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and Jones' for a maxwellian gas and a independent of
temperature, we then obtain the following values for
the coefficients II, E, p 'of the differential equation (3):

H/n= 2.12X10~ g/sec;
E.=0.443X 10~ g-cm/sec;
Ea =2.28X 10~ g-cm/sec;
E=E,+Em =2.'l2X10 4 g-cm/sec;
p =0.487X10 ' g/cm.

These values are substituted in the solution (30) and a
series of curves drawn by giving diBerent values to 0..

Of these the curve for a =0.014 which fits best with the
experimental points is reproduced in Fig. i. This may
be compared with the value 0.018 found by Waldmann"
by another method.

In conclusion I wish to thank Professor M. N. Saha,
F.R.S., for acquainting me with this subject and for his
interest, Professor N. R. Sen for having kindly gone
through the paper, Dr. U. C. Guha for his friendly
cooperation in checking the calculations, and the Na-
tional Institute of Sciences of India for the Fellowship.

16 1.. Waldmann, Z. Naturforsch. 1 (1946).
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A general and compact expression for Feynman's path integral has been obtained. A classical method is
given for the computation of such expressions. The example of a Dirac particle in a constant external electro-
magnetic 6eld is treated by this method.

L INTRODUCTION

N order to treat problems involving action at a
~ - distance, Feynman has proposed a lagrangian
form of quantum mechanics. ' In this formulation the
probability amplitude E(x, x") for a particle to go
from a space-time point x" to a space-time point x~ is
postulated to be given by an expression of the form:

E(xs, x")=) exp(iSLx]/h)d(paths),

the integral being extended over all paths, x(r) from
x~ to x~. In this paper we give a general and compact
definition for this integral, and we give also a classical
method for computing an approximate expression for it.

We make use of the following notation:

x(v) is the parametric representation of a world line

x=x„. p, =i, 2, 3, 4. r =proper time.

x'(r) =dx(7)/dr
x(r) is the classical path.
xk=x(~k)

* Charge de Recherches du Centre National de la Recherche
Scienti6que.

t Now at Institut Henri Poincar6, Paris.
'R. P. Feynman, Revs. Modern Phys. 20, 367 {1948), here-

after called I. Following the suggestion made in paragraph
14 of I, we have denned a path x(r) by four functions x„(r)
of a parameter r; the formulas of I are still valid, the quantities
p(x, r}=exp(~Me/2k}f(x) replacing the wave function P(x). A
proof of this fact is given in connection with the example studied
below. For a more complete study of a formalism of relativistic
quantum mechanics introducing the wave function p(x, ~}, see
E. C. G. Stueckelberg, Helv. Phys. Acta 14. 588 (1941), and 15,
23 (1942).

rk+I rk

SLxj is a functional of the function x(r)
S=SLxj; 8 is the classical action.

IL DEFINITION OF THE PATH INTEGRALS

In Feynmans' work' the definition of the path inte-
grals involves an infinite product of "normalization
factors. " For his purposes Feynman determined these
normalization factors in the cases in which the poten-
tial is velocity independent and gave their expressions
in rectangular coordinates; and he indicated also the
existence of a relationship between these factors and
the action, S.We shall give here the general formula for
the normalization factors valid for all actions and all
frames of reference; moreover, we shall give a compact
expression for the infinite product of the normalization
factors. We shall give first the general formula for
E(x~+', x~) for two points corresponding to an interval
r~' —r~ =a infinitesimally small; then we shall obtain
E(xe, x") by iteration. (The essential formulas are
given before their proofs. )

Q& E(x~+' x~) =e px(Li /)h8(x"+' x")j
X(2xhi)-~'(det„. a~"~,, &)~. (2)

Here l is the number of degrees of freedom (1=4 in the
actual case),

u""I,+pa =8'8/Bx„',+'—8x,'
det„„means the determinant with respect to the in-
dIces p and v.
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I F / FIG. 2. Figure 2a shows a path defined by successive points
and Fig. 2b shows the same path de6ned by successive tangents.
Between two given points infinitisimally close to each other, the
path followed by the particle is the classical path, i.e., a definite
one; hence, it is possible to go from a point description to a tangent
description of the path.

FIG. 1. A world line is de6ned by its parametric representation x{r)
the world line of the classical path is S{r).

Proof of formgla (Z). Feynman deaned E(x +', x") as
follows'

to such actions. Consequently, in the limit e—+0 Eq. (10) tends
towards the following equation:

exp/(i/h)(so xs)P—sg(c"+' "(~(det„„o""s+t,o( 'dPs

=a(xa —x'a); {11)

~(xo+' x") =exp[i8(xo+' xo)/h](1/co+t, o) (3) and the result is

and computed the normalization factor c +' a for special
cases. We shall determine ~c'+'o~ in a general way by
the unitary condition,

lt*(x"+t x')Z(x"+', x'")dx'+'= S(x'—x") (4)
J

By substitution of Eq. (3) into Eq. (4), one obtains:

exp[ i[8(x—'+', x")—8(x'+', x"))/h]

)(
~

co+i, ib

~

—sdxo+1 g(xo xlo) (5)

The calculation of ca+'a goes then as follows. Let us expand 8
in a Taylor series:

8(@a+' xa) =8(@a+' xa+')+(xa —@a+')(a8/Bxa}(@a+' @a+&)

0&t-&1. (6}
By use of the classical relation:

gg(, a+1 ~a)/g~a pa+1, a(~a+1 „a)

)the momentum pa+~a is tangent to the classical path: xa-+ra+'

(Figs. 1 and 2} at the point xa and is orientated in the same
direction as the pathj, and by use of the following change of
variable:

ga+l ~pa+1, a (8)
d„a+1 J( a+1. a+1, a)g a+pa )d,„w.„„,(-1d alga (9)

(J is the jacobian associated with the change of variables (8))
Eq. (5) becomes:

exp L
—{i/h) p(xa —x'a) pa+' a

+P(„o x~o)sg]~ca+&, o]-s[ dot osis „~-idPa+x, s
= a(~a —~'a). {10)

When the distances ]so+'—xsJ and ]so+' —a'sJ are smaller than
eV2, the exponent in Eq. (10) reduces to its first term (in the
limit e—+0).

However, when the distances (so+'—xs) and (x~' —s's) are
larger than e~ and wean 5 does not contain i to powers larger
than two/ Feynma~ has shown that the contributions of the
corresponding actions cancel each other. %'e shall restrict ourselves

' The action functions studied so far do not involve i to powers
larger than 2; nevertheless, such possibilities may be of interest.
A more elaborate proof is then needed to determine c~'a (see
reference 4}.

~c '"~ —'=h-'~det„„a "o+, o~ &.

Van Hove has shown that"
c~' "=exp[url/4]

~

co+' '~ (13)

In the actions considered so far, all the o6-diagonal
terms vanish:

(c"+") '=II.(ih) 'a""~Lo=II.(c."+' ") ' (14)

One can readily check the value of ca+'~ obtained by
Feynman for actions expressed in cartesian coordinates
where the potential is velocity independent; namely,

c ~"= (ihe/Mc) &.

Oo E(xo, x")

+00 +00

= lim il il exp -g 8(x"+' x')3'&

XP(xo pt%h p,

s ~ .t/ih xo. . .x'n)

a
)&g dx'8(x' —x")5(x"—x ). (16)

Proof of Erf. (16). The straightforward iteration of
Eq. (3) leads to the value of It(x x"n) given in I;

3 %'e are greatly indebted to Dr. Van Hove for giving us formula
12 before publication and for very many helpful discussions in the
course of this work. For a more general study of Eq. (2} we refer
the reader to a work of Dr. Van Hove (unpublished as yet).

The square root of the determinant in formula (2) has appeared
already in another connection in a work of Jordan, Physik 38,
513 (1926), and a work of J. H. Van Vleck, Proc. Nat. Acad. Sci.
14, 178 (1928).

4 Equation (12) justifies Feynman's remark in I, reference 15;
it enables us to generalize the very useful Eqs. (58} and {46) of I,
one of which we shall need later on.

The de6nition of the hamiltonian:

Ira ——(a/a~a) &8(xa+1, xa) —inca+1'j. (A)

The equivalence of two functionals:

agama~ —f~a/a~a} I pi8~~a+', ~a)p j
+)$8(ga ga '}/Pgg —inca+' ac»a 1I (B)
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namely,
+oo +co

E(xs, x~) =!im I
~

I exp —g 8(x~' x')
~-+aO g J (~0

tion given by the diBerential equation formalism
E(x~t x~), and hence it might be possible to avoid
difBculties pertaining to the differential equations and
yet answer questions for which the S-matrix seems to be
lacking the information.

k 0
(c +"") ' g dx~a(x' x"—)b(x" x—) (.17) III. AN APPROXIMATE EXPRESSION FOR X'(x~ x")

The limits of integration of the x«are fixed by the
boundary conditions; for definiteness, we take them
equal to+~ and —~.

We shaH show that the untractable product
e-1
g (c~' ") ' is equal to the square root of a jacobian;~

this jacobian corresponds to the following change in the
description of a path, namely, the change from a tan-
gent description to a point description.

Let us study the following change of 4(x+2) variables:

X0—+so

p1 O(X', X')/ih-+X' (28)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

pa, rs-1(&rs &n-1) /&h~&rs

where the p«+~«are given by Eq. (7), to which corresponds the
following jacobian:

J{8p«/~h-"p~»-I/~h 8" x~}

J(H; 0}
J(p'%h x)J(p~%k; x')

tl Elle:
Let S, be the first two terms of the Taylor expansion

of S around its extremal value. E, is obtained by sub-
stitution of S for S in the equation of definition of E,
Eq. (22) or (16).

tl Method:

Let us 6rst write Eq. (22) explicitly for E . Let
x(r) be the function which makes S[x]minima, namely,
the classical path,

aS[x]=0

S[x]=8(xs, x").
(23)

(24)

So far, when E cannot be computed exactly, an
approximate expression for it is obtained by perturba-
tion method. We shall give, now, a di8erent method
for the computation of an approximate expression, E,
for the exact expression, E; the method is quite general
and leads to a result such that E—E,=0(h).

(29) Set

According to Eqs. (8) and (22},
rs-1

J)(gp p1, %j'g. . .pa, ss—1/jh. go y, ,ga) II (C«+1/ «)
—1 (21)

Qs E(xs, x")= ' e x[p is[ (xr)] h/] P
)J(j (r)/ih; x(r)]d[x(r)], (22)

where the integral is extended over aH allowed paths,
x(r), from x~ to xe. Equation (22) is merely the tran-
scription of Eq. (16), where the notion of a functional as
tbe limit of a function of e variables when n—+~ has
been introduced. Incidentally, Eq. (22) is manifestly
dimensionless.

We have thus obtained a mathematical expression
for Eq. (1); consequently, we hope to be able to study
more simply and more deeply both the mathematical
and physical questions raised in connection with Eq.
(1).' In particular, on the one hand, expression (1) gives
more information than does the S-matrix E(+~, —~);
on the other hand, it is possible to choose actions for
which Eq. (1) is not equivalent to the detailed informa-

~ We are happy to acknowledge a very interesting discussion
with Professor von ¹uman in connection with this point.

J(pn, rs—I/jh ~ss—1)J(pn, a-1/ jh grs)

This compound determinant is equal to the product of its diagonal
elementary determinants:

J(g p«/'h. ~ p»-1/'h; H s") II J(p«+I «/ih; s«). (203

it follows
*(r)=*(r)+X(r);

x(rA) x(rB) =0.

(25)

(26)

The Taylor expansion of S around its extremal value
is given by:

S[x]=S[x]+(1/2!)Ps[x]+(1/3!)O'S[x]+. . ..L ]—= [*]+(/ ') L*].
or more briefly,

s.=—8+(1/2!)a 8
qB

a'8= j [(a'J/ax„ax. ) I

+2(a'L,/ax„ax. ) ~

(28)

+(a'L/». ».) I ,X,X.]dr (29)—
The second variation P8 is quadratic in the function of
integration, y.

Set
J[P.(r)/ik; x(r)]=—J.. (3o)

J, is independent of p and involves only the second
functional derivative of S,. The second functional
derivative of 8 is zero and that of O'S is a constant with
respect to the function of integration.

E,=exp[i8/k] jt exp[ia'8/2h]J, &d[x] (31).
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The constant of integration is determined by the condition

A, (e} c, '. (39)

g Jt'/utgre of the upproxinsation:

This approximation is, in functional analysis, the
analog to the approximation of the osculatrix parabola
in function theory (see, for instance, the Darwin-
Fowler method in statistical mechanics). We shall show
that E, is equal to the value obtained by the %KB
method, when the lagrangian formulation reduces to

The computation of the path integral for exponential of quad-
ratic functions has already been given )R. P, Feynman, Ann
Arbor, Summer Symposium, 1949j.The method described here is
that used by Feynman in his thesis {Princeton University, 1942)
in the study of a forced harmonic oscillator.

At this stage, the order of the variables x» (order according to
increasing or decreasing k) is irrelevant, but the transcription of
the results in terms of operators of the usual quantum mechanics
requires such an ordering. For this reason, we prefer the method
here described to other methods often used in statistical mechanics.' In the case J.~ {Mij2c)—V(x) for instance, Eq. (37) becomes:

dx/dr (2cxl/jd) &a'V/ea'[~&,
&

(R-iccati equation).

The two circumstances 5'8 quadratic in x, and J, inde-
pendent of x, make the computation E, always possible.

We shall now compute

f„exp[tiP8/2)t' jJJd[xg A—, (32)

Though it should be possible to evaluate A from Eq. (32), we
resort to the limiting de6nition of functional integrals I Eq. (16)j.
The calculation of A amounts, then, to the evaluation of the
6attening of successive gaussian curves; more precisely, we es-
tablish a recurrence formula giving the result of 4+1 integrations
A,»+' in terms of the result of k integrations A». In the limit
e—+~, Ao"—+A,.

Because of Eq. (29) A can be written as follows:
a-I

A, = 1im f ~ f exp —Z a~(x~ —P~)~ II dx~/c, . (33)
f/~ 00 - »-I

c, is the common value of c,»+~» when the interval r —r" is
divided in equal parts; c»+~» stands to J as c~&» to J p» is a
linear homogeneous function of x»+' a» is obtain by a recurrence
formula when one writes 8'8 as a sum of successive squares
(x'—p')~ {successive means increasing value of /). This recurrence
formula is particularly easy to 6nd because, x' and s" being zero,
the 6rst term has the same structure as the following ones. a» is
function of a~', the coefficients of x» and i», i.e., x~, xB, ~ j e, and
the constants appearing in S:it is important to notice that a» is
real and independent of k. The result A ~' of (4+1) integration
is equal to

(34)

As A,»+'—+A,» in the limit e~ ~, a natural change of variable is

a„»+'= )„~'+2m.hi/c „, (35)

where )„»+' is given by an equation of the following structure:
y»+I y» &f (y» &» 8 &B)+0{) (36)

and the hmit, ~

d) „/dr =f„(),r, x~, xB), (3'tp')

the constant of integration is determined by Eq. (35) for 4+1 0.
Consequently, in the limit, Eq. {34) is written

dA, /dr=AoF(r, x", xB)
rB

A, =const exp Fdv ~ (38)
gA

the hamiltonian formulation of quantum mechanics;
that is, when hamiltonian equations of motion exist.
In the WEB method, ' the wave function f is written in
the form:

0'=exp((i/&)LS +())S/i)+0(&) jI,
and approximated by

f,=exp[i%'/h j expLS'j.

(40)

(41)

8 See, for instance W. Pauli, PemSech der Physik 2 AuQ. Band
24, 1 Teil {Verlag. Julius Springer, Berlin, 1933),p. 166.

il In the WEB method, expLS'j is given as the solution of a
diBerential equation {namely the continuity equation). It is not
possible to see directly which differential equation is satis6ed by
A, for the following reason. In Eq. (32) x" and xB are involved;
hence, the knowledge of the system at time s is not suEBcient to
determine the knowledge of the system at time a+de.

'o In spite of the fact that with the change of variable {43),the
ratio of the {m+1)th variation to the eth variation goes to zero
with h, we are not in a position to ascertain that each successive
approximation in the Taylor expansion of S corresponds to the
successive approximations of the %KB method.

We shall show that f,=K..
As is well known, S =8; we shall show that A„ like

expLS'), is real and independent of l't up to a multi-
plica'tive constant, this constant is the same for A,
and expLS'j; moreover, K—E'o =0(h).

(a) A is real and independent of k. One observes from Eq. (14)
and {34) that the result of each integration is independent of i
and k; moreover, as s"=mB~0, there is no phase term left after
integrations (33).

(b} expt S') and A are real and independent of k up to a con-
stant of integration: this constant is determined by the same
condition, namely, the normalization condition (39) and (4).

(c) E—E =0{k).Set:

E=exp[18/tt]" (42)

and compare A with A . Make the change of variable:

x—+h&y (43)
which implies P~k b, b being independent of h. Then,

A'~A'f exp[in'(y' S')')[1—+N&(1/3 i)PS(y', y')

+0(h) jdy'/h'c~ o. (44)

If we assume that S does not contain i to powers larger A~a 2,
O'S is proportional to e, hence,

A'=A~[A ~+A)01)f(r~)j (45)

By iteration and keeping at each step only the term of lower
degree in h, one gets

A Ae 1+0(k)f f(r)dr .

Consequently, the method given here for computing
an approximate expression for E is in the lagrangian
formalism, the equivalent of the %KB method. "

Remark: When the lagrangian is a linear, bilinear,
or quadratic function x„and i„,5 =5; hence, E,=E.
In this case A, is function of v alone: the coefBcients of
x„and a„are constant and Eq. (37) becomes dX„/dr

f„()). Incidentally, it is then not necessary to solve
the equation of motion in order to write P8 explicitly,
Similarly, it can be shown directly that when f=P,.
expLS'j is a function of r alone.
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As a working example, we treat here the motion of a Dirac
particle in a constant external electromagnetic 6eld. The choice
of this example does not imply that Feynman's formalism is
restricted to problems pertinent to the first quantization.

The action S for such a system is

S f=D3fc/2)(i)s+(e/2c)(y i)(y S)5d, (47)

where Ol is the four-potential vector of the electromagnetic 6eld
and y are the 4X4 Dirac matrices. The fulfillment of the two
following conditions justifies Eq. (47).

(a) 85=0 gives, in spite of the y-matrices, the Lorentz equa-
tions.

(b} the corresponding wave function is the Dirac wave func-
tions, more precisely the product expt{zMcr/2Iz j by the square of
the Dirac equation.

The procedure to obtain the wave function corresponding to a
given action is established in paragraph 6 of I when the paths
are defined by three space functions (x~, x2, xl) of the time, x4.
The transposition of this procedure when the paths are defined
by four space-time functions x„of the proper time r leads to the
following results:

y(xs+', r"+') =f expDi/A)8{xs+', xs)5J&P{x", rs)dx" (48).
By expanding both sides of Eq. (48) and equating terms of two
6rst-order in (r"+'—r~), one obtains

P(xi+i r) P(xk+z r)
{2zMc/Iz) at//8 = I y„L{a/ax„)—(ze/kc) 8„jI ~i/; (49)

hence,
P(x, r) =expfiMcr/2k j]J"(x}. (50)

A supplementary condition is necessary to eliminate the un-
wanted solutions introduced by the use of the square of the Dirac
operator instead of the Dirac operator itself.

We shall proceed to evaluate E; as E=E, we can compute E
by the method given in part II of this section. The following
equations are merely the values of the quantities de6ned there
when the action is given by Eq. (47).
ee8(x'+' x")=»[Me{)(x s+' x»s)/e5-

+2e(x„~+'—x„~)x ~(80!„/Bx~)/cc I

+(e/c) y»y„{[{x»'+' x„')x»e—(aS"/ax») /e5
+'(BS"/Bx )(x '+' —x )/e{], {29a)

c„=(2~Ib~/Mc) &. {15a)
With the use of Eq. (24) of I, we can write

L{x i+1 x s)x s/»5 g k+1(x »+1 g s)/e=i|I$ /elf

Thus, in Eq. (22) the terms involving y's can be taken out of the
integraP'

"If that part of the exponent which is under the integral sign
is a matrix, one can break the integrals into integrals over scalars;
for instance,

f exp[i'„f»fx55J&dLx5

where the F„'s are products of y's such that

r„r,+ I „r„=~2&„,
is equal to

fe;, (Zg»Lx5)V~dLx5

+&.f{f"L*5/(Zj'"L*5)~{", (ZJ *L*5)»'dL*5.

This last expression does not involve 1"s in the integrand though
it might be hard to evaluate.

It is a pleasure to thank Dr. Bruria Kaufmann on this point.
See also 0. Klein, Z. Physik 80, 792 (1933). The author has en-
joyed several interesting conversations with Professor Klein on
this subject.

where ED and E~g means the amplitude probability for a Dirac
and a Klein-Gordon particle respectively.

M =exp[(e/2Mc) y»y„l», (A, B)5
c=os[(e/2Mc) {Z»„P»„(A, B)5'{&]

+h»v. ~».(A, B)/{Z».P».(A, B)5'{']
sin f(e/224'c) {Z»„D'»„(A, B)5s {&],

rB
I„„(A,B)= ~ F„„dr.

For simplicity, let us consider a constant electric 6eld, b, the
problem being not essentially more difI5Lcult for a constant arbi-
trary 6eld. Set

83= —zSx4 Cg-—0!g=84=0
Then, the coeft5Lcients a~ introduced in Eq. (33) are

0.~~ ——Mg/g —~P/4P~ ~&—eg/4t, ~ ~& p=3 4
„=(Mc/ }—(Mc/2e}'(a„~'} '; v = 1, 2

hence,
d) „/dr = —(2X„'/Mc) —(e8)'/8M''
dX„/dr = —2X„~/Mc.

(37a)

As is already known/ one finds that in the coordinates 3, 4, the
particle behaves like a complex harmonic oscillator of frequency
2ou=e8/Mc' and in the coordinates 1, 2, it behaves like a free
particle:

g/g(x x")= P(g/2~hz sin~(rB —r&)j
X I m/2~hz(rB —r~) ~ e~ggP g.

The classical action 8 is equal to

(Mcr/2)+/Me(orx3" —Q4 }(-x3 coshnr —zi4" sinher)/co j
+MC f

—Z'i3~g4" COSh2nr
—$t (i~"}'—(i4~)~j sinh2ur+r I/2~,

taken between the limits r=r" and r=rB. r can be eliminated
from E with the help of the following relation:

eu(r —r~) =Sinh 't —Zco(X4 —X4")—is~) —Sinh '(—is~}.
i& and i4" can be expressed in terms of (dx3/dx4)"=x3 y

which
in turn can be expressed in terms of x3 and x4 by the following
equations:

i,&=x,~&I 1+(x3~&)&j—
k

i4~ = t.i+(x3»)q-~

I cox3 —arx3"+zgi+(xg'") j & I'
+ f ex4B—(ox4 —xg t 1+(xg'~)~ 1

—k I~—1=P

Strueckelberg" and Feynman" have shown independently that
the motion of a positive electron is the same as the motion of a
negative electron going backwards in time. In a constant 6eld,
x4 —x4" is always of the same sign as i4~, the x4 direction of the
path cannot be reversed and there is no pair creation or pair
annihilation. But if there is a potential difference (in time or
space} equal to a least 2Mc' within a distance equal to h/Mc'
(time) or h/Mc (space}, it has been shown that the present formal-
ism describes adequately the phenomenon of pair creation and
annihilation by a time potential barrier" or by a space potential
barrier ~ then the classical path is reQected at a time potential
barrier or refracted with reversal of time at a space potential
barrier.

I wish to thank Professor Oppenheimer for the
hospitality extended to me at the Institute and for the
interest he has taken in my work.

~ See, for instance, L. Landau, Physik 64, 629 (1930), for the
case of a constant magnetic field; thus, the indices 1, 2 replace the
indices 3, 4 and vice versa.

~ See references given in footnote i.
'4 R. P. Feynman, Phys. Rev. 76, 749 (1949)."R.P. Feynman, Phys. Rev. 74, 943 (1948).


