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An attempt is made to predict the energy and angular distribution of charged mesons to be expected from
the bombardment of deuterium by 345-Mev protons assuming that the cross section for production in two-
nucleon collisions is known. The problem is simplified by assuming that the third particle enters the reaction
only by giving to the struck particle a momentum distribution at some time prior to the meson production,
by carrying oG the complementary momentum, and by limiting the states available through the exclusion
principle. The possibility of the reformation of a deuteron more than doubles the cross section for the pro-
duction of positive if it occurs. Hence the positive-negative ratio offers an experimental means of deter-
mining the spin dependence of positive meson production in the final state, assuming that the ratio of p-n to
p—p production is known. Alternatively, this approach offers a method for a rough determination of the p—n
meson production cross section using high energy proton beams.

I. INTRODUCTION

HE purpose of this paper is to attempt to predict
the energy and angular distribution of mesons

resulting from the bombardment of deuterium by
345-Mev protons, under the assumption that the cross
section for the production of mesons in two-nucleon
collisions is known. Alternatively, since high energy
neutron sources of sufBcient intensity and energy reso-
lution for an accurate, direct study of meson production
in e—p collisions have not yet been achieved, this
analysis can o6er a method for learning something of
this I—p cross section. The production of mesons in
proton-proton collisions in being investigated experi-
mentally by Richman, Wilcox, Whitehead, Cartwright,
and Peterson and Brueckner has conducted a theo-
retical investigation of the problem in the light of these
experiments. '

The general method of attacking the problem was
suggested to the author by Chew, in analogy with an
approach he is using in the study of n—d inelastic scat-
tering. ' lt rests upon two assumptions, of which the
first is probably justified, while the second is open to
considerable question. The first assumption is that the
production takes place in a time so short compared with
the period of the deuteron that the impulse approxima-
tion may be used. Since for the incident proton vjc
=0.682, the time for it to cross a meson Compton wave-
length is only two percent of the deuteron period.
Hence it seems to be reasonable to assume that the
problem can be treated in terms of the production of
mesons by two nucleons, one of which has the momen-
tum distribution of a particle in the deuteron, while the
third particle simply carries oG the complementary
momentum without otherwise entering the reaction.

*The work described in this paper was performed under the
auspices of the AEC.

'Wilcox, Cartwright, Richman, and Whitehead, Phys. Rev.
79, 198 (1950). C. Richman and H. A. Wilcox, private com-
munication. V. Peterson, Phys. Rev. 79, 407 (1950), and private
communication.

s K. Brueckner, Phys. Rev. 79, 641 {1950),and private com-
munication.

3 G. F. Chew, Phys. Rev. 80, 196 (1950).

The general examination of the errors made in impulse
approximations of this type is to be discussed in a
forthcoming paper by Wick and Chew.

The more dubious assumption is that the particles
which produce the meson do not then interact with the
third particle except insofar as the exclusion principle
limits the states available to them. This is essentially
the same approximation as the neglect of double scat-
tering from alternate particles in the inelastic scattering
of nucleons by deuterons. In the latter problem one of
the three particles must have a large momentum
relative to a pair of particles that are interacting
strongly. As Chew has shown, this allows a straight-
forward treatment in terms of two-body interactions.
When a meson is formed, however, it is quite possible
for all three nucleons to have comparable momenta, so
that exact treatment would require a solution of the
three-body problem.

Still, it can be argued that the situation is not so
desperate as to invalidate the method used below.
Firstly, when the three momenta are comparable, the
exclusion principle causes a compensating reduction in
the cross section. A further limitation occurs in that
the phase space available to the three particles in this
energy region (i.e., the region of high meson energy) is
small. Outside of this region the e8ect is small. In fact,
if the third particle has a relative energy of 40 Mev or
greater, as is true on the average for most of the dis-
tribution except the high energy tail already discussed,
its cross section at the average distance from the two
interacting particles (4 or 5 wavelengths at this energy)
covers less than six percent of the solid angle into which
these particles may go. Moreover, the interaction
between the two particles which produce the meson
can be taken into account to the same extent as was
done by Brueckner. This interaction completely alters
the two nucleon distribution both in magnitude and
shape; it increases the magnitude of the p—d cross
section by a corresponding amount but has much less
influence on the shape. Thus, the results given below
should be at least qualitatively correct, except possibly
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for the high energy tail. Clearly this method ignores the
possibility of the formation of a triton, but the results
indicate that this process should be separable experi-
mentally from the main body of the distribution.

II. DERIVATION OF THE SCATTERING MATRIX

The formal statement of the above assumptions and
derivation of the scattering matrix will be carried out
in terms of the R matrix notation. 4 The assumption that
the two-nucleon cross section is known can be stated as
knowledge of appropriate two-particle R matrices.
These are then combined with the assumption that the
third particle inQuences the reaction only by giving a
deuteron momentum distribution to one of the inter-
action particles at some time previous to the production
of the meson, to give an R matrix for the problem at
hand.

In order to clarify the notation, consider the two-
particle case brieQy. Let the momentum and spin vari-
ables of the incident proton and struck neutron be
denoted by b and $, respectively, the final neutron
variables by $~ and b, and the positive meson variables

by g+. Then R„„+,which describes the transformation
of a proton b and a neutron g into two neutrons b
and $o and a positive meson g+, can be written as
(bbg+IE~&+I bp ). Momentum conservation may be
factored out giving

(~,P»+I E„,+I bP„) =s(k,+k,+q—K,—K.)

X (o(k~ —ko), v~, vo, «lr-.+I o(ko —k ) oo 0.), (&)

where the spin and momentum variables of the nucleons
have been introduced explicitly. Note that this separa-
tion restricts us to treating the nucleons nonrelativis-
tically throughout (except that the incident proton may
be treated relativistically in calculating the energy and
momentum available for the reaction; the treatment of
the final nucleons can be shown to be a good approxi-
mation). The cross section for the production of positive
mesons in an n —p collision is then to be written as

da „+= (2v/hvo) I
r„v+I '8(Eg+Eo+Eo Eo E„)——

X [dk'/(2v) o$[dq/(2or) oj, (2)

where k'=-', (k&—ko) and all other variables in r v+ are
to be expressed in terms of k', q (and ko) by means of
momentum conservation. That is, formally, r„„+
appears in the cross section in the same way as a
matrix element for the transition calculated in Born
approximation; this analogy is useful in practice. In
fact, the whole calculation is formally equivalent to a
second-order perturbation calculation assuming that
the nuclear forces and meson production arise from
separate interaction terms in the hamiltonian and that
the corresponding second-order calculation for the two-
particle case gives the correct answer.

' C. Moiler, Det. Kgl. Danske Vidensk. XIII, No. 1 (1946).

In terms of this notation the (unsymmetrized) E
matrices for the deuteron problem under our assump-
tions may be written, for negatives:

(bbbn I've Ibb&) = P (hhg l&~v I hob)@oro
$o'gap

X4'D(b4)Ao(b') (3)
and for positives:

(6 b '4"' v+
I
~~'

I 44)
l exp(o~-. ) ((~b~'I ~"+

I b(.)a~o
$O'$a$ p

+e p(oh„). (k '"'k '"'v+
I
E„+Ibh)64r l

X4'& (4&„)Ao(b'), (4)

where pro(b') is the incident plane wave 8sogo', Pn($ $v)
is the deuteron function yn(&r„o „)go(-,'k„—-', kv)h(k +k„
—2k,), and 2k, is the momentum of the deuteron in
whatever coordinate system is chosen. These two equa-
tions contain the formal statement of the assumptions
(a) that the third particle influences the production of
the meson only through giving to the struck particle a
deuteron momentum distribution at some time previous
to the collision, and (b) that the three nucleons go
directly into the final state $&fob without further inter-
action not contained in the two-nucleon R„„+and R»+.
According to the argument given in the introduction the
interaction thus included should contain most of the
influence of forces between the particles in the final
state. Equation (3) is to be antisymmetrized in the
three final neutrons $~b$o, and (4) in the two final
neutrons; the corresponding r matrices are then to be
squared, averaged over the initial proton and deuteron
spin states, and summed over the final spin states. Note
that the phase in the production of positives can be
determined only from a specific meson theory so that
the results will be uncertain by the amount of the inter-
ference term if empirical R matrices are used. The cross
section is then given by

d~vo= (2v/kvo) Iron l b(Ei+E2+Eo+E Eo ED)pf,

where the variables appearing in r„& and in the density
of final states pf are to be interpreted in terms of the
new momentum conservation condition kI+k2+k3
+q—ko —2k =0 that arises from integrating the
original h(k&+ko+q —ko —k ) over k„and k„.

Positive mesons can also be formed with the final
nucleons coming oft as a neutron and a deuteron instead
of as two neutrons and a proton. According to the
approximation being used here, this process will occur
mainly when the positive meson is produced from the
proton in the deuteron. This is the same process as that
considered by Brueckner, Chew, and Hart' in proton-
proton collisions, and can be included by calculating

(« ~ I&~+'&
I
u+.)

= 2 (fn ~+I&~'"'1b4)bo-o~X4n(b4)Ao(b') (5)
$o'ggj

' Brueckner, Cheer, and Hart, Phys. Rev. (to be published).
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level for triplet and singlet states, respectively,
k„s(ki—k2) is the relative momentum of the 6nal
nucleons, and Eo is the inverse Compton wavelength of
the meson inc/5. ]Since under our assumptions the final
state in the production of negatives in a singlet, the
result (relative to the two-nucleon production) is the
same for all four theories and is given in Fig. 2. The
chief effect on the deuteron spectrum (outside of the
change in magnitude) of taking this effect into account
is to shift the peak of the distribution from 40 Mev to
60 Mev. Coulomb forces between the two protons in
the final state might be expected to wipe out the sharp
peak in the two-particle distribution; but since little
area is included under the peak, the smoothed-out
deuteron distribution should be little affected by this
correction. 6 Further, 0., is well known from p—p scat-
tering, so that this result should be relatively trust-
worthy. In particular, it is not subject to the interference
correction that appears in the production of positive
me sons.

The production of positives is more complicated in
that a deuteron may appear as one of the Anal particles,
that the Anal state may be singlet, triplet, or a mixture
depending upon the theory, and that positives produced

I I I I
I

1 P- P P RODUCTION

X P- d PRODUCTION I

I

P i PRODUCTION
(

P- d P RODUCT ION

p -d PRODUCTION ~ ~ p. p HEIGHT FOR
««EC'ING EXCLUSIONPRINCIPLE

~ (

(INTERFERE NGE NEGLECTED RESOLUT ION

ul

R
Tr

K

K

3.0
K
cf

z

cf
K

2 0
vari

1.0

20 40 60 80
NIESON ENERG Y IN MEV

I20

Fze. 2. Production of negative and positive mesons in the
forward direction by 345-Mev protons leading to a singlet 6nal
state; interference term neglected; p—e and p-p matrix elements
assumed equal.

'This correction has been calculated by K. Watson and is
indeed small.

from the neutron may interfere with positives produced
from the proton with an undetermined phase. The
general formula for the case of a deuteron appearing
as a anal particle has already been given; the calculation
is straightforward and leads to the result given in the
Appendix. For the rest of the cross section the transition
probability is

w~+ = (2x/fi) py I I M„„+(Iki —k2 I', q+) I'go'(k3+k, )

+ I
M»+(I ki —ki I' ~+) I'go'(k2+k. )

+ I M„„+(Ikg —k3
I

' q+)
I
'gp'(ki+ k )

—M„„+(Ik,—k, I' q+)*M (Ik,—k, I' q+)

Xgp*(k2+ k,)go(k, +k,)
+A cos(6„—h»)M„„+

X (I ki —k2I', iI+)*go*(k3+k,)

XLM»+(I ki —k3I', q+)go(k2+k. )

+M„+(Ik2—k3I', g+)]go(ki+k)g}, (7)

where A cos(6~„—5») depends upon the theory. Note
that for equal p-e and p—p matrix elements the ex-
clusion correction is one-third the correction in the case
of negatives. This is a specihc example of a general
argument given by Chew and Steinberger~ to show that
the exclusion correction will increase the positive nega-
tive ratio for the production of positive mesons by
protons in complex nuclei.

For the anal state a singlet spin state (scalar or vector
mesons, A=1), under the usual assumption that the
I—p and P—p scattering lengths are equal, the production
of positives is also given in Fig. 2. This curve (II) is
made up of three parts, which can be determined from
the curves already given for the production of negative
mesons (IV and V). The distribution of positives
produced by a collision of the incident proton with the
neutron will be the same as the distribution of negative
(V) times the ratio of ri+p —+n.+ to e+p—+x cross
sections. The distribution of positives produced in col-
lisions between the incident proton and the proton in
the deuteron will again have the same form but will be
multiplied by the ratio of p+ p—+x+ to p+m —+s+ cross
sections. (If the p—n and p—p matrix elements are equal
this ratio will be two, since either proton can give a
positive meson in the p—p case. ) The exclusion principle
correction is the same as that taking (V) into (IV) times
one-half the ratio of p—p to p—m cross sections. Note
that in the case plotted, (0„„+/0„„=1 and 0»+/o~„+
=2), this exclusion correction is only one-third as large
compared to the total cross section as is the exclusion
correction in the production of negatives. Under this
assumption that the p—n and p—p matrix elements are
equal, the positive-negative ratio for mesons of 60 Mev
in the forward direction is 3.84&0.84. The uncertainty

7 G. F. Chew and J. Steinberger, Phys. Rev. 78, 497 (1950).
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the reformation of the deuteron. This increase is clearly
much larger than the uncertainty due to the inter-
ference term. Hence, if the matrix element for p n-
production were known to be approximately equal to
that for p-p production, the experimental value for this
positive-negative ratio would determine fairly clearly
whether or not the reformation of a deuteron occurs
appreciably in p—p meson production. Conversely, if
the formation of a deuteron could be demonstrated in
meson production from hydrogen, this ratio would give
a fair idea as to the ratio of p n t—o p—p matrix elements
(assuming the p-II matrix element the same for both
positive and negative meson production).

This problem was suggested to me by Professor Chew,
and he has been most liberal with advice and help during
the investigation. Keith Brueckner s parallel investiga-
tion of the fundamental two-nucleon problem has been
drawn on throughout, and his advice was most helpful.
Much is owed to the criticism and encouragement of
Professor Robert Serber.
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APPENDIX

A. Calculation of the Matrix Elements
The general expression (3) is specialized by the assumption

that R „depends only on 0&, a2, I k& —k&~~, and g in the final
state, ao and ~„in the initial state, and is antisymmetric in 0 & and
0.&. Performing the integrations, antisymmetrizing in the final

FIG, 3. Production of- positive mesons in the forward direction
by 345-Mev protons striking free protons or protons bound in
deuterons leading to a triplet final state.

is due to the possible interference between positives
produced from the neutron and those produced from
the proton in the deuteron.

For the final state a triplet (pseudoscalar theory with
pseudovector coupling or —, of the time with pseudo-
scalar coupling) the cross section is greatly increased by
the reformation of a deuteron in the 6nal state. The
distribution of positives produced from the proton is
much the same as when the 6nal state is a singlet, but
the case when the deuteron reappears as one of the 6nal
particles has comparable cross section. The comparison
of these two parts of the cross section is given in Fig. 3.
Note that the value of the measured p—d cross section
relative to the cross section measured for the production
of positives in p—p collisions will depend critically on
the energy resolution of the apparatus used in the
latter experiment. (The ratio of the deuteron peak to
the peak of the continuum distribution is given by
47rEd(AE where Ed, is the binding energy of the deuteron
and hE is the energy resolution in the center of mass
system. ) The total cross section in the forward direction
(again assuming n —

p and p—p matrix elements equal,
and neglecting interference) is plotted in Fig. 4. The
positive-negative ratio in the forward direction at 60
Mev is 8.22~0.84. This large increase in the positive-
negative ratio when the 6nal state is a triplet is, of
course, due to the added cross section resulting from
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Fro. 4. Production of positive and negative mesons in the
forward direction by 345-Mev protons leading to a triplet final
state when the two final particles are not identical; interference
term neglected.
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three protons, and taking out the delta-function giving momentum
conservation gives

roo =&(~)~slk) —ksl'n-lr. ,-I~a .)xn(~.~s)go(ks+k. )

—(~)~s)ks —ksls~ Ir.o l~o .)xt)(~.~s)go(ks+k )
(—~so's [ ks k—s I

o)t
I r)~o I

o o)r~) xn(&a&)) go(k)+4). (8)

Since we are interested only in the meson distribution, the result
will be integrated over all nucleon momenta; hence the matrix
element that will appear in the cross section may be written

1 1
~re t'= —, X — X3Z go*(k3+kp)F*(jkg —k»r», q )

0'oogoo&oo D
gg'141'WS

XX~ {0 &3)(&~0'»(r~p )&w~ ) I(&i&»(r p )&ogr~)

xx.{.-.)~« -k.I,.-) .{k..+k.)
2(0'30'»

~
rnp 0'o0'os) &g)(&oso'1)

XF(~ks —
kodes, e )go(k)+k, ) ), (9)

where {as in the case in the theories considered by Brueckner) the
momentum dependence can be factored out as F(~ k; —k;~s, )o ),
the 1/3f is the phase space factor for three identical particles, and
the o comes from the average over the six initial spin states. Since

~ xD*{~ '~3)xa(~ ~3) =5& (10)
D, ag

the diagonal term reduces to

)gp»(ka+k, )X~4 2 ~F{(kg—k. ~', g ){O.lcr»(r„p )opa„) j'
a'oats
&10'2

=kgo'(ks+k. ) lkg«(lk) —
kodes, e ) Is, (11)

i.e., simply to $ the matrix element (squared) for negative pro-
duction in p-n collisions times the momentum distribution in the
deuteron. This is the term to be expected for direct production
from the neutron. (The q occurs in the two particle case also as
the phase space factor for two identical particles. ) Similarly, the
spin sum for the exclusion correction gives

kgo'(ks+k. )kgo» (lks —ksl' e )
Xkg„.-(]k)—ksls, n )*kg,. (lks —ksls, s ), (12)

so that the exclusion correction is 100 percent when the three
final particles all have the same momenta, as it should be. Com-
bining these and including the cyclic permutations of 1, 2, 3 gives
the result (6) already quoted. The matrix element for positives,
(7), is obtained in the same way. Here, however, no simplification
such as the final state being always a singlet occurs and different
theories can give different results for the coefBeient of the inter-
ference term A cos(bp„—b»).

B. Phase Space Integrations
The canonical variables picked were r, the internal coordinate

of the deuteron, y, the distance between the incident proton and
the center of mass of the deuteron, and x, the center-of-mas's coor-
dinate for the three particles, with conjugate momenta N„, N„,
and kk, . The initial kinetic energy Tp and momentum kkp of the
incident proton must be calculated relativistically, but in the
deuteron case it was found that the final nucleons may be treated
as nonrelativistie without greatly altering the meson distribution.
(This is to be contrasted with the two-nucleon case where the
final nucleons may be treated as nonrelativistie in the center-of-
mass system, but the result must be transformed relativistically
to the laboratory system. ) Conservation of momentum requires
that k,+q =kp, where hq is the meson momentum and conservation
of energy gives

k„=a-~Per'o —mZ, —mE, —ga»~ k,—q~» ——;a»e„»j&
—=Q —$k„»g&, (13)

where E~=(p»c4+k»q c»)& is the meson energy and Ez the deuteron
binding energy. For a constant matrix element the diagonal term
leads to the integral

dot f (4g/s)& MLg —fkosjtkosdk„

(2 )3Jp 2h'(2m)'

j 3 deaf 8xnE»
~ -& (2x) (n +-,'k~ +k„+-,k~k„ljy)»'

where the deuteron momentum distribution has been taken to be
{8~nlP)&/(n»+k»). The calculation has also been carried through
for the more reasonable deuteron wave function t exp( —nr)—exp( —Pr)g/r with P/n=6. The only important change this
makes over the wave function exp( —nr)/r is that 1P changes
from unity to 6(6+1)/(6—1)'=1.68. The angular integration is
elementary and the branch points of the final integral allow it to
be replaced by a contour and done by residues giving

dq 3&MN'n A fr —p j'g+Bfr+ pg&Ipfgp (kl)
(2 )3 2&AB

where
A»=3n»/4Eo»' B'=k~»/12Eo' G =g/Eo'

p =G+A' —B»; r = fp»+4A»B»g&

and Kp is the meson inverse Compton wavelength. The exclusion
principle correction reduces to

dq 3~@n Ep f'(4G/3)& f'$(k /Ko) +$x
(2~}3 2~k» k. ~p ~g(k. /Ko) —k~

Ãdxg dy

'+ (Eoy+k, )'
Kp' ln '+ (Eoy —k,)'.+E:,+k

where k,'= Eo»(4/3G —x}.This integral was evaluated numerically.
The diagonal term integral that occurs when the forces between

the particles in the final state are taken into account differs only
by the factor Ep»/(n»+k, ») in the final integration, so that this
integral may again be done by residues giving

pf gp»(k j)Ep» dq 3+f~nEo»
+)Is —s I' )) )' I'[(p+A')'+42'8'))

X I(p+A'»/»AB) t A(r —p) ~+B{.+p) ~j
+{1/2&))B(r—p) & —A (r+ p) &j—A;(G+A») & I, {17)

where A;»=n, »/Eo» or ng»/Eo» depending upon whether the final
state is a singlet or a triplet. The corresponding exclusion principle
correction was not calculated but was estimated to be approxi-
mately the same percent of the diagonal term at the same meson
energy as the corresponding correction for the constant matrix
element case.

When one of the final particles is a deuteron, energy and mo-
mentum conservation give for the density of final states

2M dQ„dq
pf = —k„",where k„={2/3&)(g+ng»}&. (18)

The angular integration is elementary, giving

J dnogos(ks) =9)rfP/4L(p+Aos)s+4AsBsf. (19)

The ratio of matrix elements for the two-particle ease is given by
Bruekner as

M»+ (2~)er (n/2~) ~Eoj»

,V,„+( +k;}~ E,
so that this result can be immediately related to our previous
formulas.


