, 1017 (1947).

In certain cases of physical interest, simple approxima-
tions for Bo ca,n be obtained. Thus, if 2(k~+ko)ro&1,
Br 2kqko/9. If 2(k~ —ko)ro&1 but 2(kq+ko)ro&&1,
Bo—1/4roo. Use of a cutoff in momentum space rather
than in configuration space leads to the value BI—1/18ro' in this latter case.

It is of interest to note that our quadrupole cross
section is proportional to the square of the traceless
quadrupole moment, Q»"-. Wick, ' on the other hand,
obtains a cross section which contains a term propor-
tional to Q~s" and a second term proportional to the
square of the trace of the quadrupole moment tensor
(I~a'). This latter term, which corresponds to a
"monopole' interaction, and which gives rise to j=~j
=0 transitions, occurs nowhere in our cross sections
because we have deleted the region occupied by the
nucleus from the projectile's configuration space. The
manner in which the monopole term enters into the
cross sections can be seen easily by extending our
integrations over the projectile's configuration space to
include the region occupied by the nucleus. In this case
the cross section is

do 4 (ng) ' krak.

Q (
b Zexp(iK R„) a ).

dQ 2j&+1 (Z j P' a, o

The exponential can be expanded in a Taylor series or
in a series of spherical harmonics. The Taylor series
classifies terms according to powers of K.R. The



(K R)' term mixes together terms corresponding to
electric 2'-pole, 2' '-pole, 2' '-pole, etc., interactions.

Thus (K R)'=-', K'R'I2Po[cos(K, R)]+Po[cos(K, R)]',

and
207r (n&)

' So»'-'
—Bo

7 I Z) 2j )+1
yields a term which corresponds to quadrupole inter-
action (Po) and a term which corresponds to a monopole
interaction (Po). The pure quadrupole interaction
yields a cross section proportional to QA»'-', the mono-

pole interaction gives a cross section proportional to
I.& p'. Similarly,

(K R)'= o'EoRoI2Po[cos(K, R)]+3P&[cos(K, R)]I

mixes octupole and dipole interactions. The pure electric
2'-pole interaction always yields a cross section ex-
pressible in terms of the elements of the irreducible
2'-pole moment tensor. If the exponential exp(iK R) is

expanded in a series of spherical harmonics:

exp(i K R) =p i'(2l+ 1)P&[cos(K, R)]j&(KR),
j=o

the 1th-order term of the series corresponds to the pure
electric 2 -pole interaction. In this series the monopole
transitions arise from the l=o term, the dipole transi-
tions from the 3=1 term, etc.

(3) Electric Octoof&ole Tra&&sitio»s

The differential and total cross sections for electric
octupole transitions are obtained by setting l=3 in

Eqs. (9) and (10). We introduce the octupole moment
tensor 5 with elements 5;;~=x,x,xI„and the irreducible
octupole moment tensor S' with elements S',;I,——x;x;xj,.
—

o (x,b, o+x,bo;+sob;, ). From the transformation prop-
erties of Po[cos(K, R)] it is evident that the square of
the nuclear matrix element, M.4g'-', is proportional to
Sggg", where

e, b i, j, Ic

is the square of the irreducible octupole moment tensor
for the transition 4~8. The elements of the octupole
moment tensor satisfy the equation

Since averaging over all directions of R yiekls

[IR'Po[cos(K, R)]I ']A„

with

Ao ——&[2(k&+k )ro] —&[2(k&—k )ro],

48 '/ 3 ~ 77
x'-'q

@(x)= ———
I

1 ——x'-'
I
cosx+I 1 —--- [x sinx

r„'x' ( 8 7' E 24t

x- x'y-I 1+—+—
8 48j

In certain cases of physical interest simple approxima-
tions for ho can be obtained. Thus if 2(k&+k&)ro(l,
Ro—(2/225)k&k)(k&-'+k!'-'). If 2(k& —ko)ro(1, but

2(k&+k )ro»1, B&=17'12ro'.

(8) Electric Dipole and Quadrupole Excitation
Using Coulomb Field Vfave Functions

(1) Electric Dipole

In this section we shall give a more accurate treat-
ment of electric dipole excitation, using the exact
Coulomb wave functions to describe the motion of the
projectile. '" The motion of the incident projectile is
described by a coulomb wave asymptotic to a plane
wave moving in the direction kI plus an outgoing
spherical wave; this v ave function is normalized to
unit Aux. The scattered projectile s wave function is
taken as a Coulomb wave asymptotic to a plane wave
moving in the k2 direction plus an incoming spherical
wave; this wave function is energy normalized. The
wave functions are

x &
—3&f7 exp(ik&. r)L&n& (p&) = .l; & t-

Xt& = [2&l 77&77&/ kk&(e "' 1)]',

x =.3 e exp(ik r)L—n (—p )= )
/&

I', ,

.'l 7. = [77&k 77., '(2&r)" I&''(e ""' 1)]*', --'--—

with p&= i(kr —k r), and p& i(kr+k r). L„(x)——is the
I aguerre function (S-119) and is a special case of a,

confluent hypergeometric function: L„(x)= F( q, 1, x). —
Using these wave functions, the cross section for an

electric dipole transition may be obtained from Eq. (5):

we obtain, for randomly oriented nuclear moments,

~A&&'= (5/14)SA&&"-.

Thus from Eq. (9)

do 10 (I&) ' SA»" jo(«o) "-—=—
I
—

I
k&ko

dfl 7 &Z) 2jA+1 . («o)'
(15)

d&r 2&r DA&7"
~ t

=e'-'x,

dfl k 3(2jA+1) '
E

I

r'
(18)

'" A. Sommerfeld, (to)nbau und Spektrulhnien (II Band, F.
Vieweg and Sohn, Braunschweig, 1939). Hereafter, references to
this book &vill be given as S follosved by the appropriate page
number.

To simplify the calculations we shall neglect the exten-
sion of the nucleus in the integration over the projectile's
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con6guration space. However, we shall take this exten-
sion into account after integration.

The matrix elements occurring in (18) can be sim-

plified by use of the equation of motion (Ehrenfest's
theorem) for a particle moving in a Coulomb Geld. The
force acting on such a particle is given by

Fs; m——x;= 8(zZe—'/r)/Bx; = zZe'x;/r'.

Hence the cross section is given by

da 4 A iA2e-2 "I k2 kg2k2~ Dg~~

dQ 3 Z' k, (k,—kz)' 2j &+1

I I i(ni —ni cos8)F+ (1—cos8) (1—x)F'
I
'

+sin'8}iniF+(1 —x)F'I'}. (2o)

zesx;t q 1r 8 zZes & m

I x x' }=
I x — x }=—(x I*-'Ix)

j ZE ax, r j Z 2x AgA2e
—' "~k2 Dying' d

ir =— — xo—I F(xo)
I
', (2l)

3 Z' kj 2jp+1 dxpm (Eg—Ei) '

ZI e ) where xo ———4kiki/(ki —ks)' and

Using this relation and the relation between the operator Still disregarding the 6nite size of the nucleus, this ex-
x; and its time derivative, we have pression can be integrated over all angles of scattering

(S-526), yielding the total cross section:

d A A (m) 'ki (Ei—Ei)'

dD 3(2x)' ( k'j ki Z'

where

exp[ —2n(n, +n,))

DAB
x

2jg+ j.

A ii, i&
——2irnii, »/1 exp( —2irn&, —»).

The matrix elements, M*;, have been evaluated by
Sommerfeld. Taking the x-axis in the k~ direction and 8
as the scattering angle, the results are (S-502 and 509)

M~= CI i(ni ni 'cos8—)F

+(1—cos8)(1—x)F'}(1—x) '"' '"' ',
(19)

cos$]
sin8[AziF+ (1—x)F')

sing

y (] x) in& inn i—— —

where F=F( in&, ini, 1, x) ——is the hypergeometric
function,

F'= dF/dx, x= —[4kikp/(ki —ks)') sin'28

Thus the matrix elements in (18) can be reduced to the
well-known matrix elements for the production of
bremsstrahlung by a charged particle scattered in a
coulomb 6eld.

In terms of the wave functions

Ui= exp(iki' r)L4711(pl) & U2 exp(ik2' r)I &82( p2)

and the matrix elements

3I.,=(V, Ix, I
V,),

the cross section can be written as

«4(ni) ' D~e' kiks
AA, e'" 'ig-fs,

dQ 3 (Z j 2jz+1 Its
(22)

E'= k~'+ k2' —2kik, cos8

I
si hnx/naif n~n,'

11 otherwise

The factor f' has been included to take account of the
finite size of the nucleus. The value offmay be obtained
readily in the limiting cases of small and large n2. Thus
if ni is small, Eq. (22) gives the first order coulomb
corrections to the Born formula. Consequently for
small ni we may take for f the value obtained in the
Born approximation: f=j 0(Era) If, on the other .hand,
ni is large (i.e., ei is small), the angular distribution
should be isotropic; for this case we may therefore take
f= 1. Thus we have the results

f=j 0(Pro) if nz is small,
f=1 if n2 is large.

F(x0) =F( ini, in—z—, 1, xo).

The general expressions for the cross sections given
by (20) and (21) are rather complicated functions of
energy and scattering angle. In certain limiting cases
they reduce to much simpler expressions. We shall con-
sider three limiting cases which are of some physical
interest.

(a) Cross Sections When ni Is Smid/ We .s—hall con-
sider the case n~~, with n2 arbitrary. For small n~,
F=g, F'=0, where g=1 if n&/ni is not approximately
equal to unity and g= sinhxni/xni if ni/ni is approxi-
mately equal to unity. "Thus for small n&,

and
kgk2 (k +k q

i(al+ngi

C= —16iie "'
(kii —kiz)'(ki —ki)' Kki kij—» As ~,~0 and m2/e1&l, then x is small and one can expand

F and retain only the erst term, namely, unity. As e1—4 and
e2/e1 —1, x is large (except for 8=0) and one can express Ii(x) in
terms of F(1/1 —x); expanding P(1/1 —x) and retaining only the
first term leads to the value g= (sinhxn1)/~n1 in this case.
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Integration over all angles then leads to the results:

8~ (e») D~~
o=—

I
—

I
g'A1A2e '

3 &Z) 2jp+1

where

C1= lnL(k1+k2)/(k& —k2)] if n2 is large (k2 small),
C1=81 of Eq. (12) if n2 is small.

(b) Cross Sections for Strong Coulomb Fidd W.—e con-
sider next the case in which the inRuence of the coulomb
field is very large. In particular, we consider the case
n2—+~ and e»&&1. Let

F '= i(n2 —n1 cos8)F+1(1—cos8)(1—x)F'I',
Q 2= ',F+(1—x)F'I,

p= n1/n2 so that 0~& p & 1.

Again we take the x-axis along the k» direction. Then
as n~~ and e»&)1, the majority of the particles are
scattered backwards, and we need consider values of
8—2r only. We then obtain (S-S06)

(c) Cross Sections for n2—n1, witk n1 Arbitrary. A—
case of considerable physical interest is that in which
the energy transferred to the nucleus is smalL For this
case we write

k» —k2= ~

so that,
+2 +» +16 k2

The hypergeometric functions occurring in Eq. (20)
can then be evaluated by use of the theorems:

d ab—F(a, b, c, x) = F(a+—1, b+ 1, c+1,x),
dS c

(1 x)'+' 'F—(a, b, c,-x) =F(c a, c —b, c—, x),

lim6 'F(1+in&, 1+in2, 1, x) =0,
e-+Q

lime 2I F(1+in1, 1+in2, 1, x)
c +Q

+in1F(1+in&, 1+in2, 2, x) I

'=
E'I I'(1+in, ) I

'

where

I F I
2 1 n 2 ~2e5Ti/6H (11(is) t

2

n22f'st1,

Ql 64 3 &2e2~4/8H&8(1&(is)

n2&2'p(1 —p)
S= 0.= x—8,

6(1+p)'

Consequently, for this case

I
c

I
'n&'(k& —k2) ' (1—cos8)'

I r(1+'n, ) I

4 E4

lcl2n& (k&—k2)' sin 8

I r(1+in, ) I
E

(26a)

and H, ('& is the (cylindrical) hankel function. Hence On substitution of these results into Eq. (20) one obtains

4n2 ( a ) 8 n 18eii nt

' le.I"=
3 I Z ) (1—p2)(1+p)'.Iiv, j .

e54 i/6H (1)(is) 2

)&~ cosset
e'~"8H

/ ("(is) '

.sin(t e""8H,/8('&(is)

where a= k'/me'. Thus

do A»A2 k2kj' (n») ' Dg g'
expL —22r(n2 —n1) j(2'

dQ 144 (k1—k2)' EZ J 2jg+1
~ j I

e5~4/6H ("(is)
I
'+

I
e ~ /8H24/2"'(6s)

I
'j (24)

It is readily seen that the cross section is very small
unless n» is quite large. For large I», the projectiles are
not likely to penetrate into the nucleus, and it seems
unnecessary, therefore, to make any correction for the
6nite size of the nucleus.

Integrating over all angles of scatter, we obtain
(S-560)

82r2 (n1) ' D~/22
o =

I
—

I
. expL —22r(n2 —n1)). (25)3' I Z) 2j„+1

do. 4 k»k2 D~g2——expL 22r(n2—n1) jn—1' jo'(Er6). (26)
dQ 3 E 2j.+1

The factor j6'(Er6) has been included in (26) to take
account of the 6nite size of the nucleus. Since the case
n2—n1 corresponds to small effective interaction
between projectile and nucleus we may expect this
factor, which was obtained by the Born approximation
Lcompare Eq. (11)j to be approximately correct here.

Integration over angles yields for the total cross
section:

Sir pn&q
' D~a2

o.=—
I

—
I expj —22r(n2 —n1)j 81. (27)

3 Ez) 2j~+ &

(2) Electric Quadrupole

If the motion of the projectile is described by the
coulomb wave functions U» and U2 given in the
preceding section, the matrix element for electric
quadrupole transitions may be evaluated rather easily
if the 6nite size of the nucleus is neglected in the inte-
gration over the projectile's coordinates. The effects of
the fILnite size of the nucleus may be included, in
limiting cases, by the procedures used in the preceding
Section (II-B-1).
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If the coulomb wave functions are expanded in tering cross section is given by
terms of momentum functions"

do n—= —csc'q8 exp[ —2ir(, ln(sin)8) j
dQ 2k

f
~f), exp(ik r).dk, U2*

~
P~ exp( i—k' r)dk',

(28) &c

+—1++(2t+1)e2(e(P)(cose) . (31)
2ikthe electric matrix element, M, for 2'-pole transitions

can be written as
This expression is independent of all properties of the

(U ~
p,

~
U ) I p, ,p„M„,(k k )dkdk (29) nucleus except its radius and charge.

where M((s„&(k,k') is the matrix element in the Born
approximation. In the quadrupole (1=2) case, M((sop~)
is independent of k and k'. Thus,

M, =M, (s„„) )I )I P), PPkdk'

=My(s„„„) U."(0)U)(0),

where U)(0) and U2(0) are the coulomb wave functions
evaluated at the origin. Consequently, the use of
coulomb 6eld wave functions modifies the de'erential
and total cross sections only by the factor

[2mn)/(e "."' 1-)] [—2~n'/(e'"' 1)].— (30)

(C) Elastic Scattering

If both elastic and inelastic scattering cross sections
are measured at an angle for which the elastic scattering
is relatively independent of the properties of the target
nucleus, the elastic scattering cross section can be used
as a convenient normalization. The well-known formula
for the elastic scattering cross section" can be simplified
by making use of the semiclassical approximation that
those projectiles for which the angular momentum l is
greater than t, =pro(1 —Ze'/Era)t miss the nucleus;
these projectiles su6er no phase shift. The coulomb
phase shift, q~, can be evaluated by use of the relation

))(=argl'(1+1+in) = arg Q (l s+im) I—(1+i)()'
a=0

'Vo+ P(

where

P, =P tan —'r)/s.

1
U( ———e(K R)(k„R)'—'

l!
(32)

where R stands for the coordinates of the protons in the
nucleus, k„ is the wave number of the incident radiation
(0„=

~
k.

~

= 2rr/X=E/hc; E= transition energy); and m

is a unit vector in the direction of polarization of the
incident radiation. Thus

III. COMPARISON BETWEEN PARTICLE CROSS SEC-
TIONS AND PHOTO CROSS SECTIONS: NUMBER

OF ELECTRIC 2f POLE QUANTA

In Sec. II [Eq. (6)j we have seen that if the nuclear
moments are randomly oriented, the cross section for
the electric 2'-pole excitation of a nucleus by the field
of a nonrelativistic charged projectile may be factored
into a product of the number of virtual electric 2'-pole
quanta in the 6eld of the projectile and the photo-
excitation cross section for the transition. 'We shall now
give an explicit formulation of this "method of virtual
quanta" for the coulomb field excitation of nuclei. %e
shall give explicitly the numbers of virtual electric
dipole, quadrupole, and octupole quanta in the field of
the charged projectile; and in the electric dipole case we
establish the relation between the number of virtual
and the number of real quanta (bremsstrahlung)
associated with the deflection of the projectile. In the
present discussion we shall give the results for a "point"
target nucleus; the sects of the finite size of the nucleus
may be taken into account, at least approximately, by
the method discussed in Sec. II.

In order to obtain the number of virtual quanta, we
must obtain an expression for the electric 2'-pole photo-
excitation cross section. The interaction between the
radiation electric field a and the electric 2'-pole moment
of the nucleus is taken as

A case of particular simplicity is that in which pro-
jectiles which penetrate into the nucleus (l(~l,) are not
likely to be elastically scattered. These projectiles may
be omitted from the elastic scattering by setting their
phase shifts equal to i ~. In this case the elastic scat-

(1) Electric Dipole Estcitati ort

Setting t= 1 in Eq. (33) yields for the electric dipole
photo-excitation cross section:

'~ This procedure was suggested to one of us by R. Serber in
connection with another problem.

13 L. I. Schiff, Quantum Mechank's (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), pp. 116 ff.

fr (v)—
4x"-e'k„ 4x' D.g g'-'

P)(b~~. R)o)( = e a„. (34)
2j 4+/ ~s 3 2jg+1
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Thus from Eqs. (21) and (1) the cross section for electric
dipole excitation of the nucleus by the field of a posi-
tively charged projectile is given by

0 ~
——A g(rg(»,

where .V~, the number of virtual electric dipole quanta
in the field of the charged projectile, is given by

(2) Electric Quadrupole Transitions

Setting l= 2 in Eq. (33) gives for the electric quad-
rupole photo-excitation cross section:

Qj(bj(n R)(k„R) la)I'
(2j~+1) ~ &

dE AgAp 1 k2 d
X1dE=- —e-'-*x.—IF(») I2 (35)

E 2vZ' e'/kckg dxo

where E is the transition energy.
It is interesting to note that the cross section for the

production of real quanta (bremsstrahlung), when the
charged particle makes the transition due to deflection
in a pure coulomb field, is expressible in terms of X»
in a simple way. In the electric dipole approximation,
the cross section for the production of bremsstrahlung
in dE is (S-527 and 564)

dE, e't' k )'ng d
gE=—,'—

I
—

I
—A,A.e ' "'xo IF(xo) I' (36)

E kc L rnc) ng dxo

EIZ(blQ„la). .k., l-.
(2j,+1) as z, j

From a theorem which is given in Part i of the
appendix to this paper it follows that

2 IE(b I Qvl a) ~ k tl'= k 'Q»"/10
o, b i j

(41)

and, therefore,

o &»= (v'e'/10)Q~o"/(2jg+1)k ' (42)

Writing 0'y, =Xvl'2"' and using Eq. (14), one has for the
number of electric quadrupole quanta

X2dE = (dE/E) (16s2e /3v kc) (c/vi)2kiks/k ' (43)

(3) Electric Octupole Transitions
Comparison with (35) shows that the bremsstrahlung
cross section may be written:

o+E= 2vs'Z'(e'/rnc')' V~dE.
Setting l =3 in Eq. (33) yields for the electric octupole

photo-excitation cross section:
(37)

This simple result is of the form to be expected on the
basis of semi-classical arguments.

In certain limiting cases the rather formidable ex-
pression (35) for .Vz may be replaced with relatively
simple approximate expressions. Thus, from Eqs. (23),
(27), and (25) we have

dE, 2s' e' ( c ) '
SEE —

I

——
I
—AiA2

E n kc &vi)'

('kg+k2) ng~0
y e—,.ae,nj

(ky —k2) n2 arbitrary

x' e' E.3'»= —— El(bl(u R)(1. R)'la) I'
9 kc 2jr+1 e. &

e E
ZIZ(bl 5'"I ) 'k'k'I'

9 kc 2jg+1 ~& 'jk

From a theorem given in Part 2 of the appendix it
follows that

Qjp(bjS, , ja)Ik;vk.pj"-
a, b ijk

4k„4
P'~o"+(7/2o)(R'D)»'j, (44)

105
where

dL 2-"-e' t' c q
'-A2

iV,dE=
L v kc (vg) A)

(kg+ k2)Xe-2r("g-ni) lnl n~=n (39)

Eked

—k2)

(R D)- =Z, l(blR", la) I

('onsequently

4v' Sge"-+ (7/20)(R'D)go2
k'

945 2j&+1
(45)

lE 2s" e" (c
iVgdE= —

I

—
I

e—"- —~" —"»
E AhcIe, )

Wy)/1

'f12 +7$y
(40)

The Born approximation result can be obtained from
the first or second of these limiting cases by setting
A~ ——32—- 1=e—' "'. The Horn result is essentially the
same as that obtained by the semi-classical. method. 't~' = (4 'e"-/945)S&z'skP/(2 jr+ 1). (46)

The (R'D)~o' term results from an interaction be-
tween the radiation and the electric dipole moment of
the nucleus, and should be added as a second order
term to the electric dipole cross section. Since this term
does not correspond to an octupole transition, we shall.

drop it from our expression for 03~&'. Thus we take
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Writing e=Elel && and using Eq. (16) for o I we obtain,
for the distribution of octupole quanta in the electric
6eld of the charged projectile,

dE 6s'
t
e'

q p c q
' k,k, (kP+ kg)

E s. &hei (eg) k„'

D'I. ELECTRIC BREAK-Up OF THE DEUTERON

When a beam of deuterons strikes a target the deu-
terons may be disintegrated and emergent beams of
neutrons and protons thus obtained. In a number of
experiments the angular and energy distributions of the
neutrons and protons have been studied. Helmholz,
McMillan, and SewelP4 have studied the angular and
energy distributions of the neutrons obtained by bom-
barding targets with 190-Mev deuterons. Angular and
energy distributions of the neutrons obtained when
various targets are bombarded with 14- to 18-Mev
deuterons have been studied by Falk, Creutz, and
Seitz " Roberts and Abelson " and Ammiraju. "
Angular and energy distributions of the protons ob-
tained by bombarding thin targets with 14-kev deu-
terons have been studied by the M.I.T. group. "The
results of all these experiments seem to indicate that
the deuteron break-up which yields the protons or
neutrons is due to stripping or to electric break-up. In
the stripping process one of the nucleons of the deuteron
strikes the target nucleus and is stripped off the deu-
teron; the other nucleon misses the nucleus and con-
tinues its fight. This process has been discussed for
high energy deuterons by Serber, "and for low energy
deuterons by Falk and Wolfenstein" and by French. "
In the electric break-up process, the deuteron misses the
nucleus but is disintegrated by its electric 6eld. The
possibility of electric break-up of the deuteron was 6rst
discussed by Oppenheimer. ~ A detailed theory of the
process for high energy deuterons has been given by
Banco', ' using the Born approximation. The results of
Banco' and Serber show that for high energy deuterons
nuclear stripping is considerably more probable than is
electric break-up. However, at somewhat lower deuteron
energies the electric process may play a significant role.
Consequently, in this section we shall apply the results
of Sec. II to the electric break-up of the deuteron.

In our discussion we include the eGects of the
coulomb 6eM on the motion of the center of gravity of

"Helmholz, McMillan, and Sewell, Phys. Rev. 72, 1003 (1947).
"Falk, Creutz, and Seitz, Phys. Rev. 76, 322 (1949). This

publication gives only the preliminary results of the experiments.
A complete account of the results is given by C. E. Falk, thesis,
Carnegie Institute of Technology (1950). The authors wish to
thank Dr. Falk for communicating his results to them.

"R.P. Roberts and P. H. Abelson, Phys. Rev. 72, 76 (1947).
'~ P. Ammiraju, Phys. Rev. 76, 1421 (1949).
"Progress Reports of the Laboratory for Nuclear Science and

Engineering, M.I.T., January 1, 1950 and April 1, 1950, unpub-
lished."R.Serber, Phys. Rev. 72, 1008 (1947).

'0 C. E. Falk, thesis, reference 15.
» J. S. French, private communication (unpublished).
~ J. R. Oppenheimer, Phys. Rev. 47, 845 (1945).

the deuteron, but we neglect the effects of the coulomb
field on the outgoing proton. This procedure is probably
adequate for a description of the behavior of the out-
going neutrons, but does not give an adequate de-
scription of the outgoing protons unless the deuteron
energy is very high. We confine our attention to the
outgoing neutrons. ~

We describe the motion of the c.g. of the deuteron by
means of the wave functions x& and X2 of Eq. (17).The
initial and final states of the deuteron's relative motion
we shall describe by the "zero-range" wave functions P4

Dq ——(a/2s) &e &/p ~= (Meo/h2)&

D2 ——Em exp(ik, y), Sy= I Mk, /(2m. )'2h'j&, (48)

where ~0—2.2 Mev is the deuteron's binding energy,
M is the nucleon mass, y is the rela'tive coordinate, and
h, is the wave number of the relative motion. In the
electric dipole approximation, the cross section for
deuteron break-up with disintegration energy in de, the
center of mass being scattered into the solid angle d02,
and the neutron ejected into dQ&, is

2~ ) Ze'(r p)
odedQ)dOg= —

I
Dy~ — D;x, I dedQgdOg

h &

Nf'I D
I

'
r Ze'(it r)

dedQ)dQ2
2hkp' 0 r'

with

1 32mcxk p'
IDI'= —

„i~ exp( —~&, p)(&, t)Ddp =
(k 2+~2)4

Applying the equation of motion discussed in Sec. II-8
we find

0dedQqd02

2e cVy'IDI'M' (E2 Eg) '
I I(y2}it,.rIX,)I dedQ, dQ,

h k, ( h

= (2x/h)Sy Se LVfPI DI M'(&2 &~/h)—
X icos'8~ IM', I'+sin'8~ —,'(M '+M ')}dedQ&d02,

where 8~ is the angle between the wave number vectors
k~ and k~, with E2 and E~ as the 6nal and initial
energies of the motion of the center of mass, and with
Aq&, 1Ve, M, , „„asgiven by Eqs. (17) and (19). The
x-direction has been chosen as the direction of the
incident deuteron beam. When the intergrations over the

~ In an independent treatment of the electric break-up of the
deuteron M. L. Goldberger (private communication) has taken
into account in the influence of the coulomb field on the outgoing
protons. M. L. Goldberger, Phys. Rev. 79, 221 (1950). In all
discussions the e8ects of polarization of the deuteron on the wave
function of the incident deuteron are neglected.

~The finite range of the neutron-proton interaction can be
included in an approximate way by using the factor (1+ah&),
where b~ is the range of the n-p interaction in the triplet ground
state.
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angles of scattering of the center of mass of the deuteron
have been carried out we 6nd that

odedQg (——2n/k)Eg'Sz'Sg~'I Dl'M'(Eg —Ei/k)'

X cos'8~
I M, l'dQ2+sin'8~

(M„'+M, ')dQ2 dedQg. (49)

This relatively complicated result can be simplified
in certain Limiting cases. Thus, if the deuteron moves
in a strong coulomb Geld (e&))1, n2/n~) we can use
the approximate expressions given by Kq. (24a) for
M, , „,, Then

SnPk'(roe') &

odedQ, = —exp[—2~(e,—e,)]
3@3M(e+«) '

~
I cos'8~+ 4 sin'8, ) dedQq. (50)

A limiting case of importance from the experimental
viewpoint is that in which the deuteron's initial energy
exceeds the couLomb barrier energy by considerably
more than the binding energy of the deuteron. %e shall
now investigate this case in detail. Inspection of the
form of the factor IDI' shows that the cross section
becomes small if the disintegration energy, e, is large.
Consequently the center of mass of the deuteron is not
likely to lose more than a rather small fraction of its
energy in the disintegration. For this reason we can
substitute for M„3f„,and M. the approximate values
suitable for small energy transfer. From Kqs. (19) and
(26a) we see that if nq eq is —small, or if N~ and n2 are
both smaLL,

IM I'=—ICI'(k~-k, )'(sinhn, n/n, n)'

X (e2—ng cos82)'/E',
(51)

IM„I ~+ IM, I
~l cl2(k, —k,)'

X(sime, ~/N, ~)' i s' n/8Z'.

Substitution of these expressions into Kq. (49) yieMs:
2 ep&e&

odedQg ———NP exp[ —2~(n2 —eg)]—
M' (e+«)'

(k,+k,)'+IF„' ~ 1 q
X

I
1——IP2(cosgz)

4k'' & I')

+sin'8& lnl' d~dQ, (52)

where I'=E~/(kq —k2) and kE is the maximum recoil
suBered by the center of gravity of the deuteron. If the
6nite size of the nucleus is neglected, E =k~+k2., the
eGects of the 6nite size of the nucleus can be taken into
account by limiting the maximum recoil momentum to
kE =1/ro, where ro is the sum of the "radii" of the
deuteron and target nucleus. Apart from the "coulomb

factor, " exp[ —2s(n2 —e~)], the cross section given by
Kq. (52) is equivalent to that obtained by DancofP by
using the Born approximation.

To facilitate comparison with experiment, we shall
carry out a transformation of variables from (e, 8~) to
(E„,8), where E„is the neutron's energy in the system
of the center of mass of the target nucleus and deuteron,
and 8 is the angle between the direction of the outgoing
neutron and the direction of the incident deuteron beam.
%e neglect the 6nite size of the target nucleus, taking
E =k~+k2. This omission will tend to overemphasize
the role of the neutrons at the upper and of the energy
spectrum and will yield an upper limit for the total
cross section. Since with n2—n~ the probability of large
lateral deflection of the deuteron's center of gravity is
small (see Kq. (26)), we shall assume that the deuteron's
center of gravity moves in a straight line. %ith these
approximations one can take

q/E~' f'+—8', (e/ED') sin'8~ 8'—
so that

(~/ED') P2(cosg&) f' ', t—P—-
The jacobian of the transformation is

J—2 cosg/[f'+8']t

where ED'= ED—E&,. ED ——initial deuteron energy;
E&=coulomb barrier energy of the deuteron at the
time of break-up and

f [EN k (ED «)]/E& (53)

Consequently the cross section for electric break-up,
with the neutron being ejected into the solid angle dQ
with energy in dE~

8Z e4cq ( «) & [f +~28'(in' —1)]
odQdEN

I I
dQdE~

m EDEn" (En'I [f2'e'+ («/Eo')]'
(54)

with

Cy ——exp ( —(7rngEn'/En) [f'+82+ («/EJ)') ]I,
=4/[f'+ 8'+ («/ED')].

The angular and energy distributions can be obtained
from Kq. (55) by integration. In general, these inte-
grations cannot be carried out analytically, and we
shaD perform them explicitly only for the case that n&

is sufficiently small that ne&«/Ez&«1, so that C&—1.
Since the logarithm is a slowly varying function of the
angle, the integrals of the type

I= f(x) in'(x)dx,
aJ

in which f(x) is a rather rapidly varying function of x
which is appreciably di6erent from zero only over a
limited range of x, can be evaluated by the following
approximation

I lnpA, I f(x)dx, —



152 C. J. WI ULL I ih AN D E. GU'I'H

where

x(x)j(x)dx ) j(x)dx.

The total cross section can be obtained by an inte-
gration of (56) over all neutron energies. We thus find

p = (prZPe'/3ppEa) ln(Ea'/3t«). (57)

The total cross section can also be obtained by a
direct integration of Eq. (52). In case the exponential
member is taken to be unity this yields

16Z'e4eo&
lnF de

3Ea . ~o (p+pp)'

16Z'e4eo& 00

lnFA„~' p&/(p+«)'do
3ED 0

ol

where
p = (s Zoe'/3«Ea) InF A~,

F= (ki+kp)/(kr kp) 4Eri/(—p+ pp—)

(58)

We then have from our definition of average values

F(p) pt/(pp+p)pdp
pad 0

I As

pr/(pp+ p)'dp
0

=2Ea/3«.

The very slight difference between the cross section
formulas (57) and (58) arises from the approximations
used in the transformation to the laboratory system of
coordinates.

V. DISCUSSION OF THE RESULTS

We shall now apply the theory developed in the
preceding sections to a discussion of two processes in
which electric transitions may play a significant role.

Furthermore, since the cross section diminishes rapidly
to zero as 8 becomes large, or as [E& $(E—1A p'p)]-
becomes large, the limits of the integral can be taken
to be zero and infinity. Carrying out the integrations for
C&—1 we find for the angular and energy distributions
of the outgoing neutrons

Z'e4
edfl=

2EaEa' &Ea']

[(po/Ea')+ ,'8'(5 l-n(, —3))
X cos8. dQ, (55)

L(«/Eo')+8']"-"

2ZAe f pp'
crdl;N =

3EaEa" t Ea']
L(3+lnb) j'+(in& 1)«/Ea ]

X dE„v (56)
[f'+ (po/Ea') ]'

with
6= 10/3(8'+ po/Ea'), h =4/3(f '+ po/Ea')-

(A) Inelastic Scattering of Deuterons

We have pointed out that the inelastic scattering of
deuterons should take place primarily through electric
transitions. Experimental data on the deuterons scat-
tered inelastically on aluminum and magnesium targets
have been obtained by Greenlees, Kempton, and
Rhoderick, ' and by Holt and Young. ' The angular dis-
tribution of the inelastically scattered deuterons overs
the best criterion for the determination of the type of
interaction responsible for the transition. Transitions
occuring as a result of compound nucleus formation
should yield an almost isotropic distribution of the
inelastically scattered deuterons. Electric dipole inter-
action, on the other hand, leads to the differential cross
section [see Eq. (26)]:
dp 4 (nr)' Dgg'-' kIk2

I I exp[ 2pr(Np Ni)] jo'(Kro). (59)
dQ 3 (ZJ 2 j.~+1 E'-

In making quantitative. use of Eq. (59) for deuterons it
must be remembered that to the approximations used
in the derivation of this equation we must add the
following: (1) the finite extension of the projectile's
charge distribution is neglected; the deuteron's charge
is assumed to be concentrated at the deuteron's center
of mass, (2) the polarization (stretch) of the deuteron
in the field of the target nucleus is neglected.

Because of the approximations used, we can expect
Eq. (59) to have only semi-quantitative significance at
large angles. However, the angular distributions pre-
dicted by Eq. (59) on the one hand, and by the theory
of compound nucleus formation on the other, differ so
greatly that despite the omission of the second-order
effects involved in our approximations we should be
able to distinguish readily between the two types of
angular distribution.

The angular distribution obtained by Holt and Young
for 7.5-Mev deuterons cattered inelastically on mag-
nesium is reproduced for convenience in Fig. 1(a). The
excitation energy is 1.36 Mev. The angular distribution
for elastically scattered deuterons (7.5-Mev deuterons
on the same magnesium target) is also given in this
figure.

The theoretical angular distribution given by Eq.
(59) depends somewhat upon the choice of the "cut-ofi"
radius, r0. We may write

r, =1.5(24)&X10 io+Ra cm

where RD is the mean radius of the deuteron. The choice
of RD is certainly not unambiguous; and we have chosen
it so that the theoretical angular distribution has its
second minimum at 8=60' as required by the experi-
mental results. This requires that Pro ——2m at tII=60';
thus, r0=7.58X10 "cm, and R~=3.25)(10 "cm.

The value of the nuclear dipole moment,

D~a[= (D~a') «],

for the transition which causes the inelastic scattering
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may be obtained by comparison of the experimental and
theoretical ratios of inelastic and elastic scattering.
Since compound nucleus formation is not likely to play
a signiicant role in the elastic scattering of deuterons,
the appropriate expression for the elastic scattering
cross section is given by Eq. (31).Since the elastic scat-
tering at a given angle depends rather critically on the
choice of the ambiguous quantity t„we have integrated
the differential cross sections over all angles from 75' to
135' and then equated the theoretical and experimental
ratios of inelastic to elastic cross sections. One obtains
D~~=7.5)(10 "cm; this is about 1.74 R„y, ~here R.~-

is the nuclear radius (R~= 1.5X(24)'X 10 "=4.33
X10 " cm) of qmMg'4. In view of the approximations
involved, this result is not unreasonable. The theoretical
angular distribution (da/dQ) for the inelastic scattering
of 7.5-Mev deuterons on Mg" is given in Fig. 1(b). The
total cross section for inelastic scattering is given by

0 =0.041DggP= 2.1X10 '6 cm'.

O
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Comparison of the theoretical angular distribution
with the experimental one seems to indicate rather
clearly that the inelastic scattering is due to electric
interaction. $

The experimental data obtained by Rhoderick' on
the total cross sections for protons scattered inelastically
on aluminum and magnesium targets seem to indicate
that the energy transfer takes place primarily by com-
pound nudeus formation. Unfortunately, no angular
distributions are given in the published results of these
experiments.

(B) Electric Break-Up of the Deuteron in Flight

First of aB we shaB give a comparison of the cross
sections for the competitive processes of stripping and
electric break-up. In both processes, we shall restrict
ourselves to the case in which the escaping neutron is
observed. In the computation of the electric break-up
cross section, we shall neglect the 6nite size of the target
nucleus;" this procedure yields an upper l.imit for the
cross section. In the point nucleus approximation, the
cross section for electric break-up may be obtained by
setting E = k&+km in Eq. (52). We shall assume that in
the majority of the disintegrations, the energy lost by
the center of gravity of the deuteron is small compared

f If the electric dipole moment, Dzz, is very small, the scatter-
ing may be due to electric quadrupole interaction.

~ For 200-Mev deuterons, Danco6 has taken the 6nite size of
the nucleus into account by limiting the recoil momentum of the
deuteron's center of gravity to values less than or equal to k/rp,
where r p is the sum of the radii of the deuteron and target nucleus.
For high energies this cuto6' in momentum space is approximately
equivalent to the more exact procedure of modifying (in con-
figuration space) the interaction between the target nucleus and
the deuteron to take account of the nuclear forces. For the much
lower energies ( 15 Mev) in which we shall be interested, the
momentum space cutoff is a very poor approximation, and the
more exact procedure must be used. Modi6cation of the inter-
action to include the effects of nuclear forces leads to very com-
plicated integrations and cumbersome formulas; we believe that
that the labor involved in these computations is not warranted
at the present time.

FIG, 1(a). Empirical results obtained by Holt and Young for the
angular variation of the intensity of deuterons scattered inelas-
tically (curve A) and elastically (curve 8) on magnesium.

&( e
—x n I epx( EI ln

Ep(1+x)

The upper limit, x, is determined by energy conserva-
tion; for deuterons having energy of 15 Mev or more, no
appreciable error is incurred by taking x = ~. The
electric .break-up cross section has been evaluated by
numerical integration for 15-Mev deuterons for four
values of Z; the results are given in Table I. Inclusion

C0
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FIG. 1(b). Theoretical angular variation of intensity of deuterons
scattered inelastically from magnesium.

to the initial energy of the deuteron; consequently, we

may make the approximations: k&—k~2E&/(&+co),
kq+k2 —2k'. Setting x= e/eo, the total cross section for
electric break-up is given by

16Z2e4 g$
ig

3eoEg (1+x)'
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TAsLE I. Comparison of stripping cross section with cross sec-
tion for electric break-up on a point nucleus. {Deuteron energy
=15 Mev. )

Target
nucleus

Cross section (barns)
Stripping Electric

Be
Mg
CQ
Au

0.09
0.12
0.14
0.08

0.016
0.094
0.22
0.17

l,2

OP

O

Target

0-,
-5O -2(f -10 0 lO 20 30

Angle From Deuteron Beam

FIG. 2. Angular distribution of neutrons obtained from electric
break-up of the deuteron.

s'In the derivation of Eq. (60) Serber neglected the Coulomb
repulsion on the deuteron; this neglect is justi6ed, of course, for
the large deuteron energies considered by Serber. A second as-
sumption involved in the derivation of Eq. (60) is that the period
of the internal motion of the deuteron is much greater than the
collision time. The validity of this assumption is questionable for
deuteron energies as low as 15 Mev, but we shall assume that no
large errror is introduced in the total cross section by the use of
this assumption.

of the eGects of the finite size of the target nucleus
would decrease these cross sections, the amount of
decrease being greater for the heavy nuclei than for the
light nuclei.

The stripping cross section for high energy (E~—200
Mev) deuterons is given by Serber" as

0,—5A&X10 26 cm', (60)

where A is the mass number of the target nucleus. For
lower deuteron energies an estimate of the (d,n)
stripping cross section can be obtained by modifying
Eq. (60) to include the eGect of the coulomb repulsion
on the incident deuteron. "This modification may be
achieved in an approxUnate way by multiplying the
right hand side of Eq. (60) by a factor p(E) which takes

account of the decrease in the density of protons at the
nuclear surface due to the coulomb repulsion. 27 This
density factor has been evaluated by Konopinski and
Bethe."For the target nuclei 4Be', j2Mg", 29Cu", and
79Au'~ one obtains the values p=0.9, 0.8, 0.72, and
0.28, respectively. Values of the stripping cross sections
for the four nuclei are given in Table I. Since we have
assumed tacitly the proton's sticking probability to be
unity in each case, the values listed in the table really
give upper limits for the stripping cross sections.

The results given in Table I indicate that cross
sections for the electric break-up process may be large
enough, in some cases, to enable this process to compete
favorably with the stripping process.

The theoretical angular and energy distributions for
the neutrons obtained by electric break-up of the deu-
teron in flight are given by Eqs. (54), (55), and (56).
Plots of the angular distributions obtained with 15-Mev
deuterons incident on Be and Cu targets are given in
Fig. 2. In the consideration of the theoretical distri-
butions it should be remembered that a "point nucleus"
model has been used. Furthermore, spreading of the
deuteron beam because of coulomb deQection and
multiple scattering has been neglected; this spreading
of the beam will widen the angular distribution some-
what. It should be noted that in the angular distribu-
tions given in Fig. 2, neutrons of all permitted energies
are counted. In most of the experiments, neutron de-
tectors having rather high threshold energies have been
employed. At the high end of the neutron spectrum our
expressions are not quantitatively valid, for we have
assumed the loss of energy of the deuteron's center of
gravity to be small compared to the deuteron's initial
energy.

The predictions of the electric break-up theory seem
to be consistent with the experimental results. Thus,
neglecting the spreading of the deuteron beam, the
theoretical angular distribution (for neutrons of all
permitted energies) has a half width of about 40' for
both Be and Cu targets. Thus, at least up to Z= 30, the
half-width is roughly independent of the atomic number
of the target nucleus. And, again in agreement with
experiment, the theory predicts that the yield of
neutrons from a heavy target such as gold is less than
the yield from a light target such as magnesium.

The electric break-up of the deuteron seems to lead
characteristically to a "double-peaked" angular dis-
tribution for the escaping neutrons if neutrons of all
energies are counted. If, however, one counts only the
neutrons at the upper end of the energy spectrum, the
theory yields a "single-peaked" distribution; it must
be remembered, however, that our expressions do not
have quantitative validity for the extreme energies of
the neutron spectrum.

Lack of sufhcient experimental data in the range of

'~ D. C. Peaslee, Phys. Rev. 74, 1001 (1948).
ss E.J. Konopinski and H. A. Bethe, Phys. Rev. 54, 130 (1938).

In the nOtatiOn Of theSe authOrS p=l s/lss.
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neutron energies for which our theory has quantitative
signi6cance, and lack of an adequate theory of the
stripping process for "low" energy deuterons make it
impossible to assess, at present, the relative contribu-
tions of stripping and electric break-up to the observed
neutron intensities. Of course, any neutrons observed to
have energy greater than Zr —so (=12.8 Mev for 15
Mev deuterons) cannot result from electric break-up
and must be attributed to stripping or to compound
nucleus formation in which the target nucleus absorbs
the incident deuteron and subsequently emits a neutron.

APPENDIX

(A}. The result given in Eq. (41} of the text follows from the
more general theorem~

Z IZ(blQola)u'«il'=(Q&s '/tO)[a'«'+l{u «)'0
a, b ij

+IAB2(u v)'/9, (61)

where u and v are arbitrary vectors. We shall now prove this
theorem.

We introduce the tensor T which has elements Ti; =u;v;+ujvi.
And we introduce the spherical harmonics F& de6ned by

I'2'(Q) =(r)'(»'-r'), I'~'(T) =(3) (3u.v. u'v)
I"2+'(Q}= +2@(x+iy}, F~+'(T) = w {u,(v,~iv„}+v,(u, ~iu„) },
I p'(Q) = (&~iy}', r +'(T) = (u,~iu„) (v ~iv„).

We then have the following relations

Z I F2"(Q) I'=4 Z
I O'

' I'
m ij

Z
I (b I

F (Q«) I a}I'= $Qxs" for all ss,
a, b

Z
I
Fg"{T)I' 2[a'«'+=«(u v)'j,

Z I™{Q)F,"'(T)=2 Z Qij (uiVj+ujVi —-',u V6;j).

Consequently,

Z IZ(b IQal a)a;v;I'
a, b ij

= ZITI(blQ; Ia)+l(bills)a;;I-,'{e;v;+u;«;) I'
a, b ij

= Z
I l Z(b I Q'~' Ia) (af'«t+a~«' f »'u~)—+«u «{bII la) .41

a, b ij

I l Z(bl F2"(Q) la)F~"*(T)+«u «(blIla) I'
e, b

= Zih ZI(blF "(Q) la) I'IF~-(T)1'+[{u «)'/93I(blIla) I'I
o, b m

=(Q~s"/l0)[u'«'+z(u v)'g+(I~s'/9)(u v)'.

The special choice u=k„, v= m yields the result given in Eq. (41)
of the text.

{8'). The result given in Eq. (44) of the text follows from the
more general theorem

I Z{b I S;;kI a)uiv, mkI'
e, b ijk

SAB"
{Su'v av' —2(u v){v w)(w u)

210

+3I {u v)'m'+{v w)'u'+(w. u) a'j}
{r'D)AB'+ {6{uv)(v-w)(w u)

+t (u.v)+'+(v. w)'us+(w u}sv'jI (62)

» This theorem is used by G. C. Wick, reference 8. A similar theorem
has been proved by D. I . FalkoF (thesis. University of Michigan, 1948).
Our proof is based on the method used by Falkoff.
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Z I Z(b I S;;p I a}Zp a;«;we I

'
o, bTijk

1
Z I

Z I{bIS' «'I a)+—(b lr' Z»'b»I a) I Z»'«~~al'
e, b ijk

Z
I
Z (b I

S"'
I
a) T' ~'+—(b lr' Z»'»» I a) Z»'«~««~ I

'
e, b ijk

=—&
I l ~{bI

I'3-(s) I a) ~3 *(T)
36

1+—5 (bjr' Z x;bikja)Zu;vjmkj'
10 ijk p p

=—ZI-', Z{bjF3 (S) ja)Yg *(T)
36

+(6/5)ri{bjr'x, ja)t (u v)wi+{v w)ui+{w u)v;jj~

=—Z Z
I {bIF,-(S) la) I'IF,-(T) I'1

64, b

{r'D)AB2+ Zt {u v)u;+(u w)u, +(w u)v;J'

SAB {Su'v' —2(u v)(v w)(w u)
210

+3${u v) ales+(v w)'u'+(w. u)~v j}
(rsD)»s+ -{6(u v)(v. w)(w u)

+t {u v)~s+{v w)su~+(w. u)+sg}.

The special choice u=v=k„, w=e leads to the result given in
Eq. {44}.

where
(r'D)~s= Z Zl {blr'a, la) I'

a, b i
and u, v, and w are arbitrary vectors. We shall now prove this
theorem.

We introduce the tensor T having elements T,jk Zpu;vs)k
and the tensor T' having elements

Tijk'=ZP{uiv7~k —gb;jt uk(v w)+vk(w u}+uk(u v) j},
where the sums are extended over all permutations of ijk. And
we introduce the spherical harmonics F& de6ned by

F30(S)= {-',) 4(5s' —3r'),
I'+'(S) =~{l)'(5~' —r') (~~iy),
Y.+2{S)=(6)~s{xaiy}~,
V.+3(S)= ~(~~i&)3,

F '(T) = (4/45) &{u,(5v,m, —3v w)+v, (5m,u, -3w u)
+m, {Su,v,—3u v}},

F +'(T) =%{1/15)&{(5u,v,—u v)(m +im„}
+(Sv,m, —v-w)(u, ~iu„)+(Sm,u, —w u)(v ~iv„}},

F3+'(T) = (-',}& {u, (v,+iv„)(m, Wiu„}
+v, (m, ~im }{u~iu„)+m, {u ~iu„)(v ~iv„) },

I'3+'&T) = W {u.aiu„) (v.aiv„) (u.aim„).
We then have the following relations:

~ S' k'Ti k'=& & &3"{S}&."'{T),
i7k

ZIFI"(S) I'=8 Z Isa'I',
m ijk

Z
I (b I F, (S) I a) I

= (8/7)Sgs" for all m,
a, b

Zl Fg {T)l'=(4/13)ISu «w« —2(u v)(v w)(w u)

+3[(u v)'w'+(v w)'a'+(w. u)'v&jI,

Z;t {u v)xi+(v-w)ui+(w. u)v;]'
=6(u.v)(v w){w u)+[(u v)'w'+(v w)V+(w u)'«'].

Consequently,

ZIZ (bIS;,ala)u;«waI'
a, b ijk


