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The Theory of the Separation of Isotopes by Thermal Diffusion
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The time-dependent partial differential equation of the "separation column" of Clusius and Dickel has
been solved exactly. Only an approximate solution, subject to the restriction that the fractional concen-
tration c is everywhere small compared to unity, was known previously. The present work makes a com-
parison between theory and experiment possible over the full range of concentration values.

I. INTRODUCTION

'HOUGH Chapman' had suggested as early as
1919 that the phenomenon of thermal diffusion

discovered theoretically by Enskog and himself might
be used for separating isotopes, attempts in this direc-
tion did not meet with success till Clusius and DickeP
pointed out that convection currents could be utilized
for greatly enhancing the efI'ect. The apparatus used by
them consisted of a long vertical tube closed at both
ends with an axial hot wire which could be maintained
at any desired temperature by passing an electric
current. Introduction of the gaseous mixture of isotopes
into this tube gave rise to convection currents rising
near the axis and descending near the cooled wall of the
tube. %hen the tube was allowed to remain in this
condition for a sufficiently long time, the combined
effect of convection and thermal diffusion led to a
partial separation of the two constituents of the
mixture. The theory of the operation of the "separation
column, " as it is called, has been worked out by a
number of authors. The most notable among them are
Waldmann, ' Furry, '' Jones, 4' Onsager, and Debye. 6

The various treatments, though they differ somewhat,
lead ultimately to the same transport equation

q =Hc(1 c) KBc/Bs, — — (1)

where q is the transport of the lighter isotope up the
tube in g/sec, c is the fractional number density of the
molecules of the lighter isotope, H, K are constants4

depending on the nature of the gaseous mixture and the
specifications of the column, and s is the height in cm
of any cross section of the column from its lower end.
A similar equation holds for the transport of the heavier
isotope down the tube.

Equation (1) will fail to hold, of course, near the two
ends of the column where the convection current turns
round; but, as these regions occupy only a small part
of the total length, little error is committed by as-
suming it to be valid throughout the entire length of
the column. Conservation of mass then leads to the

equation of continuity

IIBc/BT = Bg/Bs) (2)

q=HC —Ec,

and that of the equation of continuity is

pc, = —Hc,+Ec„.

(4)

(5)

Equation (5) can be solved easily with the help of
the standard theory of linear differential equations; but
very often the experimental conditions necessitate a
more complete discussion of the differential equation
(3) without the above restriction on the values of c.
In this paper we shall show that it is possible to solve
the equation completely by reducing it to the linear
form by means of a suitable transformation. Before
proceeding to demonstrate this it will be convenient to
bring Eq. (3) into the dimensionless form,

c&= —(1—2c)c +c„,
by the substitutions,

x=Hs/E, t =EPr/pK

The same substitutions transform Eq. (1) into

q/H =c(1 c) c. — —

(6)

where p is the mass of gas in unit length of the column
and v is the time in sec.

Combining Eqs. (1) and (2), and denoting partial
diGerentiation by a subscript, we have

pc, = —H(1 —2c)c,+Pc„. (3)

This is the basic equation of the separation column. Its
solution subject to the appropriate boundary conditions
gives the concentration distribution along the column
as a function of time. Both Debyee and Bardeen' have
treated this equation with the restriction that c is small
compared to unity, so that the term c' in Eq. (1) can
be neglected. On this assumption the simplified form of
the transport equation is

and the simplified Eqs. (4) and (5) into

Ct = —C +C».
~ J. Sardeen, Phys. Rev. 57, 35 (1940).

' S. Chapman, Phil. Mag. 38, 182 {1919).
~ K. Clusius and G. Dickel, Z. physik. Chemic 844, 397 (1939).' L. Waldmann, Z. Physik 114, 53 (1939).' R. C. Jones and W. H. Furry, Revs. Modern Phys. 18, 151 *

(1946). This problem is stated on page 178.' W. H. Furry and R. C. Jones, Phys. Rev. 69, 459 {1946).' P. Debye, Ann. Physik 36, 284 (1939).
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II. TRANSFORMATION OF EQ. (6)

To linearize Eq. (6) we 6rst make the substitution
c =~+V, obtaining

v. , = (v,').+v,.,
Integration with respect to x yields

f(t)+ v ( vg'——+v

where f(t) is an arbitrary function of t Sin.ce the addition
of an arbitrary function of time to v leaves c unaltered,
we can absorb f(t) in v and write simply

arbitrary function of time. The expression for m in
terms of c therefore contains an arbitrary function of
time as a multiplier. But the condition that m is to
satisfy the differential equation (12) instead of an
equation of a more general type obtained by direct
substitution of Eq. (13) in Kq. (6), determines g(t) up
to a constant factor which still remains arbitrary. This
can be seen in the following way: by Eqs. (14), (15),
and (2),

w..=[-,' —H 'q(x, t) tv

Vs =Vs ~Vcr.2~ (10)

Next we make the substitution v =P(rv) in Eq. (10),
where the functional form p is to be suitably chosen.
This gives

v'w, = (v')'rv'+ v"rv.'+ v'rv. ..
where v'=dv/drv, and v"=d'v/drv'. If the functional
form be so chosen that

(v')'+v" =0,

wg —— [g'(t)/g(t)]+
4 )

cgdx K

t

g(t)=A exp (t/4) —H ')f q(l, t)dt;
0

=
I [g'(t)/g(t) j—H—'q(x, t)+H 'q(t, t) I

—rv.

Therefore, if Eq. (12) is to hold, we must have

then this equation reduces to

(12)

where the constant A is arbitrary. Hence, the ex-
pression (15) can be written as

which is the familiar equation of ordinary diffusion in
one dimension.

A solutions of Kq. (11) is v=lnrv. Thus, the sub-
stitution

re=A exp (t/4) H' I —q(t, t)dt

—(x/2)+ ) cdx . (16)

q/H =,' rv../rv. -— (14)

First, we shall make use of the function m in deriving
the solution for the steady state which corresponds to
constant q. By Eqs. (12) and (14),

xb' = ', q/H =re-.—./rv =re,/rv,

rv =exp(b't/4) g(x).

If Kq. (12) is to be satisfied by rv, g(x) must be of the
form Ac~In+Be ~12 The relation (13) then gives

c= ', + ', b(Ae'*" B-e ~-")/(Ae~—"+Be ~~').

In the special case, q=0,

c =-', + ', tanh-', (x—xp). -
The expression for w in terms of c is, by Kq. (13),

g

rv= g(t) exp —tvx+ cdx,

where tK/H is the length of the column, and g(t) is an

~This transformation was used by the author in a previous
paper {S.D. Majumdar, Phys. Rev. 72, 393 {1947})to Hnearize an
equation occurring in the general theory of relativity.

transforms the nonlinear equation (6) in c into a linear
equation in m. The same substitution transforms the
transport equation (7) into

This expression will be required later in deriving some
important results.

R'~g= 4'»I at x=l

This will be referred to as Problem (II).

III. THE INITIAL AND BOUNDARY CONDITIONS

We now proceed to discuss 'the initial and the boun-
dary conditions of the problem. Linearization of the
differential equation alone will not be sufhcient to
make the problem solvable unless the boundary con-
ditions also assume a linear form. Fortunately, this
requirement is fulfilled in the two most important cases
discussed below.

In the first case the column is closed at both ends,
so that the boundary conditions are q =0 at both x =0
and x =l; that is,

at x=0 and x=l.
This will be referred to as Problem (I).

In the second case the column is c1osed at the upper
end and is connected to a reservoir of infinite capacity
at the lower end, so that the concentration there
remains constant and equal to co, the concentration in
the reservoir. The corresponding boundary conditions
are —re~= (s—cv)re= arv, at x=0

~
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whence

S

w=A exp (t/4) (x/2)+—j3 cdx,

exp ]I cd' =A ' exp[ —(5/4)+(x/2)]w
L

If c/ is small compared to unity, the left-hand side may
be set approximately equal to 1+J'i odh, whence, on
di8erentiation,

c=A 'e "4(o"w).. (20)

The expression for c thus obtained will agree (for
sma, ll o) with the solution of the simpli6ed Eq. (9) to a
6rst approximation, but not exactly.

Though the relation (20) has been derived by a process
of approximation, it is interesting to note that, when
substituted in the simplified Eq. (9), it transforms the
latter rigorously into an equation of ordinary dHFusion

for w. The substitution (20) therefore leads to an alter-
native method for solving Eq. (9). Substituting Eq.
(20) in Eq. (9) and integrating with respect to x, we
have

The initial concentration will be taken to be constant
throughout the length of the column. This is the only
case which occurs in practice. If we take A =exp(col)
in Eq. (16), the corresponding initial condition for w
comes out to be

w(x, 0) =exp[—x/2+c, x]=o ', at t =0. (19)

When Eq. (12) has been solved in conformity with
the initial condition (19) and the boundary conditions
(17) or (18), Eq. (13) enables us to obtain the ex-
pression for c in terms of x and f, which, in the cases
discussed here, comes out in the form of a ratio of two
in6nite series. In the special case, c&(1, a simpli6ed
expression for c can be obtained by the following con-
siderations.

In both the cases considered here q(l, i) =0 for all
values of i. Hence the relation (16) reduces to

which satis6es the same difkrential equation,

N~g =Qg, (21)

but with the altered initial and boundary conditions,

N(u, 0)=0, at &=0, (22)

N—g=oQ) a't x=0
i (23)

cc„=$u+($—o') exp[o't —ol], at a=l l

—V =MS j
(25)

v..= ,'v+e "-y($ —o')/(—y o') —at x= 1

where v(x, y) is the adjoint function,

y 'v(x, y)= ~ N(x, t)e &'dt

4p

The solution of the ordinary differential equation (24),
with the boundary conditions (25), is

p(1 o2)o ri o
——s(l—ai+o(s)o—e(i+xi

v(u y)=, (26)
(r——,')(y —o') 1+o(s)e—"'

where s =gy and o(s) = (s+o)/{s—o).
Though the function s=gy has a branch point at

y =0, it is easy to verify that v(x, y) (looked upon as a
function of y alone) is a meromorphic function devoid

of brunch points Its only si.ngularities are simple poles
at y=~, y=o', and y=s„',where s„is a root of the
equation

exp{2s„l)= (o+s„)/(o—s„);
that is, of the equation,

(27)

Equation (21) is solved most conveniently by making
use of a Laplace transformation. ' %e multiply both
sides of Eqs. (21) and (23) by e &', where (R(y) is suf-
6ciently large, and integrate over t from 0 to ~, ob-
taining

(24)

w.,=w, +h(i) o-'I'. tanhs„l =s„/o. (28)

Here also the arbitrary function h(t) can be set equal
to zero without any loss of generality, so that we have,
as in the previous case,

After these preliminary discussions it is easy to
obtain the solutions in an explicit form with the help
of the standard theory of linear differential equations.
We shall discuss Problem (II) in some detail because
of its greater practical importance.

IV. DISCUSSION OF PROBLEM (II)

The discussion of Problem (II) is perhaps a little
simpliaed by the introduction of a function u de6ned by

I=w —exp[o i—0'x]~

At p =0, however, there is usually no singularity. Roots
of Eq. (28) occur in pairs of opposite signs. Depending
on the value of ol, there may or may not be any real"
root other than the one at s =0; but there are always an
inhnite number of pure imaginary" roots. Moreover, an
examination of Eq. (27) shows that there exists a real
number ao such that (R(s„)(o.o for all values of n.

The adjoint function v(x, y) is of the familiar type
occurring in the theory of partial diGerential equations,

~R. Courant and D. Hilbert, j/Iethodee de' Mathematischee
Physik, Bd. II (Ver1ag. Julius Springer, Berlin, 1937).

~o If el &1 (which includes the case el &0), there is no real root.
If ol & 1, there is a pair of real roots +s, lying between —n and +~.
In this case (s„)~&a&$. If ol =1, there is a triple root at s~0,
which must be taken into account in evaluating residues."It can be proved that Eq. (27) has no complex roots with
nonvanishing real and imaginary parts. This circumstance con-
siderably reduces the labor of numerical evaluation of the roots.
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and satis6cs aQ the conditions necessary for the validity
of the inversion formula,

~(*,t) = (1/2~)
4 gg—sso

V 's(*, V)o"~V (»)

where the path of integration 1.is a straight linc parallel
to the imaginary axis and lying in the region (R(y)) x.
The function N(x, t) thus obtained is the required solu-
tion of the dHFerential equation I =e& satisfying Eqs.
(22) and (23). To bring it into a form suitable for
numerical work we must remove y by carrying out the
integration on the right-hand side of Eq. (29). It can
be easily verihcd that on a system of parabolic contours
C„,bounded on the right by the straight line I, and
satisfying the equation Im(s) = &ms/l, this integral
tends to zero as n tends to inGnity. The value of the
integral on L is therefore equal to 2m' times the sum of
the residues at the poles of the integrand. The solution
of Problem (II) is thus obtained in the form of an
inhnite series,

exp/L al+t/4][co—e*/'+(1 co)e */'j-
w(x, t)=

/2+(1 c )o
—//s

(-,' — )8os2„expI al+ s„—'tj sinhs„(l—x)
+Z (30)

o (1—4s„')I 1 al(1 s—'/a') —
I

For the reasons previously stated the root s=0 makes
no contribution to the series unless el=1. Since two
roots &s„ofopposite signs correspond to the same
po1.e in the y-plane, only one of them should be included
in the summation.

The above solution assumes a particularly simple
form if we start with a mixture of two isotopes in equal
proportions.

The same procedure leads to the following solution"
of Problem (I)

u/(x, t) =e'"De"' 1)e'/'+ (e—' e'o')e *"j—/(e' 1)—
2q-(xo —a')

+Z L1—(—1)"o /l
- l('+q ')(a'+q ')

Xexp( —q„st)sinq„x,

where q =/ss//1, and e runs over all positive integral
values.

V. COMPARISON WITH EXPEMMENT

The solutions worked out in the preceding paragraphs
hold for a single column only. In practice a number of
columns are usually connected in series by tubes in
which a convective circulation of the gas is maintained
by non-uniform heating. These connecting tubes act
like reservoirs and invariably cause delay in the estab-

~ Substituting this solution in Eq. (16) and putting x 0, we
get for all values of t the expected result jy' oft

Ot

O~
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F&0. 1.Theoretical curve for a =0.014 and the experimental points
of Clusius and Dickel reference 2).

lishment of equilibrium. This more general case does not
lend itself so easily to an exact mathematical treat-
ment. It is desirable that experiments should be per-
formed with a single column over a wide range of con-
centrations for a more complete test of the theory of
Furry and Jones. Meanwhile, we proceed to compare
the results obtained here with the experimental data of
Clusius and DickeP on the rate of separation of oxygen
from air. Their column had the following spcci6cations:

Length of the column=295 cm;
Radius of the outer tube~0. 42 cm;
Radius of the hot wire=0. 02 cm;
Temperature of the outer tube= 293'K;
Temperature of the hot wire=923'K.

The upper end of the column was connected with a
large reservoir and the whole system Med with air at
atmospheric pressure. In course of separation the con-
centration of 02 in the reservoir fell from its normal
value 0.209 to 0.174. The mean, 0.191, of these two is
taken to be the initial concentration co. Since in the
equilibrium condition the concentration of 02 varied
from 0.174 to 0.83 along the column, calculations are
carried out for a mixture of N2 and 02 in equal propor-
tions. For such a mixture" at 20'C:

The cocKcient of viscosity'&" p =1.88X10~ poise,
and q varies as T0.~56;

The density p =1.25 X10 ' g/cm',
The coeKcient of diffusion D =1.44'/p cm'/sec

=0.216 cm'/sec.

Making use of the tables and formulas given by Furry

~ The notation of reference 4 is used throughout this section.
'4 M. Trautz and K. G. Sorg, Ann. Physik 10, 81 (1931).
'~ M. Trauta and R. Heberling, Ann. Physik 10, 155 (1931).



Ck CI LE MORETTE

and Jones' for a maxwellian gas and a independent of
temperature, we then obtain the following values for
the coefficients II, E, p 'of the differential equation (3):

H/n= 2.12X10~ g/sec;
E.=0.443X 10~ g-cm/sec;
Ea =2.28X 10~ g-cm/sec;
E=E,+Em =2.'l2X10 4 g-cm/sec;
p =0.487X10 ' g/cm.

These values are substituted in the solution (30) and a
series of curves drawn by giving diBerent values to 0..

Of these the curve for a =0.014 which fits best with the
experimental points is reproduced in Fig. i. This may
be compared with the value 0.018 found by Waldmann"
by another method.

In conclusion I wish to thank Professor M. N. Saha,
F.R.S., for acquainting me with this subject and for his
interest, Professor N. R. Sen for having kindly gone
through the paper, Dr. U. C. Guha for his friendly
cooperation in checking the calculations, and the Na-
tional Institute of Sciences of India for the Fellowship.

16 1.. Waldmann, Z. Naturforsch. 1 (1946).
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A general and compact expression for Feynman's path integral has been obtained. A classical method is
given for the computation of such expressions. The example of a Dirac particle in a constant external electro-
magnetic 6eld is treated by this method.

L INTRODUCTION

N order to treat problems involving action at a
~ - distance, Feynman has proposed a lagrangian
form of quantum mechanics. ' In this formulation the
probability amplitude E(x, x") for a particle to go
from a space-time point x" to a space-time point x~ is
postulated to be given by an expression of the form:

E(xs, x")=) exp(iSLx]/h)d(paths),

the integral being extended over all paths, x(r) from
x~ to x~. In this paper we give a general and compact
definition for this integral, and we give also a classical
method for computing an approximate expression for it.

We make use of the following notation:

x(v) is the parametric representation of a world line

x=x„. p, =i, 2, 3, 4. r =proper time.

x'(r) =dx(7)/dr
x(r) is the classical path.
xk=x(~k)

* Charge de Recherches du Centre National de la Recherche
Scienti6que.

t Now at Institut Henri Poincar6, Paris.
'R. P. Feynman, Revs. Modern Phys. 20, 367 {1948), here-

after called I. Following the suggestion made in paragraph
14 of I, we have denned a path x(r) by four functions x„(r)
of a parameter r; the formulas of I are still valid, the quantities
p(x, r}=exp(~Me/2k}f(x) replacing the wave function P(x). A
proof of this fact is given in connection with the example studied
below. For a more complete study of a formalism of relativistic
quantum mechanics introducing the wave function p(x, ~}, see
E. C. G. Stueckelberg, Helv. Phys. Acta 14. 588 (1941), and 15,
23 (1942).

rk+I rk

SLxj is a functional of the function x(r)
S=SLxj; 8 is the classical action.

IL DEFINITION OF THE PATH INTEGRALS

In Feynmans' work' the definition of the path inte-
grals involves an infinite product of "normalization
factors. " For his purposes Feynman determined these
normalization factors in the cases in which the poten-
tial is velocity independent and gave their expressions
in rectangular coordinates; and he indicated also the
existence of a relationship between these factors and
the action, S.We shall give here the general formula for
the normalization factors valid for all actions and all
frames of reference; moreover, we shall give a compact
expression for the infinite product of the normalization
factors. We shall give first the general formula for
E(x~+', x~) for two points corresponding to an interval
r~' —r~ =a infinitesimally small; then we shall obtain
E(xe, x") by iteration. (The essential formulas are
given before their proofs. )

Q& E(x~+' x~) =e px(Li /)h8(x"+' x")j
X(2xhi)-~'(det„.a~"~,, &)~. (2)

Here l is the number of degrees of freedom (1=4 in the
actual case),

u""I,+pa =8'8/Bx„',+'—8x,'
det„„means the determinant with respect to the in-
dIces p and v.


