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Ordinarily, the existence of Bianchi identities is proven on the strength of the transformation properties
of the lagrangian of the theory. In this paper, nothing is assumed concerning the lagrangian, except that
the Geld equations themselves are covariant with respect to general coordinate transformations. It is then
shown that at least the coefBcients of the second-order derivatives in the Geld equations satisfy the usual
relationships. Furthermore, a very weak restriction on the transformation law of the field equations is suf-
ficient to derive conservation laws that hold even in the presence of matter.

bL, =Q;,. (1.2)

I. INTRODUCTION

N his 6rst paper on covariant field theories, Berg-
~ ~ mann' introduced the 6eld equations as the Euler-
Lagrange equations of a variational principle. If the
lagrangian is designated by L and if L is a function of
the Geld variables y& and their Grst derivatives with
respect to the coordinates, y&, „the 6eld equations will

take the form
L~= 8~L (8—»L) —=0

P 7 (1 1)8"L=8L/8yp, 8»L= 8L/8yp, ,
In a physical theory, the 6eld equations must be co-
variant; i.e., if they are satis6ed in one permissible
coordinate system, they must automatically be satis6ed
in every permissible system. For a completely covariant
theory, the permissible coordinate systems include all
those which can be transformed into each other with a
nonvanishing jacobian. To assure this covariance, it
was assumed in I that the lagrangian would, in the face
of an in6nitesimal coordinate transformation, transform
as

II. TRANSFORMATION LAW OF THE
FIELD EQUATIONS

If condition (1.2) is satisfied, the expressions L~
transform according to the equation

bL = F I'g —P pL" (L P) — (2.1)

If we merely wish to assume that the expressions L~
transform in accordance with some linear, homogeneous
transformation law, then it appears reasonable to start
with an infinitesimal transformation law of the form

hLe= G&g„P,„L" —(Leg ) +Hei"—g.L" P (2.2)

where the G &g, and H &~„are constant coefficients as
yet undetermined. The law (2.2) was chosen as the
most general linear homogeneous transformation law
with the correct order of diII'erentiation.

The requirement of group character immediately
leads to restrictions on the transformation coefficients.
By forming the commutator of two arbitrary, infinites-
imal transformations $'" and $"",we find the two con-
ditions

The 6eld variables themselves were to obey a homo-
geneous linear transformation law, whose infinitesimal
form is denoted by

by~=Ps"~. P, ,ye y~ pP— . (1.3)

and
II~I'~ ——0 (2 4)

III. IDENTITIES

Gcy gBr Ocr GBv bv GBe br GBv (2 3)

The condition (1.2) is sufficient to assure not only
covariance of the field equations, but also the formula-
tion of the algebraic relationships between the canonical
momenta (1-5.6) and the construction of the "strong"
conservation laws (I-3.11).In this paper we shall inves-

tigate whether the conditions necessary for the formula-
tion of the algebraic relationships between the canonical
momenta and the construction of the "strong" con-
servation laws are not independent of the assumption
(1.2). It turns out that covariance of the field equations
(1.1) alone suffices for the algebraic constraints. For the
"strong" conservation laws we must assume a particular
transformation law for the 6eld equations.

%e can obtain the complete conditions satisfied by
the transformation law of the field equations by forming
8L" (the infinitesimal change in L") as specified func-
tions of the 6eld variables and their 6rst and second
derivatives, and by equating the resulting expression to
the right-hand side of (2.2), taking into account the
restrictions already obtained in (2.3) and (2.4). On both
sides of the equation we shall have terms containing as
factors P and their first, second, and third derivatives.
These functions and their derivatives which generate
the in6nitesimal coordinate transformation are com-
pletely arbitrary at one point of space-time, except that
the higher derivatives must satisfy the usual symmetry
relations

*This work was given partial support by the ONR under a
contract with Syracuse University.

'P. Bergmann, Phys. Rev. 75, 680-685 (2949). Referred t
hereafter as I. Formulas in I are referred to by symbols such
(I-5.6).

(3.1)

etc. Since, however, the transformation law for L~
must come out the same, whether we obtain it through
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the use of Eq. (2.2) or by the lengthy, straightforward
calculation, the coefBcients of the arbitrary functions
and their various derivatives on the left must equal the
corresponding coefficients on the right. By carrying out
this computation, the following three sets of necessary
identities were obtained:

Fcpa bayrLA. y +Feil, pa~pi A.
y

+FC"Babaai LA yC=0, (3.2)

FCp (bayLA. y +2bap jA.y ) QauPLA. y
+Fcaa. (aaPLA yc+2aaP'LA yc )

bappLA. ya —0 (3 3)

FCp (QBLA yC+ QaaLA yC +ba/ll JA, yC )
+p LA QBpLA, y 2gBpBLA. y

+G"PB.LB=0. (3.4)

These three sets contain all the restrictions on the form
of covariant Euler-Lagrange equations and their trans-
formation laws. While it appeared to be very di6icult
to get the information contained in Eqs. (3.3) and (3.4)
into a readily usable form, Eqs. (3.2) are identical with
Eq. (I-3.6). Since it is these conditions which are neces-
sary for the formulation of the algebraic relationships
between the canonical momenta, (I-5.6), the further
development of a theory with the more general trans-
formation law (2.2) could be carried out along the same
lines as one with the special law (2.1).

IV. FORMATION OF FURTHER IDENTITIES SY THE
USE OF THE COMMUTATOR

Identities can be obtained in a different form [though
contained in Eqs. (3.2), (3.3), (3.4)) if we form
(b~b&-bmb&)L" in two different ways and equate the
results. First, we can easily verify that

b,L=LAb, yA+ (8A&L b&yA), (4.1)

From this relation we form

be= (bgb2 —b2bg)L
=L"(b,b2 bmbg)yA+$8A'L—(bgbm —bgbg)yA], (4.2)

IycL F A.(G" B.+b"Bb,) I'~'(,.)=0. (4.7)

In these three equations, the symmetrization or anti-
symmetrization with respect to certain indices is
indicated by the symbols ( I

&~& and f I ~"ts, respec-
tively.

In these three sets of identities, if we let GAN~„——Ii A&g„,

we find that (4.7) is satisfied identically, while (4.5) and
(4.6) yield the contracted Bianchi identities. When
FAI'C„QGA&c„, (4.5), (4.6), and (4.7) are all together 210
identities, which may, however, possess some mutual
algebraic dependence.

V. CONSERVATION LAWS

In order to form "strong" conservation laws, we must
Gnd sixteen functions whose divergence is identically
zero whether the Geld equations are satisGed or not.
The sixteen functions

t~, = b~,L—
yA, .BA~L (5 1)

have zero divergences when the. Geld equations are
satisGed, for

]P =y JA (5 2)

In the presence of matter the Geld equations are not
equal to zero; but

gence only if A„equals 8"~,. Since the P& and their
derivatives are arbitrary, except for symmetry of
higher derivatives, at any one point of space-time, the
coefficients of P& and its derivatives must vanish
identically. Following this straightforward but lengthy
calculation, we find the following identities (the first
being the coefficient of P~ and the others of the suc-
cessive derivatives):

(FapA~yBLA +GapA~yagA, +bpyA, LA), p=0, (4.5)

(GCa FBP QCP FBa +ba FBPA

bp FBaA )(yBLA) p+2{F A.yBLA,
+G A,ya, ,L"+b,yc, „L }(,„)=0, (4.6—)

We can also form the transformation bI, of b~ directly: LA= PA (5.3)
b, (b,L)= b, [LAbmyA+(&A~L bmyA), ,]

=b,L" b2yA+LAibbmy+A[ i(bbAL b~yA)1, . (4.3)

Forming the commutator from (4.3) and equating the
result to the expression (4.2), we obtain

~I.L".52yA —82L BgyA

+[b,(BA L) b2yA —b2(8A L) b&yA] a=O. (4.4)

The last term in this expression is a complete diver-
gence, and hence the Grst two terms must also be a
complete divergence. Writing out these Grst two terms
and using (2.2) and (1.3), we can arrange them into an
expression of the form A„P's+8"„Pm, „, where the. coef-
Gcients A„and 8"„are themselves functions of the Geld
variables, the coordinate variations P~, and their
derivatives. This expression will be a complete diver-

where PA is representative of the distribution of matter
in the field. When FARO, we must subtract from (5.1)
a function whose divergence wi11 cancel the expression

yA, ,LA or yA, ,P".Ke shaH construct such a function by
using the identities that can be established in the
formalism. With no restrictions on F" ~p and 6"~~p, it
appears impossible to form such expressions. However,
with a relation between P" ~p and 6" ~p, it is possible
to form sixteen functions whose divergence is always
zero.

From (4.6), contracting on s and a and solving for
yA„L", we obtain

Syc, ,LC+ (Fa'ApyaLA. ,+P"Aaya, ,LA)
+(Fa'A.yaLA, ,+G"A,ya. ,L')

+(6 'AF 'c —G 'A F 'c)(yaL") =0 (54)
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In that case, we can form the sixteen functions

gp (p +pBpA, I.A~B (5 6)

We note that the last term on the right is a divergence,
but the others are not unless

QBa PBa (5.5)

whose divergence is identically zero whether the IA
vanish or are equal to PA. This expression is identical
with (I-3.11).

The author would like to express his appreciation to
Dr. Peter G. Bergmann for the suggestion of and the
helpful discussions in connection with this problem.
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The J= 1~2 rotational absorption transition in OCS has been observed for the molecules containing S~4

and S34. From the frequencies, the frequency differences, and the previously known frequencies of S~, S~,
and SI~ we have evaluated the mass difference ratios (S ~—S~}/(S~—S~) and (S' —S~)/(S~ —S~). From
these values and values of the stable S masses two independent values of the (S'~—S~) mass differences are
calculated to be 2.99844%0.00042 and 2.99770%0.00048, respectively.

I. INTRODUCTION

w E have remeasured' the frequencies of the J= 1~2
molecular rotational absorption transitions of

OCS containing S", S", S34, and S" for the purpose of
determining the mass of S"and of evaluating the nuclear
quadrupole interaction to a higher accuracy.

II. METHOD

Our apparatus, somewhat similar to various other
E-band spectroscopes described in the literature, "is
illustrated schematically in Fig. 1. It utilizes 100-kc/sec
Stark eBect modulation and for maximum sensitivity
a phase-sensitive detector at the output. Our fre-
quencies were measured by means of variable micro-
wave frequency markers obtained from a frequency
standard somewhat similar to those used in other
laboratories. 4 Figure 2 shows a schematic arrangement
of the system. The basis of our measurements is a
General Radio 100-kc/sec crystal-controlled secondary
frequency standard calibrated against Radio Station
WWV.

As shown below in Eq. (3) the mass of S" can be
expressed in terms of frequency differences and ratios.
In determining such differences small systematic errors,
such as are caused by delays in the spectroscope am-

plifier, tend to cancel out of differences and ratios of
nearly equal frequencies.

~ Research carried out under contract with the AEC.
t Now at the Graduate School, Cornell University, Ithaca, New

York.
f Permanent address: Chemistry Department, Johns Hopkins

University, Baltimore, Maryland.
' Cohen, Koski, and Wentink, Phys. Rev. 76, 703 (1949).
~ McAfee, Hughes, and Wilson, Rev. Sci. Instr. 20, 821 (1949).' Strandberg, Wentink, and Kuhl, Phys. Rev. 75, 270 (1949}.
4 C. G. Montgomery, Technique of 3ficromave Meusuremeets,

Vol. 11 of Radiation Laboratory Series (McGraw-Hill Book
Company, Inc. , New York, 1947), Chapter 6.

Because of the electric quadrupole moment of the
odd S isotopes, the J= 1—+2 transition is split into
several components which are only partially resolved. '
From the shape of the pattern one can infer the nuclear
spin, while for the magnitude of the separations one
may evaluate the quadrupole coupling constant. '

The significant spectral frequency referred to in the
Eqs. (2) and (3) are those of the center of gravity of the
1=1~2 group of lines for one isotopic molecule. The
displacement of the strong central line can be evaluated
from the quadrupole coupling constant. '

Table I contains a summary of our data on S"along
with comparable results for the stable isotopes as
measured by Geschwind and Gunther-Mohr. '

By taking the ratio of the intervals between the
upper and lower minor components and the central one
for S" one gets a value of 1.48, which is in excellent
agreement with the theoretical ratio of 1.46 for a nuclear
spin of —,'. Clearly, the sign of the quadrupole moment of
S"is opposite that of S", since the patterns are inverted
with respect to each other. ' The value of the quadrupole
constant is 20.5+0.2 Mc/sec. Townes and Dailey'have
made a rough calculation of the molecular electric field
gradient in OCS to evaluate the electric quadrupole
moment of S". Using their figures, we get a value of
0.06/10 24 cm' for the electric quadrupole moment of
S'~, which is considered to be good to within a factor of 2.

As a result of the quadrupole interaction, the strong
central line is shifted by 0.440~0.003 Mc/sec down in

frequency. For the most reliable value of the OCS"
frequency we took the value of the OCS~ frequency

~ J. Bardeen and C. H. Townes, Phys. Rev. 73, 97 (1948).' S. Geschwind and R. Gunther-Mohr, private communication
in advance of publication.

~ C. H. Townes and S. Geschwind, Phys. Rev. 74, 626 (1948).
C. H. Townes and B.P. Dailey, J. Chem. Phys. 17, 782 (1949).


