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A Theory of Cooperative Phenomena

Rvozcaz KIKUCHi*
Department of I'hysics, University of Tokyo, Tokyo, Japan
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A new method of approximation for order-disorder phenomena is developed. In Sec. A, the method is
explained for the one-dimensional Ising lattice. Sections B and C cover the approximations already known,
such as those of Bethe (Sec. B) and of Kramers-Wannier (Sec. C), which are shown to be derived as special
cases of the method with suitable choices of variables. In Sec. D, an improved treatment is explained for
the three-dimensional simple cubic Ising lattice. This approximation is found to agree with the rigorous
expansion of the partition function up to the fourth moment by Kirkwood's moment method, so far as the
disordered state is concerned. In Sec. E the general formula for the entropy is given, In Sec. H an improved
treatment of the face-centered lattice (Ising model) is given.
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E shall develop a new method of approximation
to the entropy of an order-disorder system. It

gives, by suitable choices of the variables, the approxi-
mations already known, such as that of Bethe, ' and the
"variation method" derived by Kramers and %'annier. '
Our improved treatment for a simple cubic lattice has
been tested by comparison with the rigorous expansion
of the partition function by Kirkwood's method of
moments, ' and is found to agree with his expansion up
to the fourth moment, so far as the disordered state is
concerned.

Though most of the two-dimensional problems have
been solved, 4 the new approach for the three-dimen-
sional problems seems to be worthwhile, especially at
the present stage of the theory when the theory is
confronted with formidable mathematical difhculties
and various new approximations'-' are still being
reported.

IL SIMPLE LATTICES

A. Linear Ising Lattice

%e call a linear lattice composed of M lattice points
a systems, and consider an ensemble which contains I.

l 2 I l kI NI I
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systems as illustrated in Fig. 1. The totality of the kth
lattice points (one from each of the L systems, marked
with black circles) will be called the set of kth lattice
point, and the set of the kth bond will mean the whole
of the bonds marked with heavy lines in the figure.

The probability of appearance of a bond having one
of the configurations shown in the left column of Table
I is denoted by y; as shown in the second column. '
Without loss of generality, configurations (+ —) and

(—+) can be assumed to have the same probability
of appearance due to their symmetry. P; indicates the
number of different configurations having the same
probability. y s are normalized by the equation

ZP*y'= &

i=1
(A.i)

TABLE I. Probabilities of appearance of con6gurations of a bond.

%e say that "the set of the kth bond has right
distribution of spin" or, briefly, "the kth bond has r.d.",
when, among the I.bonds belonging to the set of heavy
lines in Fig. 1, y~L bonds have the configuration (+ +),
y2L have (+ —), y2L have (—+), and y,L have (——).
%e show in Table II, which can be derived from

C 0—"""~: D—" ~ 0 2vut system Boncl Pxob o

C 0—""~ — ~ ~ 0 Lth system

Frc. 1. An ensemble of linear lattices.
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'c pi indicates the number of diferent configurations having the same
probability.

c4' ci denotes the energy per bond.

' We shall call a bond a bric figure for Sec. A, as the con6gura-
tions of a bond are chosen as variables upon which the whole
theory of Sec. A is constructed.
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TgsLz II. Probabilities of appearance of spins.

Spm Probabitity Fro. 2. An intermediate stage of constructing a linear Ising lattice.

&1=y1+y2
&2=yR+y3

g~ = (»L)!/t:(r~L) '(raL) 'j. (A.3)

Thus, the number Gl, of ways of putting a spin on A so
that 8—A has r.d. becomes 6nally

G.=g g.=II(*.L)! II(r,L) ~'. (A.4)

We introduce the abbreviated expression "to put (a
spin on) A with rejereiire 10 B,"meaning "to put a spin
on A so that the bond 8—A has r.d., provided 8 has
had r.d."The words in the parenthesis might sometimes
be omitted. And at the same time, for simplicity's sake,
we put

II(x;L)!=XI.={Point}r„—
(A.5)

3

rr(r, L) =-~.=-{B-d»'
i~1

The notations on the right-hand sides are conveniently

Table I, the probability x; of a lattice point having the
respective spin.

Similarly to the bonds, we say that "(the set of) the
4th lattice points has right distribution of spins, "when,
among the I. lattice points belonging to the set of
black circles in Fig. 1, xiL have (+) spins, and xsL,
(—) spins. When the set of a bond has r.d., each of the
end points of the bond naturally has r.d.

Analogously to the treatment by means of the
eigenvalue problems, ' we 611 up the lattice points one

by one from an end. In Fig. 2, we assume that each
bond on the left side of 8 has been put with r.d., and
we are going to 611 up the point A. What will be the
number of ways of putting a spin on A so that the
bond 8—A has r.d.?

As the set of the lattice point 8 is assumed to have
r.d. , xiL lattice points among the set have (+) spins
and x2L, (—) spins. Among the first xiI points, we
can select ylL, at random, so that for these ylI, we put
(+) spins on A and for the remaining yiL, (—) spinson
A, making yiL bonds having the configuration (+ +)
and yiL bonds having the configuration (+ —) among
the set of the bond 8—A. In this process, the number
of ways of putting all. spins on A is

gi (*iL)!/{ (yiL) !(yiL) !]. (A.2)

For the remaining @2' of the set of the point 8 having

(—) spins, we can pick up ymL at random in order to
make y2L( +)'s and y—iL( —)'s. The —number of
ways of making this selection is

S=k lnG=k(M/L) ln Gr,

=k(M/L) { Px;L ln(x;L) PP,y,L ln—(y;L)]
2

=kM Px;lnx,—PP;y; Iny; . (A.7)

The total energy for a system is easily calculated,
and combining it with (A.7), we can formulate the free
energy, whose minimum gives the equilibrium state.
Thus proceeding, we can verify that the well-known
solution for linear Ising lattice4 can be attained, of
which the details are omitted here.

B.Bethe's Approximation (Two-Dimensional
Stluare Lattice)

In this case also, we choose a bond as a basic 6gure,
and the y s in Table I and the x s in Table II are
su%cient to represent the vaeiabIes. The entropy of
the system is formulated when we calculate the number
of ways of putting a spin on the point A in Fig. 3, so
that the bonds 8—A and C—A have r.d. , respectively,
assuming that every bond in the part of solid lines has
had r.d. This number can be calculated in three steps:

(i) The number of ways of putting a spin on A with
reference to 8 so that 8—A has r.d. , independent of
the bond C—A, is as follows (see (A.2)—(A.6)):

g= {Point B» r/{ Bond BA» r, ——Xr/VI. . (B.1)

(ii) Thus, the bond B—A has had r d , but the. .
distribution of the bond C—A is not known. We will
correct the latter. This correction cannot be done
perfectly, but as a best approximation, following the
idea of Takagi io we can multiply (B.1) by the proba-

1O Y. Takagi, Proc. Phys. Math. Soc. Japan 23„44 (1941).

used when we brieQy compose Gl, . That is, the number
of ways Gl. of putting a spin on a lattice point A with
reference to the adjacent point 8, completing a bond
8—A, so that the bond has r.d. , is calculated schemati-
cally as follows:

{the part already filled} z,
Gg=

{the whole to be completed) J.

{Point B» r. Xr,
(A.6)

{Bond BA}r, Fr,

As the number of ways of 6lling any lattice point is
equally GL,, the number required to complete a system
filling M lattice points is (Gr,) for an ensemble. The
number of ways for one system G is given by the I.th
root of (Gr,)~, and when we apply Stirling's formula
and. the condition (A.1), the entropy S for a system
becomes
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because, in the step (i), we have put a spin on A

independently of C, which is identical with having
calculated the number of ways of putting a spin on A as

L!/[(x,L)!(x,L)!j=L!/Xr, (B.3)

I'lG. 3. An intermediate stage of constructing a two-dimensional
square lattice.

bility that the bond C—A has r.d. after the step (i).
This probability I' is

{Point C}r. L! Xr.'
p (8.2)

{Bond AC}r. {Point A}r. YrL!

TABLE III. Probabilities of appearance of conhgurations
of a square.

ga 4

so far as the bond C—A is concerned; whereas the
correct number of ways of putting a spin on A so that
the bond C—A has r.d. is, analogously to (8.1) or
(A.6), expressed by

{Point C}r,/{Bond CA }r.

(iii) Multiplying g and I', we get the approximate
number of ways Gl, of putting a spin on A so that both
bonds 8—A and C—A have r.d. :

Gr, =gF =Xr,'/(Yr. 'L!), (B 4)

which can easily be proved to coincide with the formula
derived by Takagi, " which is identical with Bethe's
6rst approximation. '

Moreover, for other types of lattices also, the y s
and x,'s are sufhcient to give Bethe's approximation.
Generally, for the lattice with coordination number 2',
the number of ways of constructing a system (Gr,)~'
is easily shown to be approximated" by

(G )M/I [X 2(a——1/( Y~(oL t(a 1)jjr/L—
giving Bethe's approximation.

C. The Kramers-Wan~ier Approximation
(Two-Dimensional Square Lattice)

(Cl) Free Energy

To improve the approximation, we choose a square
as a basic figure, and use as variables the probabilities
of appearance s s of conhgurations of a "square" shown
in the left column of Table III. From this table, we
derive Table IV, which gives the probabilities of
appearance m, 's of configurations of an "angle. " Just
as was mentioned above concerning Table I, the con-
6gurations interchangeable by symmetry operations,
say,

+ , + , + and +
are naturally assumed to appear with the same proba-
bility. The p s and 8 s denote the numbers of diferent
conhgurations with the same probability. The concepts
of set, r d , and wi.tk.reference to are extended for the new
variables, but no explanation seems to be necessary.

Extending Eq. (A.S), we define

g( Ls)!'rZ r{Square} r, ,

g(w,L)!'=Wr.={Angle }r.. — —
i 1

(C1.2)

~ y; is the number of different configurations having the same probability.

Vfe also use the y s of Table I and the x s of Table II.
"Except for the case 2' =3.
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The entropy of a system is obtained when we calcu-
late the number of ways of putting a spin on A in
Fig. 3, so that both the square ABDC and the angle
ACE have r.d., provided that every square and every
angle in the part drawn with solid lines have had r.d.

To calculate this number, we proceed in three steps,
just as in Sec. 3:

(i) The number of ways of putting a spin on A with
reference to the angle BDC, so that the square ABDC
has r.d. independent of the angle ACE, is given, using
the rule (A.6),

g =
f Angle BDC }s/ f Square ABDC }I.= Wr/Zr, (C1..3)

(ii) The correction factor for the angle ACE to have
r.d. is, (see Kq. (B.2)),

TAsLE IV. Probabilities of appearance of con6gurations
of an angle.

{Bond CE}L, {Point C}z, YL,'r=
f Angle ACE}1. {Bond AC}I. WIXr.

(C1.4)

(iii) Multiplying g and P, we obtain the approximate
number desired:

E=2M+e;P,y, = 2M4(2y2 —
y4

—y4). (C1.7)

Therefore, combining Kqs. (C1.7) and (C1.6), we
obtain the free energy p per lattice point:

t4 = (E ST)/M-
= 24(4ys —1)—kT{ 2+P;y; lny; —Px; inc; —Py,z; lns;j. (C1.8)

(C2) Fundamental Equations

Before minimizing p, we determine the independent
variables. Because of Eq. (A.1), the x,'s in Table II
satisfy the normalization equation:

Xg+X2= 1. (C2.1)

The y s in Table I and z s in Table III are geometri-

Gr, ——gF= Fl,'/(X~I.). (C1.5)

It should be noted that 8'I, does not appear in the final
result. This fact was to be anticipated at the outset;
the details will be stated in Sec. E2.

From Eq. (C1.5), we obtain the entropy S of a
system composed of M lattice points:

S=k(M/L) 1nGI,
=kM f 2+P;y, lny; —Px; in@;—Py,z; lns;j. (C1.6)

Next, the energy of a system is composed rigorously
as follows: when we denote the energy between the
same spins by —~, and that between the difI'erent spins
by +4, each bond has the energy represented by 4; in
Table I. As the total number of bonds in a system
composed of M lattice points is 2M, the energy E of a
system is given by

8 88 0+

* b4 is the number of different configurations having the same probability.

cally connected by the relations:

Pg —Zg+ 2Z2+ Z3p

y2= z2+za+z4+zs,
P3 Z3+ 2Z6+ ZS ~

(C2.2)

Taking Eqs. (C2.1) and (C2.2) into account, we use for
the independent variables, ym, z&, s4, P& and b, among
which the last two are defined by

(C2.3)

(C2.4)

Dependent variables are expressed by linear combi-
nations of independent ones; e.g.,

2z& ——1+$&—4y2+2s4 —2)2. (C2.5)

These relations are summarized in Table V, in which
the quantities except 1 in the upper row, are the
independent variables. $4 and $s are conveniently
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TABLE V. Relations between the dependent variables (on the
left column) and the independent ones {on the upper roar except 1).
The meaning of this table is, for example, 2y3=1 —

g&
—2y2.

which gives, from Table V,

X]=$2= 2 (C3.2)

2x1
2XQ

2yl
2yl
281
282
28$
2zs

1—1
1—1
1

—2—2—4
1
1
4

2—1—1
2

—2
1

—1
2

yl y2 f y2

Zi= Z6= 2
—2y2+Z4

, S2= S6=-', (y2
—S2—S4).

(C3.3)

(C3.4)

(C3.5)

Equations (C2.6) and (C2.10) becoming identities, the
fundamental equations reduce to the following, for the
determination of the three independent variables, y2,
z3) and z4'.

chosen as independent because they become zero for
the disordered state, and consequently they can be
interpreted as parameters representing the long range
order of the usual terminology.

Differentiating Eq. (C1.8) with respect to the inde-
pendent variables, and putting the derivatives to zero,
we get the fundamental equations:

»/~h=0: (»/x2)(y2/y1)'(S1/S6) =1,
~t /~y2 0 H [y2'/(y1y6)][(2126)/(S2S6)]

where
H=—exp(6/kT),

(C2.6)

(C2.7)

»/as6=0:

8t4/8S4 =0:

Bt4/8/2 =0:

z3 Z2ZQ)
2

(S2S6) S4 S1S6i

(S2/S6)'= s1/s6.

(C2.8)

(C2.9)

(C2.10)

t4 t4 $1(ttt4/tt)1) y2(4tt4/4)y2) S6(»/6ts6)
S4(»/BS4) $2(»/812)

= —26+ kT(-', lnx1+-,' lnx2 —lny1 —lny2
+-,'1,+-', h 6), (C2.11)

or defining X by the relation

X—=exp( —t4/kT) (C2.12)

and combining Eq. (C2.11) with Eq. (C2.6), we have

X=EPy12/(x, s,).

(C3) Disordered Slate

The disordered state is defined by

h=h=0,

(C2.13)

(C3.1)

TAmz Vl. Relations between the dependent variables {y&, y~,
and s1) and the independent ones {sg and s4) for the disordered
state. The meaning of this table is the same as Table V.

When t4 is minimum, we can simplify Eq. (C1.8) as
follows:

H'= (y~6)/(y1S4),

Z3= Z2)

~ z2 z/Z4o
2

(C3.6)

(C3.7)

(C3 8)

On substitution of Eq. (C3.7) into Eq. (C3.5), we
have

y2 =3z3+z4. (C3.9)

d$g 2

42 S6

2
+

Z6

(C4.1)

We can now derive Table VI, which gives the relation
between the independent variables z3 and z4 and the
dependent ones y&, y2, and z&, which appear in Eqs.
(C3.6) and (C3.8).

Using Table VI, we can solve Eqs. (C3.6) and (C3.8)
easily for z3 and z4, finding the results:

S6——(3IP 1)(3—H')/—[168'(6—H' —H ')] (C3.10)

s4 ——(3—EP)2/[16H'(6 —IP—H ')]. (C3.11)

Combining Eqs. (C3.10) and (C3.11) with Eqs. (C3.9),
(C3.6), and (C2.13), we get, 6nally,

X=8[6—H' —H '] '=2[1—sinh (6/kT)] ' (C3.12)

which is identical with Eq. (90) of Kramers-Wannier s
paper 2 in which 6/kT is denoted by K, and ), has the
same meaning as our X.

(C4) The Trartsitiort TemPerature, T&

As the general properties of the second-order phase
change, each of $1 and $2 indicating the long-range
order has two non-zero values with equal absolute
magnitude and diGerent signs below the transition
temperature. Therefore, at T1, d)1/dT and db/dT
become infinite, but a certain combination of them
remains finite. At the same time, it should be noted
that at T~ the variables satisfy the equations for the
disordered state treated in Sec. C3. Hence, we can
determine the value of the second-order transition
temperature using the solution for the disordered state.

By differentiation of Eqs. (C2.6) and (C2.10) at T4,
we have:

yl
ys
Z1

—3
3—6

d$ t2 2t 1
+

dk2 sl S2 S1
(C4.2)
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Equating the right-hand sides of Eqs. (C4.1) and
(C4.2), we get

(1/z~+zs) —(2/ye+2=0. (C4 3)

This is the equation to be added to determine T&.

Using the formulas (C3.10) and (C3.11), we trans-
form Eq. (C4.3) into an equation for 8, the solution
of which gives the value for the transition temperature:

HP= [5+(17)&]/4, (C4.4)

which coincides with Eq. (92) of Kramers and Wannier.

(C5) The Ordered State

The plus sign has been adopted before the root, so that
at the transition temperature, when we insert Eq.
(C4.4) into HP, Eq. (C5.3) gives the same value for X
as that calculated from the disordered formula (C3.12):

X = [9—(17)&]/2. (C5.4)

Thus, the problem has been solved completely.
Next we show that our results are identical with

those of Kramers and Wannier. They found the
following results:"'

X=EP+(1+8's)(1—s')/[84(8 —8 ')] (C5.5)

where z is a root of»

[1+2zH '+s']'=(EP —8 ')'s (C5.6)For the ordered state, we must solve Eqs. (C2.6)—
(C2.10) without any special conditions such as Eq.
(C3.1). Generally speaking, these simultaneous alge-
braic equations for many variables can be reduced to a
single algebraic equation for one variable. Therefore,
in every case we can solve the problem if we resort to
the numerical calculation of a higher order algebraic
equation. This might be counted among the merits of
our method. In the present case we can solve the

problem analytically as we fortunately get a quadratic
equation.

For the sake of convenience, we add Eq. (C2.13) to
the fundamental equations and solve the six simul-
taneous equations for the six variables, $~, y2 s3 z4

and ). Omitting the detailed accounts of the process
of transformations, we list the results at once. The
reduced single algebraic equation is

We found that Eq. (C5.6) can be factorized as

[8zz+ (84+1)z+8']
X[8'z'—8 (8'—3)s+1]=0. (C5.7)

Adopting the second factor we can simplify Eq. (CS.S),
obtaining

s= (8'+2—) EP)/[EP(84 —5)]. (CS.S)

On inserting Eq. (CS.S) into the last factor of Eq.
(C5.7), we obtain an .equation for X which proves
nothing but Eq. (C5.1).

Therefore, our approximation described in Sec. C is
identical throughout all temperatures with that ex-
plained by Kramers and Wannier under the name of
the "variation method. "

D. An Improved Treatment for the Simple
Cubic Lattice (Ising Model)(XEP)'—(8'+88'—1l)(XH')

+SH"—128'+684—1=0. (C5.1)
(D1) Free Energy and Fundamental Equations

The six independent variables are connected with ) by
the following relations:

6=b8
zs= y2+z4(1 —8),

gm'= «[2—Sy2 —8(8—4)s4],
s4——r(8r —4+1)—',

2y2=1 —(8r it+1) ', —
8'(8—2)(it+1)r+ [(84—2)8k+ 84—(8+1)]=0,

A= (a8+c)/{8—(a8+b) }

EP 2EPa8+ (a+ b) (284—1)—d

X (284 1)[(b+d)8+c—(2H4 1)]—
a =8' 68'+ 1, —

b =3EP+284 1, —

c= (84—1)'(28'—1),

d =8's —SHn+ 10Hz —48'+ 1

G&= {Angle FGB}r/I Square AFGBI &= W&/X&.

(ii) The correction between A and D C: so far as-
the face AB1K is concerned, by the process (i), we

The solution of Eq. (C5.1) is

X [EP+SH' —11+(8'—5)&(84—1)&]/(28'). (C5.3)
"a Reference 2, Eq. (9ib).
~ Reference 2, Eq. (91a).

The shortest way to improve Bethe's approximation
for the simple cubic lattice is to take a square as a
basic figure, adopting the z s in Table III as variables.
The m s in Table IV, the y, 's in Table I, and the x s
in Table II are also used. The concepts of set, r.d. , and
with reference to are extended to the three-dimensional
lattice.

The entropy of a system is obtained when we calcu-
late the number of ways of putting a spin on the point

(C5.2) A in Fig. 4, so that all of the squares and angles con-
taining A have r.d. , provided every square and every
angle in the part drawn with solid lines have had r.d.
This number of ways is calculated in the following
seven steps:

(i) The number of ways G& of putting a spin on A
with reference to the angle IiGB, so that the square
AFGB has r.d. , is (see Eq. (C1.3)):
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/AJ
3
,'fJ
4r' X

(vi) The correction between A and K: following (iv)
gives

{Bond FK}1. {Point F}t, Yr.'
r,=

{Angle AFK}t, {Bond FA}r, WrXr,

(vii) Therefore, the number of ways Gr, of putting a
spin on A is

6

G,=G,gr, = I', L!/(Zg'Xg'). (D1.1)

Fro. 4. An intermediate stage of constructing a simple cubic lattice.

have put A with reference to only B, while ideally we
have to put A with reference to the angle BDC. There-
fore, the correction factor Fi becomes

{Angle BDC}t, {Point 8}r. Wr, I'I.
F]

{Square ABDC }i. {Bond BA }r. ZrXI.

(iii) The correction between A and H: considering
the fact that, so far as the face ACHP is concerned, we
must put A with reference to the angle CHP, the
correction factor I'2 must be

E=3M+3,py, =3M3(4y3 1), — (D1.3)

where e; is given in Table I.
Differentiating the free energy p, per lattice point

34= (E TS)/M, — (D 1.4)

with respect to the independent variables shown in
Table V, and setting the derivatives equal to zero,
we get the following fundamental equations:

Bt4/B]3 ——0: (x3/x3)'(y3/y3)'(z3/z3)'= 1

Bt /By3=0: H'= Ly3'/(y3y3)]'Lzrz3/(z3z3)]',

(D1.5)

(D1.6)

Hence, the entropy for a system with M lattice points is

S=k(M/L) 1nGr,

=kML9+P,y; lny, —7+x, lnx, —3+y,z, lnz, ]. (D1.2)

Next, considering that the total number of bonds for
a system is 3M, and following Eq. (C1.7), we have the
energy for a system as

(Angle CHF }r, {Point F}r.
F2=

(Square ACHF}t, {Bond AF}1,

{Point C}r,
X

{Bond AC}1. {Point A}1.

= (WI.Yr3L!)/(ZrXJ3),

where

Bt4/Bz3 0:——
Bt4/Bz4 0:——
Bt4/B$3 =0:

H~exp(e/k T)

Z3 —Z2ZQ
2

Z2 Zg —Z4 ZyZ6

(z,/z, )'=z,/z, .

(D1.7)

(D1.8)

(D1.9)

~here the factor in the square brackets is derived by
the following considerations. So far as this face is
concerned, we have put A —P with reference to P in
the process (i), and in the process (ii) we have corrected
between A and C, i.e., have multiplied the factor,

L{Point C}1/{Bond AC}L,]—:LL!/{PointA}r,].

(D2) The Disordered State

Just as in Sec. C3 of the two-dimensional case, the
relations (C3.1)—(C3.5) hold, Eqs. (D1.5) and (D1.9)
becoming identities. The fundamental equations reduce
to the following for the determination of the three
independent variables y2, z3, and z4.'

(iv) The correction between A and E: just as in

Sec. C1 (ii), the correction factor F3 becomes

'H'= (y3/y3)'(»/z3)'

Z3 Z2)

(D2.1)

(D2.2)

{Bond CE}r. {Point C}1. Yr'.
r,=

{Angle ACE} r, (Bond AC} r, WJXr.

(v) The correction between A and J: following (iv)
gives

{Bond FJ}r, {Point F}r, Yr3
F4=

{Angle AFJ}r, {Bond FA}r, W~r,

Z2 —Z/Z4e (D2.3)

Inserting Eq. (D2.2) into Eq. (C3.5), we get Eq. (C3.9).
Hence, Table VI holds, where za and Z4 are the inde-
pendent variables, and are determined by the following
relations derived from Eqs. (D2.1) and (D2.3):

H [3 3z3 z4] z4 (3z3+z4)3z33, (D2.4)

2z33+12z4z3+ z4(2s4 —1)=0. (D2.5)
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Putting
4O=-z4/«, (D2.6)

we have, from Eq. (D2.5),

s4=L2(4o'+64+1) j ' (D2 7)

Inserting Eqs. (D2.6) and (D2.7) into Kq. (D2.4), we
get

H'= L(3s+ 1)/(4o+3)3'/s (D2.8)

y4= (p'+34')«,
ys= (34o+1)«,
Zg —P Z4y

.8'3= ttfyZ4.

(D2.9)

Here we add a few remarks on the region of existence
of the solution for the disordered state. Equation (D2.8)
gives the LP vs p curve shown schematically in Fig. 5.
By the physical considerations, rp—=s4/s4 must be equal
to unity when EP=1, because we have the perfectly
disordered state as T tends to infinity. Hence, the
point I' is realized. Moreover, taking into account the
fact that the hatched portion cannot be realized, we
can conclude that the part I'Q drawn with the heavy
curve corresponds to the real state, where the maximum
point Q is easily shown to have the abscissa

4oo ——&~L7+ (40)&1=: 4.4415. (D2.10)

The part QR corresponds to the unstable state, the
specific heat becoming negative as explained in the
following section.

The situation that the solution for the disordered
state cannot be extended as far as T=O occurs in the
Kramers-Wannier case also. Equation (C3.12) is the
solution for the disordered state, but does not hold for
B large enough, as X must be positive.

(D3) Speciftc Heat for the Disordered State

The specific heat c per spin is defined by the following:

c/k=(1/kkf)dE/dT=12dy4/dr, (D3.1)

where we put
r=kT/4— (D3.2)

Using the relations derived in the previous section,
we get the desired result:

12 4o(4o+3)(34o+1)(3er+24o+3)
(D33)

k r' (4o'+ 6y+1)'(34o' —14y+3)

As mentioned in the previous section, c becomes nega-
tive for q» qq, because q g is a root of"

344r"—14y+3=0. (D3.4)
Lf As we shall see in the following section, the state corresponding

to yg is not realised. Hence, the speci6c heat always remain
6nite.

Thus, the disordered state has been solved with a
parameter y, The other variables are expressed through

y as follows: Fxo. 5. EP vs q of the equation (D2.8). In the curve, the part
outside the portion PQ is not realised.

Combining Eqs. (D2.8) and (D3.3), we obtain the
specific heat vs temperature curve, which is shown in
Fig. 6 by the solid curve for r&4.610.

d$y 6 9 31 2 2
14——+—= —+-

db y, s, l

1
(D4.1)

Transforming the right-hand equation, and inserting
Kqs. (D2.7) and (D2.9), we get

4 (4o
—3)(4 —5) =o, (D4.2)

of which the solution corresponding to a stable state is

pt=3p (D4.3)

since all of the part other than 1&y( yq is not realized,
as is explained by Fig. 5. Equation (D4.3) is the value
corresponding to T4. Inserting Eq. (D4.3) into Eq.
(D2.8), we get

H44= 125/81=: 1.5432,
1/r4=' 0 21693, . .

r4= kT4/e=.
' 4.6097.

(D4.4)

The last value is to be compared with that of Bethe's
second approximation'

kT4/4=.
' 4.744.

Inserting Eq. (D4.3) into Kq. (D3.3), we obtain the
value for the specific heat c+ at T~ on the higher
temperature side:

c+/k=: 0.389. (D4.5)

(D5) The Specif4c Heat c at T4 on the Liny
Tem perature Side

To solve the ordered state is not easy, but the specific
heat c at Tg on the low temperature side can be
obtained without difhculty. Simply speaking, c is
derived when we insert into Eq. (D3.1) the value of
dy4/dr at T4 determined from the 6ve simultaneous

(D4) The Transition Temperature, T4

We can determine T~ following the method explained
in Sec. C4. Differentiating Kqs. (D1.5) and (D1.9)
and using the relation $~——$4——0, we get
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"=.1 2y'

j
fg—=1—4y2+ 2@4)

lf2—=y2—&3—&4.

(D5.4)

Equating the right-hand sides of Eqs. (D5.1) and
(D5.2), we get

where
4+A (22+0($') =0, (DS.S)

+=(f /6)D (9/n)-+3/(t. .+r )1
I 1/2h—(h+4) j(1 2blk—~)+ (6/6)' (DS 6)

Differentiating Eq. (D5.5) with respect to r and
assuming" that d)2'/dr is finite and dO(P)/dr can be
set equal to zero at Tf,, we get

dys dz& dz4 1514 d$s
+3——3 + 28b =0, (D5.7)

dT d T dT 1323 dT

where we have utilized the following relation derived
from Eq. (D4.1) at T~.

Ai/d6=8. (D5.8)

Equation (D5.7) is used as the additional equation to
determine dy2/dr other than the three derived from
Eqs. (D1.6)—(D1.8) by differentiation and insertion of
the value at Tg.

equations derived from Eqs. (D1.5)—(D1.9) by differ-
entiation with respect to T. But it should be noted that
the equations derived from Eqs. (D1.5) and (D1.9)
are nothing but the two relations in Eq. (D4.1), being
dependent on each other; and therefore we need another
equation in order to determine dy2/dr. This extra
equation is derived as follows.

Expanding Eqs. (D1.5) and (D1.9), we get

b/$g ——Lf2/2(f'g+ t'2)]L1+ (1—2)2/$g) (b/t 2)'], (D5.1)

y= |y6 7—9q+3 g Bg' g 4, D52

with

&= (7/6) f {:5—(27/~)+ (36/n') —12/~'3
+&z(1—2b/$g){ 7—(21/q)+12/vP]
+ (1/2{'g) (1—2/2/$g)'{ 7—9/g)

+ (1/6t'P)(1 —2$,/$, )', (D5.3)
where we put

and, inserting it into Eq. (D3.1), we get

c 39285( 2i'
h 2548 E rg)

(D5.10,'

(D6) The Ordered State

The equations for the ordered state (D1.5)—(D1.9)
can be solved numerically. Putting

tt= b—/6 (D6.1)

we can derive, from Eqs. (D1.7), (D1.8), and (D1.9),

za =y2+ z4(1—8),
$2s= z4L2 —8yl —8(tI—4)z4],

2y& = z4L28+ {2(8'—z4-') I
&j

(D6.2)

Assigning a value for 8, we can deter~inc 24 from Kq.
(D1.5) by trial and error. The equations are solved by
this process, Eq. (D1.6) being used to determine H.

We derive the specific heat from Eq. (D3.1), inserting
the value dyl/dr obtained from Eqs. (D1.5)—(D1.9) by
differentiation with respect to T. The relation between
the specific heat and the temperature for the ordered
state is shown in Fig. 6 by the solid curve for T &4.610.
In the same figure we illustrated the 6rst and the
second approximations by Bethe' for comparison.

(D7) Discussion and Comparison uith the

Rigorous Expansion

On the basis of the above analysis, we wish to infer
the range of existence of the correct transition temper-
ature. We put two hypotheses induced from the known
results:

"So far as this scheme of the variational method is
used,

(i) the approximate transition temperature is higher
than the correct one, and

(ii) the value of the specific heat for the disordered
state is smaller than the correct one corresponding to
the same temperature. "
Of these two, (i) was noticed by Kramers and Wannier
without proof. ' No verification exists for (ii) either;
but if we accept these hypotheses, we can conclude the
range for the true transition temperature 7, .

dys dzs dz4 ( d)2) 135 ( 2 ) '
-45—75—+5{ 28',

dr dr dr 4 dr ) 112 & r, l

dy2 dzs dz4 d)2
3 —9——3——28)2 ——0,

dT dT dT dT
(D5.9)

ra=4.2221&r, &4.6097, (D7.1)

because, at y= qq which corresponds to Tq, the speci6c
heat for the disordered state becomes in6nite. Equation
(D7.1) does not contradict the prediction by Oguchi, "

0.21 &1/r, &0.24. (D7.2)

dy2 dz3 dz4 d $2
5—3 —13 +28)2 =0:

dT dT dT'

Next, we compare our result of this section with the
rigorous expansion of the partition function. We expand
physical quantities of the disordered state in powers of

We can solve for dy2/dr from Eqs. (D5.7) and (D5.9) the reciprocal temperature. Expanding for X=1/r from—
'g This assumption is veri6ed from Kqs. (D5.7) and (D5.9). "T.Oguchi, Busseiron-Kenkyu (Japanese) 22, 26 (j.950).
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Eq. (D2.8) and inserting the expansion into Eq. (D1.3),
ere get

—E/(Me) =3E+11E'+(422/5)E'+O(E'). (D7.3)

Kirkwood's moment method, which gives the correct
expansion, ' when retained up to the fourth moment,
gives

E/—(Me) = '3+3E—+11Es, (D7.4)

where the term (—3) comes in because of the different
choice of the zero point of energy. Comparing Eq.
(D7.3) with Kq. (D7.4), we know that our approxima-
tion in this section is valid up to the fourth moment of
Kirkwood's method so far as the disordered state is
concerned. For the ordered state, however, we could
not transform our results into forms to be compared
with Kirkwood's, owing to the complexity of the
equations.

It is interesting to compare Eq. (D7.3) with the
rigorous expansion derived by Oguchi" "

E/(Me) —=3E+11E'+(542/5) E'
+ (123547/105)E'+ .. (D7.5)

Our Eq. (D73) deviates at the coeKcient of E'.
It may be of interest to mention here our further

attempt at an approximation. When we take a cubic
cell as a basic 6gure, we get the following expansion:

—E/(Me) =3E+11E'+(542/5) E'
+ (121027/105)E'+O(E'), (D7.6)

which is correct up to the coefficient of E' and is to be
compared with ter Haar and Martin's result, ' which is
the extension of Kramers-Wannier's "variation method"
to the three-dimensional case:

—E/(Me) =3E+11E'+(542/5) E'
+ (107587/105)E'+ ~ . (D7.7)

Equation (D7.6) seems to be a better approximation
than is Eq. (D7.7). Our cubic-cell approximation gives
the transition temperature

system, and G(E;) is the number of configurations
having the energy E;. Our mathematical problem is to
6nd the functional form of G(E;).

In the methods explained in the previous sections,
we got only the approximate function G(E;). The
origin of the approximation lies in the method of
counting the number of ways of putting a lattice point.
We will examine each case.

In Sec. B, after the process (i), the bond I3 Ah—as
r.d. ; but even after the correction (ii), C—A does not
have r.d. perfectly, because the correction cannot be
made completely with the knowledge of the y s only.

In Sec. Ci, after the process (i), the square ABDC
has r.d. (provided the angle I3DC has had r.d.); but
even after the correction (ii), the angle ACE does not
have r.d. perfectly. So we can say that in Sec. C, every
bond has r.d. rigorously, but any angle or any square
has r.d. only approximately. In other words, in Sec. C
the correlation between two neighboring lattice points
(e.g., A and I3 in Fig. 3) is fully considered, but the
correlation between points situated diagonally in a
square (e.g., A and D in Fig. 3) is only partiany con-
sidered, and the correlation between two points farther
apart is completely neglected.

Generally, " the larger the basic figure becomes, the
farther the correlation reaches and the better the
approximation becomes.

(E2) The 2hgorous Formttla for the Erttropy

In order to make the approximation clearer and at
the same time to suggest the procedure for reaching
the rigorous solution, we derive the general formula for

v ]=.
' 4.5810. (D7.8)

As the method explained in Sec. D is one of approxi-
mations, the value for the transition temperature Eq.
(D4.4) and those for the specific heat Kqs. (D4.5),
(D5.10) do not have rigorous meaning beyond the
fourth moment of Kirkwood's method.

E. General Discussion Conce~i~g the Method

(Ei) The Relatiort behoeeN olr Free Ertergy artd the

Rigorous

I'partition

I'Nnctiol

The rigorous partition function for a system can be
expressed as follows:

exp( —F/kT) =P; G(E;) exp( —E,/kT), (Ei.i)
where F is the free energy, E; is a total energy of the

'~ T. Oguchi, private communication.

3 4
z=k T/e

FIG. 6. The specific heat c per lattice point for the simple cubic
Ising lattice plotted against v =kT/e. - - - - - - - - - - Bethe's first
approximation. ————Bethe's second approximation.

This paper.

"The increase in the number of lattice sites does not necessarily
result in a better approximation. Yin-Yuan I.i reports the same
situation in reference 5. The intrinsic meaning is not yet clear.
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(x- I) u

which is identicaI with the Mth power of GJ. de6ned in
Eq. (C1.5).

The approximation in this method of counting the
number of ways originates in the fact that we substi-
tuted 0, which is calculated for a separate m-strip,
for the number of ways of constructing an m-strip
which lies in the whole lattice plane and closely con-
nected with other strips.

Equation (E2.4) gives the approximate formula for
the entropy S2(m) for a system"

(A —1) M,

FIG. 7. A rectangle having the width (~—1)e
and the length (X—1)e.

the entropy. We explain it for the two-dimensional
square lattice as an example.

Let us consider a rectangle having the width (»—1)N
and the length (X—1)e as shown in Fig. I, where I is
the lattice constant. On each of the aX lattice points,
we put (+) or (—) spin, obtaining various configura-
tions of the rectangle. We denote the probability of
appearance of a configuration by x,q, ; (i= 1, 2, , 2'")
and for brevity's sake we put

$2(m) = (k/L) lnG
= —k(3E/L) [{lnC r(m, m) 1n—C g(m, m —1)I—

I lnC&1. (m —1, m) —lnC L(m —1, m —1)I ], (E2.6)

which can be simplified as"

D,f(»)=—f(»)—f(»—1). (E2.8)

The rigorous entropy 5& for a system of the two-
dimensional square lattice is the limiting case of S&(m):

S2(m) = k(M/L—)[h.hg InCr, (», )I)]. g, (E2.7)

where 6„ is the notation for the diGerence:

(x,g g,)!—=4 I,(», X). (E2.1)
S2——lim S2(m). (E2.9)

a11 con-
Ggu rations

We take as a basic Ggure a square with a=X=m.
Following the method in Sec. A, the number of ways
Q„of constructing a strip with the wid. th (m —1)N'"
and the length M~e becomes"

For the case of the three-dimensional cubic lattice,
we choose a cube of edge mN as a basic 6gure. For a rec-
tangular parallelepiped having edges (»—1)u, (X—1)cc,
and (p—1)N, we denote the probability of appearance
of a configuration by x,z„, ; (i= 1, 2, , 2'"&), and we
introduce C L, as follows:

a„=[4,(m, m —1)/4, (m, m)]" . (E2.2)

The number of ways 0 & of constructing an (m —1)-
strip of the length M~u is"

II (& ~~'L)!=-4'~(»» ~).
all con-

figurations

(E2.10)

0„ i ——[4r(m —1, m —1)/4 1,(m —1, m)]~'. (E2.3)

0 /0 ~ gives the number of ways of adding a one-
strip to the (m —1)-strip getting an m-strip. Adding a
one-strip over and over again, we complete a whole
lattice. The number G of adding M2 os-strips and
completing the whole lattice is'~

G= [a./n. ,]"*
= [4r,(m, m —1)Cr,(m —1, m)/

4 r, (m, m)4 r, (m 1, m —1—)]~, (E2.4)

where M=M~M~ is the total number of lattice points.
When we put m=2, we get

G = [Fg'/X~I, ]~, (E2.5)

'"We shall call such a strip an m-strip following Kramers and
%annier (reference 2},as there lie m lattice points transversely.

"We neglect the end effect, assuming that M~ and N~ are
very large numbers.

Then proceeding just as for the two-dimensional case,
we 6nd the approximate formula for the entropy of a
system"

Sa——hm Sa(m). (E2.12)

When we put m= 2, we get a case in which a cube is
the basic 6gure to which we referred at the end of
Sec. D7. In every case, no matter what the lattice form
and the basic 6gure, we can obtain the formula of
entropy following the method explained in this section,
but the details are omitted here.

'8 I. is canceled out of this formula when we apply the Stirling
formula.

Sq(m) = k(M/L)[h„d q—h„in@1,(»,X,p)], q „,(E2.11)

and the rigorous formula of the entropy 53 for a system
is expressed by
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Thsxx VII. Probabilities of appearance of configurations of (a} a tetrahedron, (b) a triangle, (c}a bond, and {d) a Iattice point.

Pzob. o(~t

etc. 8te.

O'Ce ~

840 ~

(b)

Bond Pxob. Spin Px ob ~

0 0+

C+ 8
8 Q (d)

(e)
~s, P&, and y~ indicate the number of diferent con6gurations having the same probability.~ ec is the energy per bond.

III. FACE-CENTERED LATTICES (ISING MODEL)

P. Variables

and they are connected by the relations shown in
Table VIII, the meaning of which is, for example,

The probabilities of appearance of a group of lattice
points having some con6gurations are taken as vari-
ables, as shown in Table VII (a)—(d).

These variables are subject to the normalizations:

2xg= 1+$g—4s2—2)2+2@3,

{
h=—~x—2&
b= y2 ys, — —

(F.2)

(F.3)

(F.1)
which represent the Iong-range orders.
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TABLE VIII. The relations between the dependent variables
(on the left column) and the independent ones (on the upper row
except 1). The meaning of this table is, for example,

2z1 1+$1—2zg.

Constructing the entropy from (G.1) and minimizing
the free energy, we get for the transition temperature

r&= k—2'&/e =$ ln(5/3) =: 3.9153, (G.2)

2'RI
2R'2

2zl
2z3
2/1
2y2
2/3
2/4
2x1
2X2
2g4
2xg

1—1
1—1
1

-2
—2—3

1
1—3

1
1—4

—1
1—1
1—2
i.—1
2

2—2—2
2

and for the specific heat c+ and c at the transition

temperature on the higher and lower temperature sides

c+/k=: 0.734 and c /k=: 3.486. (G.3)

The c es v curve is shown in Fig. 9 by the solid line.
Bethe's approximation and the correct transition
temperature obtained by Wannier" are shown in the
same figure for comparison.

H. An Improved Treatment for the Face-Centered
Cubic Lattice (Ising Model)

We adopt the simplified expressions (see Sec. II):

Xz.—=g(x L)! '= {Tetrahedron} r, ,

I'r, =g(y;L)!e'= {Triangle} z,

ZL, =g(s,L)!»'= {Bond}„
(F.4)

2

W z,=g(w, L)!=—{Point }I,.
4=I

As stated at the end of Sec. IIB, we can obtain
Bethe's approximation when we adopt the z s and m s
as variables, "for both the two-dimensional triangular
lattice and the three-dimensional face-centered lattice.
We consider better approximations in the following
sections. As the method and the terminologies are the
same in the following as in Sec. II, no explanation will

be repeated except when necessary.

G. Toro-Dimensional Triangubm Lattice
(Ising Model)

As the exact solution of this case has been already
obtained, '"we report only the results of our calculation
for comparison.

We choose a triangle as the basic figure, and adopt
the y s, z, 's, and m s as variables. The number of ways
of putting A in Fig. 8, so that the triangles ABC and
ACD have r.d. , provided every triangle in the part
drawn with solid lines has had r.d. , is expressed by

{Bond BC}z
GL, =

{Triangle ABC}z

{Bond CD}z {Point C}r,
X

{Triangle ACD} z {Bond AC}c
=Zz'/(I'L, 'Wr). (G 1)

"The notation is different in this Section from that of Sec. II.
~ G. F. Newell, Phys. Rev. 79, 876 (1950); K. Husimi and I.

Syozi, Prog. Theor. Phys. 5, 177 (1950); I. Syozi, Prog. Theor.
Phys. 5, 341 (1950).

(H1) Fundamental Equation

Figure 10 illustrates the structure of the face-centered
cubic lattice viewed from the direction of a body-
diagonal. The lattice points shown with greater circles
are on a lattice plane higher than those with small ones.
Capital letters indicate the higher lattice points and
small letters, the lower. Afge and ACDf are tetra-
hedrons.

We adopt a tetrahedron as the basic figure. The
entropy is obtained when we calculate the number of
ways, GL„of putting a spin on A so that all the tetra-
hedrons and the triangles containing A have r.d. ,
provided every tetrahedron and every triangle in the
part drawn with solid lines have had r.d.

G~ is shown to be

{Triangle feg }z
GI.=

{Tetrahedron Afeg }I.

{Point f}I.
X

{Tetrahedron ACDf}z {Bond Af}1.

{Triangle CDf} r,

{Bond BC}r, {Point C}I.
X

{Triangle ABC}I. {Bond AC}z

{Bone Be}z f {Point e}1.
X

{Triangle ABe}r. ({Bond Ae} r

{Point B}r, I.!
X

{Bond AB}z {Point A}cl
= (Zr, 'L!)/(Xc'Wl, '). (H1.1)

Hence, the entropy 5 of a system with M lattice
points is

S=k(3E/L) 1nGz
=kM{ 6+y,s, lnz, —2P a,x, lnx,—5+w; lnw;]. (H1.2)

For the system, the total number of bonds being 6M,

"G. H. %annier, Revs. Modern Phys. 17, 50 (1945).
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the energy E becomes

E=6M+y, e,z;= 6Me(4zz 1)—. (H1.3)

%hen we minimize the free energy p, per lattice point,

p = (E—TS)/M (H1.4)

referring to Table VIII, we get the fundamental equa-
tions:

&y/&4=0: (ro2/roi) (zz/za) (xs/xz) =1, (H1 5)
Bp/az, =0: B"=

t z22/(zfze) j'((xgxs)/(x2x4)]',

where

C
k

I

~ ~

H—=exp(e/kT),

8p/8&2=0: (xg/xs) (x4/xm)'= 1,

(H1.6)

(H1.7)

ctp/Bxe ——0:

In this case

(x2x4)'= x,x,'xg.

(H2) Disordered State

4=4=0,

(H1.8)

(H2. 1)

5 4
a = kT/e

~ e e ee

5 6

resulting in

R'1=%2= g,
81 $3—g 82~

1

xg=x5=2 —2»+xg,
$2 X4 g 82 $3+—1

FIG. 9. The speci6c heat c per lattice point for the two-dimen-
sional triangular lattice (Ising model) plotted against r=kT/».

Bethe's approximation. This paper.—————The correct transition temperature by Kannier.

(H2.2)
The specific heat c per spin becomes

(H2.3)

(H2.4)

Equations (H1.5) and (H1.7) become identities and
Eqs, (H1.6) and (H1.8) are simplified to

'H'= (z2/zg)'(x/x, )',

X2 —$1$3 ~

c/k = 24dz2/dr

48' (z' —zr"+ s+1)(3H—2v+1)
(H2.8)

r'( z'+ z+2)(z—' z'+ z+ 3)'—

Introducing a parameter q defined by

y—=x2/xz,

we can solve the equations, finding the results:

xm= zmy/(2(@+1)],
) zg=zm(q' —qP+ q+1)/2,
~»= 1/(z '—8+v+3)

(H2.5) The equation

r= kT/e—

has one real root
y1=.

' 1.5214.
H2.6

Therefore, c becomes negative for

(H2.9)

(H2. 10)

(H2.11)

(H2. 7)
y& 1.5214.

(H3) Tke Transitiort, Temperature, T~

(H2. 12)

Pic. 8. An intermediate stage of constructing a taro-dimensional
triangular lattice.

Differentiating Eqs. (H1.5) and (H1.7) and inserting
Eqs. (H2. 1) and (H2.2), we get

d$g 2

d$2 xg

Using Eq. (H2.6), we get from the right-hand side
equation,

(H3.2)

(H3.3)
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' /=1 —2@2

gi = 1—4s2+2x3
22 2$3

. tt=b/4
(H4.3)

Differentiating Eqs. (H4. 1), (H1.6), and (H1.8) with
respect to v, and inserting the value at Tg, we get

FIG. 10. An intermediate stage of constructing a
face-centered lattice.

Considering the restriction (H2. 12), we get the
correct root from the first factor: 4(ds—m/dr)+(3n+5)dx, /dr =0, (H4.6)

5(dh2/dr)+D675 —18?n)/144n]dgP/dr=0, (H4.4)

ds2 dx3
10(Sn'—6n+ 5)——80(P—

dv d~

2S d)P 12
+—(n' —1) =—(n~ —1), (H4.5)

24 dr 7 '

(pg=. 1.3532. (H3.7)
with

This is the value corresponding to the transition
temperature. Hence, ~

(H4.7)n =—e g+ 1=: 2.3532.

Solving for ds2/dr from Eqs. (H4.4)—(H4.6), we get
the specific heat c at Ti on the low temperature side:

{
II,'=' 1.221,

v g=. 10.025.
c (3n+5) (675 187n—) 144

The speci6c heat c+ at Tg on the higher temperature
side is obtained from Eq. (H2.8): h (3n —5)(6?5—187n) —15n(3n+5) 25rP

c+/h=: 0.335 5. (H3.9) =: 2.7888. (H4.8)
Equations (H3.8) are to be compared with the results
of Bethe's approximation: (HS) The Ordered State

~

~

Hg'= 1.2.
T.g=.

' 10.970.

Equations (H1.5)—(H1.8) can be solved numerically.
(H3 10) Putting

Following the discussion of Sec. IID7, we infer that
the correct transition temperature 7., would be in the
range

~,=: 9.239&~,& 10.025,

where ri corresponds to the value of pi (H2.11), and
at v~ the speci6c heat for the disordered state becomes
in6nite.

IP= Xm/X4I

g= X4/X3I
(H5. 1)

(H4) The Specijic Heat c at Ti on the Lmu

Ternperatgre Side

Following the idea explained in Sec. DD5, and
equating the formulas for P&/g& obtained from Eqs.
(Hi.S) and (H1.7), we get

0'+APP+O($') =0,
where

+= {5 (6/i)+L2/(~-+~. )3I. /4,
~= (Sni/4)L2 —(12/l')+ (15/f') —4/f'j

+ (5/2)(1 —2~)L2 —(6/f)+3/f'j
+ (1/4s )(1 29)'(5 6/t )— —

—L(1—28) tP/2ym(it, +e,)), (H4.2)
~ The value 10.026 0 for rg reported earlier I Ryoichi Kikuchi,

Phys. Rev. 79, 718 (1950)j has been revised by later calculations.

4
I
I
I

II
I
I
I

I
I

I
I
I
I

I

I

iy 8
z =aTje

IO I2 I4

Fze. 11. The specific heat c per lattice point for the face-
centered cubic lattice {Ising model) plotted against r=kT/~.
- - - - - - - - Bethe's approximation. — This paper.
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we get the equation

which determines q for an assigned value of f.
Other variables are expressed with f and q:

sm= L2+ (4+1)qj/(6+4(4+1)q+(8+4)q'j (H5 4)

(H52) Differentiating Eqs. (H5.3) and (H5.4), we obtain
5+ (~+4)q+4 &

'
t 1+24q+P

~&+(1+&f)q+pq'~ I 1+2q+fq' ~ the speciac heat, which is shown together with Eq.
(H2.8) in Fig. 11 by solid curves. Bethe's result is
drawn in the figure for comparison.

The author wishes to express his hearty thanks to
Prof. T. Sakai of University of Tokyo and members of

H4= [2+(/+1)q j'q'f' his laboratory especially to Mr. ¹ Hashitsume for
(1+2fq+Pq') '(1+2q+Pq') ', (H53) their deep interest in this work.
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Photo-Mesons from Carbon*

J. M. PETERSON, W. S. GILBERT AND R; S. WHITE
EadWiae Laborahvy, DepafAnM of Physics, Unieosify of California, Berkeley, Califorwia

(Received November 27, 1950)

Photons from the Berkeley 322-Mev electron synchrotron have been used to produce mesons from a
carbon target. These mesons have been observed with nuclear emulsions at angles of 45', 90', and 135' to
the photon beam. The ratio of the number of ~ to x+ mesons produced is 1.29~0.22, 1.30~0.12, and
1.34+0.20, respectively, at each of the above angles. The energy spectra and the differential cross sections
of x-mesons at each of these angles have been obtained. The total cross section for the production of ~-
mesons is 4.0~1.6X10~' cm' per nucleus per "equivalent quantum. "The number of "equivalent quanta, "
Q, is de6ned as the total energy in the beam divided by the maximum photon energy. The cross section
for production of p-meson pairs at the target is estimated to be less than 2 percent of the cross section for
m-meson production.

L INTRODUCTION

HE production of mesons by photons was defi-
nitely established for the first time when they

were observed in the x-ray beam of the 322-Mev
electron synchrotron at the University of California
Radiation Laboratory by McMillan and Peterson' in
January, 1949. Carbon was the 6rst pure target ma-
terial to be bombarded by the x-ray beam for the
production of mesons. m Carbon was chosen because of
its relatively low atomic number and its ready availa-
bitity and ease of fabrication. The background is due
largely to electrons, positrons, and photons which are
produced and scattered in the target material and
which tend to fog the nuclear emulsions used as de-
tectors in this experiment. Since the electron pair
production cross section varies as the second power of
the atomic number, while meson production varies by
about the two-thirds power, ' the background is reduced

by use of as low an atomic number as possible.
For pure photon-nucleon interactions the ideal targets

to bombard with photons are either protons or neutrons.
Ordinary hydrogen is perfect for the former, and
deuterium is the nearest experimental approach to the

~ This work was performed under the auspices of the AEC.' E. M. McMiilan and J. M. Peterson, Science 109, 438 (1949}.' McMillan, Peterson, and White, Science 116, 579 (1950}.
R. F. Mo2', ley, Phys. Rev. SO, 493 (1950}.

latter. Experiments using hydrogen have been per-
formed by Cook' and by Steinberger and Bishop. ' An
experiment with deuterium is now in progress.

Although it was realized that with a carbon target
one might not get a true picture of a pure photon-
nucleon interaction because of possible distortion by
the other nucleons in a carbon nucleus, it was felt that
one might get a first approximation. Also, if distortion
by the neighboring nucleons were important, it could
be measured by comparison of the negative and positive
meson spectra from carbon with those from hydrogen
and deuterium. Furthermore, the energy spectra and
the ratio of negative to positive mesons from carbon
are each of interest in themselves.

An exploratory experiment' using a line target of
carbon had given a rough energy spectrum of mesons
emitted near 90' to the beam direction in the laboratory
system. It had indicated that the angular distribution
of mesons was approximately spherically symmetric, at
least in the region near 90, and also that more m-

mesons are produced than x+ mesons by a ratio of
1.7+0.2. The present experiment was designed to
display more fully the angular and energy spectra of
mesons produced in carbon by x-rays generated by
322-Mev electrons.

4 L. J. Cook (private communication).' J. Steinberger and A. S. Bishop, Phys. Rev. 78, 494 {1950).


