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would not be expected according to the statistical
theory, and these protons show an asymmetrical angular
distribution. This indicates that the (y,p) reaction is
not necessarily produced by photons grouped in a
narrow interval around, S',. This should be noticeable
from the shape of the transition curve corresponding to
the (y,p) reaction. It is unfortunate that the accuracy
obtained in this case does not warrant any conclusions
along this line.
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An attempt has been made to use shower theory to evaluate the effective energies of the photo-nuclear
reactions measured by Strauch. It seems that these energies can be determined most accurately from the
area under the transition curve, the so-caHed "track length. "A theoretical formula for the track length is
discussed. The shape of the transition curve at small thicknesses. can also be calculated quite accurately
and serves as a rough check on the effective energies as derived from the track length. A comparison with
experiment of the theoretical shape of the whole transition curve is given; and, as one would expect, the
agreement is not very good.

I. INTRODUCTION

'N this paper we try to use shower theory to evaluate
- - some of Strauch's' results on high energy photo-
nuclear reactions. As Strauch has described, the cross
sections for these reactions have more or less sharp
maxima for some photon energy. For most of our cal-
culations it will be adequate to assume that the width
at this maximum is very small; i.e., that the reactions
take place for only one photon energy, which we shall
call 8'„ the "eGective energy. " The e6'ect of this
approximation is discussed later. If it were easy to make
accurate calculations with present shower theory, there
would be no problem; one would simply calculate
shower curves for various energies 8'„and for some
value of 5', would obtain a 6t with the experimental
curve. For the energies in which we are interested,
however, around 20 Mev, it is well known that shower
theory cannot be relied upon to predict an accurate
cascade curve, mainly because the cross sections for
pair production and bremsstrahlung vary considerably
over the range of energies of interest, which is from
about 20 to 300 Mev. %e must look, therefore, to some
quantity that can be calculated more accurately than
can the shape of the entire transition curve and yet one
that gives us the information we desire.

*This work was performed under the auspices of the AEC.
' K. Strauch, Phys. Rev. Sl, 973 (1950),

It is clear that one does not really need to know the
whole transition curve in order to 6nd the energy to
which it corresponds. If we consider transition curves
corresponding to di8erent energies, but to the same
initial conditions, then at any thickness there is a
unique correlation between the energy and the height
of the curve. Thus, any one point on the transition
curve determines the energy, in principle. Of course, this
is no real help, for if we could calculate an arbitrary
point accurately, we could calculate the detailed shape.
There is a particular point on the transition curve
however, which can be calculated rather more ac-
curately than can any other point; namely, the height
of the maximum. The reason is, as Rossi and Greisen'
have pointed out, that at the maximum of the shower
one can take into account approximately the variation
of the pair production cross section with energy. This
enhances the accuracy considerably. Thus, if the shower
curve corresponding to an energy 8', shows a maximum,
one might hope to determine 8', by the position and
height of the maximum. Therein lies the difhculty.
Although some of Strauch's curves have a maximum,
those corresponding to higher energies do not. %'e must
6nd a dj'L8'erent method if we wish it to be universally
applicable.

For very large thicknesses multiplication becomes

~ B. Rossi and K. Greisen, Revs. Modern Phys. 13, 274 {1941).



LEONARD E YGES

unimportant, and the "shower" curves simply become
the exponential absorption curve of photons' of energy
W,. One might hope to determine the absorption coef-
ficient from the slope of the experimental curve and
from this to get the energy W,. There is no diKculty in
principle with this idea; in practice one must go to such
large thicknesses before pure absorption sets in that the
intensity becomes impractically small.

The beginning of Strauch's shower curves have a
characteristic shape. There is a drop at very small
thicknesses owing to the absorption of photons of energy
W„multiplication soon sets in, however, and the curve
becomes less steep and may even rise again. The initial
slope is entirely due to self-absorption'; and this slope, in

principle, determines the energy. Unfortunately, this
slope is very dificult to measure with any accuracy.
On the other hand, one might hope that since the first
part of the shower curve, up to perhaps a half-radiation
length, is mainly an absorption curve, multiplication
processes being secondary, one might be able to calcu-
late this multiplication with sufhcient accuracy to
predict the behavior of the beginning of the curve with
reasonable accuracy. This expectation is fulfilled. One
can calculate the shower curve to almost a radiation
length with considerable accuracy. Unfortunately, there
is an experimental limitation. It is diKcult to get good
statistics on the beginning part of the curve. Therefore,
one cannot obtain a very accurate value for W, in this
manner.

Finally, it is possible to determine the effective energy
W, from the area under the transition curve, the
so-called "track length. " This quantity has the ad-
vantage that one can take the variation of the pair
production cross section with energy into account, just
as in the calculation of the height at the maximum.
Moreover, it has an advantage over the latter quantity:
although not all of Strauch's transition curves have a
maximum, all have an area. It is the track length which
we have mainly used in calculating W., although we
have also used the initial behavior of the shower curve,
up to almost a radiation length, as a rough check.

The remainder of this paper is in four parts: in Sec. II
we have calculated the photon spectrum to be expected
from the synchrotron target; in Sec. III we have
calculated the track length as a function of energy, and
applied our formula to Strauch's results; in Sec. IV we
have calculated the detailed shape of the curves at their
beginning; finally, in Sec. V, we have calculated, as best
we could, the detailed shape of the transition curves,
neither expecting nor getting very good agreement, with
experiment.

For convenient reference, we give here the usual
shower equations, using the notation of Rossi and

3 If we take the finite width of the reaction cross sections into
account, the shower curve at large thicknesses really becomes the
absorption curve of the photons of lowest energy that can produce
the reaction.

Greisen unless otherwise indicated.
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Here v.(E, t) is the number of electrons of energy E
at thickness t and y(W, t) is the same for photons.
f(W, u) is the probability per radiation length that a
photon of energy 8' produce a pair, one particle of
which has fractional energy u. p(E, v) is the probability
per radiation length that an electron of energy E emit
a photon with fractional energy e. The usual shower
theory deals with high energies where f and g are
functions of I and e only; but for our purposes, keeping
the dependence on W and E explicit facilitates dis-
cussion. e in the above equations is the critical energy,
and thicknesses are measured in radiation units. We
also depart slightly from Rossi and Greisen by letting
o(W) be the total absorption coefficient for photons of
energy W. This will be discussed later. If we call o,(W)
the absorption coefficient for the Compton effect and
o„(W) that due to pair production, then

o (W) =o „(W)+o,(W).

II. PHOTON SPECTRUM FROM THE TARGET

The 322-Mev electrons from the beam of the syn-
chrotron are allowed to fall on a target of Pt, 0.020 in.
thick, producing the beam of photons used in the ex-
periment. If the target were infinitely thin, the dis-
tribution of photon energies 8' whould be given by
p(Eo, v), where Eo——322 Mev and v=W/E&. Actually,
the finite thickness of the target introduces a correction,
which we shall calculate in this section. First, we make
explicit an assumption inherent in our use of the func-
tion P(Eo, v). This function gives the energy distribution
of the photons produced by an electron of energy Eo,
integrated over the angles between the electron and the
photon directions. At first sight, one might think that
the appropriate function for our purposes should be the
energy distribution of photons produced in essentially
the same direction as the electron. In passing through
the target, however, the electrons are multiply scat-
tered; and in the present geometry the effect of these

By(W, t) ~' (W q pW q dv

Bt ~0 Ev ) Ev ) v

o(W—)y(W, t) (1b).
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deviations arising from scattering will be taken care of
to a good approximation4 by using the integrated func-
tion y(Eo, v).

Ke can 6nd the photon spectrum by simply putting
into the shower equations a pomer series expansion cor-
responding to the correct initial conditions, i.e.,

v (Ep, E, t) =8(Eo E)+—P(Ep, E)t+
y(Eo, W, t) =Q(Eo, W)t+&(Eo, W)P+

Equating to zero various powers of t in the shower
equation, the unknown functions P, Q, and E are found
in succession as easily evaluable integrals. Q(Eo, W)
comes out to be just d (Eo, v), as it must. If we use the
the approximate expression p(Eo, v)=1/v to calculate
the small correction term E(Eo, W), we obtain

E(Eo, W) = ——,
' [o (W) —ln(1 —W/Ep) j.

Thus our corrected spectrum from the target is

@(E0,v) —gt{o(W)—ln(1 —v) ). (2)

This corrected spectrum is plotted in Fig. 7 of Strauch's
paper. ' The physical interpretation of this spectrum is
clear. For v small, ln(1 —v) =0 and the important term
in the correction is just the absorption of photons in the
target. The correction term ——,'o(W)t represents this
self-absorption. For large v the term in ln(1 —v) is
important. This term diminishes the number of high
energy photons. This represents a double radiation
process: there is an overwhelmingly probability for
emitting a low energy quantum in which the energy of
the electron is diminished below 322 Mev; therefore, it
can no longer emit a quantum with this upper limit.
Thus the e6ect of the 6nite target thickness is to
diminish appreciably the number of very high energy
photons.

After leaving the target, the beam must pass through
a quartz donut about —,'in. thick. The main eGect of this
on energies above 18 Mev is to reduce the intensity
uniformly, since the absorption coeScient is small and
varies slowly with energy in this region. %e therefore
neglect this correction.

III. THE TRACK LENGTH

The most accurate calculation of the track length of
photons to date is the numerical work by Richards and
Nordheim' in which collision loss of the electrons and
the Compton e8ect are taken into account, as mell as
the variation with energy of the radiation and pair
production cross sections. These are not very convenient
for our purpose, however, since they are made for a
single incident photon. To apply them to the present
problem, one would need to integrate their results
numerically over the photon spectrum emerging from
the synchrotron. Moreover, aside from the labor in-
volved, there is the di%culty that Richards and Nord-
heim's results hold only when the single incident photon

' L. I. Schi6, Phys. Rev. 70, 87 (1946).' J. Richards and L Nordheim, Phys. Rev. 74, 2206 (j.948).

has an energy much larger than the energy lV. of the
photons which one is considering; in these circumstances
it is not clear how to carry out the integration over the
photon beam from the synchrotron, since, of course, it
contains photons with energies arbitrarily close to lV, .

Fortunately, the photon energies with which we have
to deal are always greater than about 17 Mev; i.e., about
two and a half times the critical energy in lead. In this
case, it is possible to make a slight adaptation of the
formulas for the track length in Rossi and Greisen so
that they apply with considerable accuracy. Before we
do this, there is a somewhat peculiar feature of the
usual track length formulas, which we should consider.
For the sake of discussion, suppose we are interested
in the track length of photons of energy 5", due to an
initial spectrum which goes as 1/W up to some maximum
energy 8'0. Now, following Nordheim and Hebb' the
track length of photons of energy 8', due to an arbitrary
initial spectrum y(Wo, W, 0) is

1 '+'" A(s)3E(s, 0)W—&'+"

Z(W„W) = ds, (3)
o"2vi ~s-;w [A(s) B(s)C—(s)/o)

3f(s, 0)= W'y(Wo W 0)dW.

For a 1/W spectrum up to Wo, M(s, 0) = Wo'/s; and we
therefore have

Z(Wp, W)

~5+i~ A(s) e~'—ds, (4)
oW 2vi &s—;~ [A(s) B(s)C(s)/—oj s

where y=in(W&/W) and the integration path is to the
right of aH the singularities of the integrand. Here
A(s), B(s), C(s) are defined as by Rossi and Greisen. ' '
Now the integrand of (4) has simple poles at s= 1, —2.6,
—3.6 - . If we evaluate the residues at these poles and
divide the result by the initial spectrum dW/W to get
the track length relative to the number of photons at
t=0, we 6nd

1- W& ~W~"
Z...(Wo, W)=- 0.43&—oo

I

—
I

W (W)
(gf )3.6—0.005{ {

+" . (5)
&8"p)

Now it is clear that (5) becomes invalid' when W
approaches 5'0. The relative number of photons of
energy 8', when 8 is very close to 5'0, will be given by
e—', since there will be essentially no multiplication.

~ L. %.Nordheim and M. H. Hebb, Phys. Rev. 56, 494 (1939).
~ Note that 8(s) as dehned in reference 2 has a factor cr in it

so that the integrand in (4) is really independent of o.
g This eras called to my attention by Dr. Strauch.
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Hence, Z ~ will be just 1/o; and for smaller W where
there is multiplication Z„~ must be greater than 1/e.
This condition fails to hold for (5) when W=0.41Wo.
It is not clear why (5) is incorrect for W Wo, when (4)
is almost certainly correct. It may be that the integrand
in (4) has singularities off the real axis, although Nord-
heim and Hebb have made a search near s=1, and we
also have made a rather perfunctory search, without
finding any. We are concerned with this point, not
because we want to use a formula like (5) for W close
to Wo in Strauch's experiments W/Wo is always fairly
small —but we really would like to know whether (5)
can be considered to be correct for W/Wo small, where
the higher order terms are negligible. This is not obvious,
since the fact that (5) breaks down for W Wo throws
suspicion on it.

Some light can be shed on this question in the fol-
lowing way. If one uses the Carlson-Oppenheimer' ap-
proximation to the shower equations, it is easy to show
that this is equivalent to using

A (s) =2s/(s+1), B(s)=2o/(s+ 1), C(s) = 1/s.

Then

Z„r(Wo, W)=
1 t'+'" se"*

ds
0"2''$ aj 5—iso $ —1

0.500 (Wo W )+
&W Wo)

(6)

This is a most reasonable result, since Z„i as given by
(6) is always greater than 1/o and approaches 1/o as W
approaches Wo. Unfortunately, Eq. (6), however
reasonable in appearance, cannot really be trusted for
W close to TV0, since the Carlson-Oppenheimer ap-
proximation is not very good in this region. For smaller
values of W, Eq. (6) shows that Z„& is proportional to
Wo/W with a correction term of order (W/Wo)', which
is small. This is probably a trustworthy qualitative con-
clusion in general, since the Carlson-Oppenheimer ap-
proximation is not bad for 5'«8"0.

We have also tried to check (5) in the following
manner. We have calculated the shower curve as a
function of thickness for various values of y = ln(Wo/W)
and integrated these numerically to find the track
length; we have used an expansion in powers of t for
small t and the usual saddle point method for larger t.
This method gives reasonable results; e.g. , as W
approaches Wo the relative track length approaches 1/o.
The major difhculty is that it is not very accurate, since
the saddle point method can be oft by 10 or 15 percent
for the smaller values of y and t. Ke have corrected for
the inaccuracies of the saddle point method as best we
could by comparison of the answers which it gives with
the quite accurate results given by the power series in t.
for those values of t for which one can get an answer by

9 J. F. Carlson and J. R. Oppenheimer, Phys. Rev. 51, 220
{1937).

both methods. Comparison of our answers for Z„& by
this method with (5) makes it appear that (5) is correct
for y =3, is a few percent low for y =2, about 30 percent
low for y=1, and, of course, off by a factor 1/0.41 for
y=0. We have done the same sort of calculation for an
initial spectrum

1/WL(4/3) (1—W/Wo)+0 38(W/Wo)o j,
which is a rough approximation to the spectrum from
the synchrotron, and find that the formula corre-
sponding to (5) is more accurate than for the 1/W
spectrum, being oG, for example, only by a few percent
for y=1. All in all, then, it seems clear that although
formulas like (5) are not correct for W close to Wo, they
are probably valid for W«WO.

Now we turn to the real problem of interest, that of
calculating as accurately as possible the track length of
photons using the initial spectrum given by (2). We are
interested in energies from about 17 Mev up. Energy
loss of electrons by ionization is not negligible in this
range; but, as Rossi and Greisen' have shown, one can
correct for this by using an asymptotic expansion in
powers of o/W. The variation with energy of the pair
production cross section can also be included in the
manner indicated by Rossi and Greisen, "i.e., by writing

f(W, u)du=a„(W)du (7)

and considering that the unknown function in the
shower equations for the track length is not Z(Wo, W)
but o„(W) Z(Wo, W). The above approxims. tion for
f(W, u) means that the pair spectrum is taken to be
Rat; i.e., that the probability for the production of an
electron of any energy is independent of energy. This is
a quite good approximation in the range 18 to 322 Mev.
The variation of the radiation cross section with energy
can be included by taking some average expression
appropriate to the region 18 to 322 Mev. The expression
we have chosen is

1 4 3
y(v) =——(1—v)+—s' .

v. 3 4

Reference to Rossi and Greisen will show that this
seems to be a reasonable approximation except for v

close to unity, where p(m) is relatively small anyway.
If one carries out the calculations according to the

above sketch, using the boundary condition that the
incident spectrum is that given by (2) he obtains

Z(Wo, W) =0.346Wo/ov(W) W' v(o/W),
where

v(o/W) =1+0.71(o/W) —0.32(o/W)o+0. 41(o/W)o+ ~ ~ .
We have not included the dubious negative powers of
Wo/W which one gets from the evaluation of (4) at the
poles on the negative real axis, since the discussion at
the beginning of this section implies that they are

"See reference 2, p. 293.
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negligible for the energies which interest us. The factor
0.346 appears in (9) instead of the usual 0.437 for two
reasons. First, M'(1, 0), as evaluated by numerical
integration of the spectrum given by (2), turns out to
be 0.816 Wo/W instead of Wo/W as before. Second, we
have used the A(s), B(s), and C(s) corresponding to the
p(v) and P(n) given above instead of those calculated
with the usual asymptotic 4(o) and f(N), as by Rossi
and Greisen. This alters the residue at s= 1.This change
is rather insensitive to the choice of P(v). For ex-
ample, if we use the A(s) corresponding to v4(v)
= (4/3)(1 —v)+o' and to (4/3)(1 —v)+~os', the factor
0.346 changes to 0.355 and 0.330, respectively. Thus,
using the average p(s) given by (8) introduces only a
small error.

At the lowest energies for which we wish to use (9)
the cross section for Compton efFect is about 15 percent
of that for pair production, and is therefore not neg-
ligible. To take this into account accurately one would
need to supplement Kqs. (1) by a term describing the
production of electrons with energy greater than 8' in
the Compton efFect, and a term describing the photons
with energy greater than lV that get an energy lV in a
Compton scattering. This is diKcult and we shall not
attempt it, since the effect of these terms is probably
small anyway. In addition to these efFects the Compton
efFect acts to absorb the photons of energy 8' in which
we are interested. One takes this into account roughly
in the following manner. One replaces harv(Q) in (7) by
a (W) and as mentioned before uses the total absorption
coetacient o(W) in (1b). A glance at Eq. (1b) shows
that this means that we take the absorption of photons
of energy 8' into account correctly, but that we falsify
the spectrum of electrons with energy greater than 8',
since replacing ov(W) by o(W) makes the pair cross
section too large. But a photon of 18 Mev is produced
on the average by an electron of, say, twice that energy,
where the Cornpton efFect is very small anyway, so that
it doesn't matter that we have allowed f(W, N) to
include the Compton efFect. Also, and this is probably
a stronger argument, we have checked (9) by compari-
son of the analogous formula for a single incident photon
with the numerical results of Richards and Nordheim
and found agreement within five percent from 14 Mev
up, if we use o(W) and not o v(W).

In evaluating the experiments, one wants not the
track length given by (9), but Z„~(Wo, W), the track
length relative to the number of photons initially
present in d8'.

If we use the notation

v(Wo, W, 0)=f(Wo, W)/W

and make the change from ov(W) to e(W) just men-
tioned, the relative track length is given by

Z &(Wo, W) =0.346Wo/a(W)Wv(o/W) f(Wo, W). (10)

In applying (10), as Strauch has explained, we have
increased the radiation length by 10 percent over the

This theoretical expression for the ratio should be quite
accurate, since most of the approximations involved in
the derivation of (10) electively cancel in forming it.
Equation (11) has been checked for the two reactions
Cuoo(y, n)Cuoo and C"(y&n)C" which were carried out
at maximum energies of 322 and about 200 Mev. The
results are given in Table I of Strauch's paper. '

IV. SMALL THICKNESSES

If we wish to find the shape of the transition curve for
small thickness, an expansion in powers of t suggests
itself. As we have seen, the transition curve must drop
at the very beginning, since absorption of the photons
in the incident beam is a first-order efFect proportional
to t, and the production of photons is at least of second
order. This suggests the use of an expansion of the
form

y(Wo, W, t) =e ' ~ 'Ly(Wo, W, 0)
+E(Wo, W)t+QWo, W)t'+ j, (12a)

or(Wo, E, t) = [M(Wo, E)t+N(Wo, E)P+ ]. (12b)

This expansion obviously satisfies the boundary con-
ditions. The factor e '&w&' in (12a), of course, represents
the absorption of photons of energy S' initially in the
beam and the coeKcients E(Wo, W), J-(Wo, W), etc.
describe their subsequent multiplication.

These functions can be found by putting (12a) and

(12b) into the shower equations (1) and equating to
zero successive powers of t. The functions then come
out to be simple, but sometimes tedious integrals.
Alternately, one can find, in much the same manner,
the Mellin transforms of the shower equations as a
series in t and can then invert this transform, evaluating
the complex integrals that result by the method of
residues. Both methods, lead to the same result, of
course, which we first write down and then discuss.
As before, the quantity of interest is not p(Wo, W, t)
but

y„)(Wo, W, t)=y(Wo, W, t)/v(Wo W 0)

value given by Rossi and Greisen and have decreased
the pair production cross section per cm by 10 percent.
It is obviously diKcult to estimate the error in (10);but
if forced to guess we would say that it is probably good
to 15 percent at 17 Mev, and perhaps 10 percent at
twice this energy. As was discussed earlier in this
section, (10) must break down for W Wo', but if we
can extrapolate from our previous results, it should still
be reasonably accurate for W/Wo&, .

As Strauch has noted, a kind of internal check on the
experiments and theory can be had by carrying out an
experiment on a given element with two difFerent
maximum energies S'0& and S'02 of the photon beam.
The ratio of the relative track lengths is then

Z &(Wog, W) Woolf(Woo, W)

Z i(Woo, W) Woof(Wog, W)
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The following approximations have been used in cal-
culating the above result. As an analytic approximation
to the initial spectrum, we have used

4( w& w
w&(w. , w, o)= -( 1—~+0.6

.3 ( Wpi Wp'

In calculating the term in t', we have used, as for the
track length, op(o)=(4/3)(1 —o)+4oo', and f(w, N)dN
=const dot. In calculating the small term in P, we have,
for simplicity, used p(o)=1/o. In terms in P and t'
describing the multiplication, there is the factor
oo[(wow)&1. This enters in the following way. Multi-
plication takes place because electrons of some average
energy between Wo and W are created and then radiate
photons of energy W; for this average energy we
have chosen the geometrical mean of WD and W;
hence, the pair production cross section at this energy
is oo[(wow) &j. We have checked this approximation by

Our results are

y„i(wp, W, t) .P(y)t' G(y)t'
=e ~(~" 1+ + +, (13)

f(Wo, W) 3f(Wo, W)

where

y= ln(wo/W), o o= o„[(wow) &j,

F(y) = (16/9)(3e "—3+y+-', y'e &+2ye ")

+1.8(-,'+-,'e-"—yo-~ —o-")

+0.45(e "—e 'o —ye '")

Q(y) =o'(y —1+o ") oK(y) o(—o/Wo)(e"—1), —

writing o„(w) as a linear function of In(W), which is a
fair representation in the energy range of interest here,
and then calculating the coefficient of P using the initial
spectrum y(wo, W, O)=1/W, and the approximation
P(o) = 1/o. One can then carry out the integrations and
it turns out that to a very close approximation one gets
the same results for the coefficient of P as if he had
started from the beginning with the average value
„[(w,w) t).
For W= Wo it is clear that (13) must become e '~&',

since there can no longer be any multiplication. Thus,
for this case (y=0), F(y), and G(y) must vanish. This
provides a useful check on the calculations. In the
terms in t' there enters a correction due to collision loss.
This correction diverges as W goes to zero, but for W& e

it is probably correct.
We have used the above formula to calculate the

beginning shapes of the transition curves for the reac-
tions Cue'(y, n)CuN and C"(y,n)C", using for the re-
spective "resonance" energies the values 18 Mev and
27 Mev derived from the track length. The results are
shown in Fig. 1.The experiments, of course, do not give
very reliable results at these thicknesses, since one is
trying to measure changes in intensity of the order of a
few percent and very long counting periods are needed
to get good statistical accuracy. Within the experi-
mental errors, however, the theory seems to give fair
agreement. If anything, the theoretical curve seems to
be too low. The theoretical curves would be raised if
one assumed that the effective energies were somewhat
lower than 18 and 27 Mev, but the poor accuracy of the
experiments does not justify this.

One should note that the expansions given above are
quite accurate where they apply. This is because the
main phenomenon at small thicknesses is simply the
absorption of original photons and one knows accu-
rately this absorption coeKcient. The shower theory
enters, of course, in giving the coeKcients F(y), etc. for
the higher order terms, but it turns out that these are
not at all sensitive to the approximate expression for
the cross sections one chooses for radiation and pair
production.

V. MISCELLANY

We have also calculated as best we could, the detailed
shape of the transition curves for the Cu" (y,n) Cu" and
C"( , y)CN" reactions using the usual saddle point
method. As in the calculation of the track lengths, one
can take some reasonable average value for the radiation
cross section and can take into account the ionization
loss by using the asymptotic expansions as given by
Rossi and Greisen. One cannot take into account the
variation of the pair production cross section, however,
in even the approximate way in which it was done in
calculating the track length. Since the pair production
varies by almost a factor of two between maximum and
minimum energies with which we deal, i.e., between 322
and 18 Mev, considerable uncertainty is introduced into
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the results. Nonetheless, we thought it might be of
some interest to present them.

Since one cannot take into account the variation of
the absorption cross section n(W) with energy, he must
choose some average value in carrying out the cal-
culations. The question arises as to what is the most
reasonable value. We have chosen to use p (W,) for the
following reasons. This value is roughly correct for the
track length and, for the same reasons that apply there,
for the maximum of the shower curve; also, for very
large thicknesses, the cascade curve approaches a pure
absorption curve with absorption coefficient o(W,).

The saddle point method leads to the following ex-
pression

ynI(Wo, W, t)

1 Hp(s) exp[i% ~(s)tlat'(s, 0)
(14)

(2s)I f(Wp, W)[v, (s, p/W) ~ Wj'[Xq"(s)t+1/s jI

where

t = (1/s —y)/XI'(s).

Here, the functions X~(s), Hp(s), and v~(s, o/W) are
defined in terms of A (s), B(s), and C(s) as by Rossi and
Greisen; but in the actual calculation of the latter func-
tions we have used f(Ip)du= p (W,)du and the p(v) given
by (8). M(s, 0) is calculated numerically from the curve
in Fig. 7 of Strauch's paper. Using the above expres-
sion, we have calculated the transition curves for the
reactions Cu"(y n)Cu" and C"(y II)C" The curves are
shown in Fig. 2. Whether the agreement is better or
worse than one should expect is a moot equation. The
agreement for Cu with a resonance energy of 18 Mev is
not as good as that for C for which the resonance energy
is 27 Mev. This is not implausible qualitatively, since
the various approximations involved in taking average
cross sections and neglecting Compton eQ'ect are some-
what more serious at 18 than at 27 Mev. One might
perhaps have expected better agreement at the maxi-
mum, for the reasons given in the introduction.

It may be, however, that the errors in the saddle
point method are not negligible. It is altogether possible
that the saddle point method gives too low a value by
perhaps 10 percent near the maximum; if this is true,
the shower theory proper is in better agreement with
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FIG. 2. Relative intensity in Pb of photons causing Cu~(&,e)Cu
and C'~(y, n) C».

the experiment than evaluation by the saddle point
method would ~m to imply.

In all the work thus far, we have assumed that the

(T,II) cross sections are infinitely sharp, i.e., if we ca,ll

Z(W) the cross section as a function of energy, that
Z(W) =b(W —W,), where W, ist he "resonance" energy.
What then is the eGect of the 6nite width? Suppose for
illustration that Z(W) is constant, and has a square
shape centered about a value W„and with width 6, i.e.,

Z(W) =constant, W.——,'h(W&W, +xone,
Z(W) =0 otherwise.

It is then easy to see, e.g., that if sh«W„Kq. (9) is «-
placed approximately by the following relation:

0.346Wo(1+5'/6W. ')
Z I(Wp, W,)= . (15)

p(W.)W, f(Wo, W,)v(p/W, )

The eGect of the hnite width is quite small. For ex-
arnple, if W, =20, 8=10, this eGect increases Z„& by
about four percent. One can see also that the e6ect of
the 6nite width varies with depth in the shower. The
spectrum of photons goes as 1/W'+', where s is 0 at the
beginning of the shower, is unity at the maximum, and
increases slowly with thickness thereafter. Thus, the
eBect of the finite width in raising the shower curve
increases slowly with thickness. Taking it into account
would therefore slightly increase the discrepancy be-
tween experiment and theory shown in Fig. 2.

I should like to thank Professor Robert Serber for
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