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in levels with smaller ~. values and hence larger r,
values than those of the ground state. This shows that
collisions with the foreign gas the make molecules in
the higher excited states go over into lower excited
electronic states in the energy range 39131 to 47150

cm ', with larger r, values and smaller co, values, in
the manner discussed by Wieland. '

The author wishes to express his thanks to Dr. R. S.
Mulliken and Dr. G. Herzberg for their kind interest
in the work.
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A gas of noninteracting electrons of small eGective mass, m, «, has a large diamagnetic susceptibility. It is
shown that the London phenomenological equations of superconductivity follow as a limiting case when
tg ff is so small that the Landau-Peierls theory yields a susceptibility (—1/4m. Justiication is given for the
use of an effective mass, m,~i0 m, for superconducting electrons in the lattice-vibration theory of super-
conductivity. This value is sufhciently small to show that the theory gives the London equations and, as a
consequence, the typical superconducting properties. The concentration of superconducting electrons, ri,„
is smaller than the total electron concentration, e, by about the same ratio as the effective masses, so that
ns./e, ~m/e, and thus the penetration depth is of the same order as that given by the usual London
expression.

I. INTRODUCTION

A THEORY of superconductivity based on inter-
actions between electrons and lattice vibrations

has been discussed in two previous communications. ' '
The second of these (to be denoted by the letters WF),
deals with wave functions for superconducting elec-
trons. Frohlich' has independently developed a theory
along similar lines. These earlier papers have been con-
cerned primarily with the energy of the lowest state of
a superconductor and have not discussed in any detail
how the electrodynamic characteristics of the super-
conducting state —perfect diamagnetism and in6nite
conductivity —follow from the model. We shall show
here that the theory leads to the London phenomeno-
logical equations4 in the manner indicated in our
earlier papers.

The present theory is similar in many respects to one
suggested some years ago by the author. ' In the earlier
theory it was proposed that in the superconducting
state there is a small distortion of the lattice which
produces Brillouin zone boundaries with small energy
gaps, ~~T, (T,= transition temperature) at the Fermi
surface. There would be a resultant decrease in energy
of electrons in states on the low energy side of the gap.
Associated with the small energy gap is a small eGective
mass ratio, ~zT,/Ep, for electrons with energies near

' J. Bardeen, Phys. Rev. 79, 167 (1950}.
g J. Bardeen, Phys. Rev. 80, 567 (1950) (referred in the text as

WF).' H. Frohlich, Phys. Rev. 79, 845 {1950).' F. and H. London, Physica 2, 341 (1935).
g J. Bardeen, Phys. Rev. 59, 928 (A) {1941).This work, done

while the author was at the University of Minnesota, was inter-
rupted by the war and was never published in full.

the Fermi surface, Ep. It was shown that a suKciently
large diamagnetism for superconductivity will occur if
there is a sufBcient number of electrons of small
eGective mass. The difhculty with the theory as for-
merly proposed is that it appears that the energy
required to distort the lattice and so to produce the
zone boundaries is larger than the energy gained by the
electrons.

In the present theory, zero-point vibrations replace
the small permanent distortion of the lattice. The
eGective mass of the superconducting electrons is small
as in the earlier theory, and we have suggested" that
the explanation of the superconducting properties in
terms of a large diamagnetic eGect of the electrons is
similar.

It has been recognized for some years that the
Meissner eGect (8=0), is a more basic property of the
superconducting state than in6nite conductivity (E=0),
although, from a purely macroscopic point of view,
neither one is a consequence of the other. Both follow
from the London equations which can be derived most
readily from a consideration of the magnetic properties.

From a forrnal point of view, a perfect diamagnetism
can be described by a diamagnetic susceptibility equal.
to —1/4s. . Landau' has shown that, as a consequence of
quantum theory, a gas of free noninteracting electrons
obeying Fermi-Dirac statistics has a diamagnetic
susceptibility:

go= —(n/2Ep)(eh/2me)2= —np /2E», (1.1)

Here n is the number of electrons/cm', Ep is the

' L. Landau, Z. Physik 64, 629 (1930).
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maxiInum energy of the Fermi distribution and p. is the
Bohr magneton. Landau's theory was later extended
by Peierls~ to apply to electrons with Bloch-type wave
functions appropriate to motion in a periodic field of a
crystal lattice. The eBect of the periodic 6eld is to
introduce an appropriate eGective mass instead of the
ordinary mass in (1.1). If the effective mass is made
suSciently small, Eq. (1.1) will yield values for
xo( —1/4s. If values of n and E» characteristic of
ordinary metals are inserted in (1), the expression gives
values of go of the order of 10 ' to 10 ', in agreement
with observed susceptibilities. To get a value smaller
than —1/4s would require an effective mass of 10 ' m
or smaller.

Wave functions for superconducting electrons (see
WF) are linear combinations of Bloch states which lie
within a small energy 6 aT, of the Fermi surface. It
has been pointed out that these wave functions cor-
respond to a small effective mass, of the order of
(6/Er)m. The concentration of superconducting elec-
trons, n„ is a small fraction, of the order of (5/Er), of
the total concentration, n, but the eBective Fermi energy
of the superconducting electrons, E„ is of the order of
d so that

r4/E, n/Ep. (1.2)

The condition for a perfect diamagnetism is then

(N,p'/2E, )(m/m. ff)' (np'/2E&)(E&/&)'& 1/4s. (1.3)

In the derivation of (1.1) it is assumed that the magnetic
6eM is uniform throughout the specimen. Actually, the
magnetic field in a perfect diamagnetic or supercon-
ductor is confined to a thin surface layer. It is necessary
to reinvestigate the problem with this in mind; we
shall show that one is then led to the London phe-
nomenlogical theory. In other words, we shall show
that the London theory is the limiting case of a large
diamagnetism of the Landau-Peierls type.

In the ordinary theory of diamagnetism, the electrons
are in quantized states which correspond to the classical
circular orbits of an electron in a magnetic field. Circular
orbits in the interior of the specimen give a large dia-
magnetic moment which is cancelled to a large extent
by electrons in boundary orbits ~hose moment is in
the opposite direction. ' We shall show that when (1.3)
is fulfilled, the magnetic field and associated currents
are confined to the penetration depth of the London
theory and there are no quantum states which cor-
respond to circular or to boundary orbits. The wave
functions of the electrons are only slightly modi6ed by
the magnetic 6eld.

The connection with the phenomenological theory
follows the general approach anticipated by London. '

~ R. Peierls, Z. Physik 80, 763 (1933).
8 For an excellent discussion of this problem, see J.H. Van Vleck,

Electric and JI/Icgeetw SccsceptjMities (Oxford University Press,
London, England, 1932).' F. London, Proc. Roy. Soc. (London) A152, 24 (1935); Phys.
Rev. I4, 562 (1948).

where n(R) is the concentration of electrons at R. The
curl of (1.5) gives the London phenomenological
equation:

(1.7)

where the parameter A of the theory is evaluated to be:

4=m/ne'.

The penetration depth, d, of the London theory is

d = (mc'/4s e'n) &.

(1 8)

(1 9)

As London points out, ' the wave functions of the
electrons will be modified by the 6eld so that (1.6) is
an over-simplification. He states that it would be
"sufhcient to show that a state would be established
in which the eigenfunctions of a fraction of the electrons
are prevented from coiling when the system is brought
into a magnetic 6eld, but stay essentially as they are
without magnetic field, as if frozen. "%e may interpret
this statement as being equivalent to the one made
above: that in a superconductor "there are no quantum
states which correspond to the classical circular or to
the boundary orbits. "

We shall show in (1.6) and (1.8), that the quantum
states actually are modi6ed by the Geld in such a
manner as to introduce an effective mass instead of the
ordinary electron mass. However, since m.q~/e, is of
the order of m/n, the values of A and of the penetration
depth are of the same order as given by (1.8) and (1.9).
It is well known that observed penetration depths are
in general agreement with (1.9) as to order of magnitude.

' For a justi6cation for this choice of gauge, see J. Bardeen,
Phys. Rev. 81, 469 (1951).

London has pointed out that it is convenient to choose
the gauge in the vector potential, A, in such a way that
the normal component vanishes at a free surface and
such that the divergence of A vanishes everywhere:

divA=O; A~=0 on the surface. (1.4)

These conditions determine A uniquely in a simply con-
nected body. In a multiply connected body, such as a
ring, an additional quantity, related to the fiux through
the ring, must be speci6ed. This additional freedom
permits the description of persistent currents by the
theory. In a body of macroscopic size, A is con6ned to
a thN surface layer and is parallel to the surface. "

In quantum theory, the average velocity of an elec-
tron of charge (—e) is given by the average value of

v =L(p+ eA/c)/m jA„

over the wave function. If it is assumed that the wave
functions are not altered by the 6eld (with the above
choice of gauge), the average value of p will be zero
and the current density at a position R will be given by'

j(R)= —n(R)ev(R) = —(e /tee)N(R)A(R), (1.6)
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II. RELATION BETWEEN THE LANDAU-PEIERLS
AND THE LONDON THEORIES

We are concerned in this section with the relation
between the Landau-Peierls theory" of diamagnetism
and the London theory for a model in which we make
the ad hoc assumption that the electrons have a small
eGective mass. The justification for the application to
superconducting electrons will be given in following
sections. We shall here assume simply that the electrons
have an effective mass which is smaller than normal and
work out the consequences.

In the Bloch theory, the effective mass is a tensor
rather than a scalar. If the energy of an electron with
wave vector k is e(k), the effective mass is defined by"

1/ m, H=k ' gradi, grad~ e(k). (2.1)

For example, for motion in the x-direction,

(1/m. n) = k '8'e(k)/Bk '.

For simplicity, we shall take a model for which

e(k) = (k'/2m) (a,k~'+ a2k„'+nake')

The coeKcients, n;, are the effective mass ratios:

(2.2)

(2 3)

n, = m/( m. i)i„, etc. (2.4)

Peierls' expression for the diamagnetic susceptibility
for electrons with energies given by (2.3) is

x= knot nia2/En (2.4')

where n, is the number of electrons per unit volume
for which (2.3) holds and E, is the maximum value of
e(k) in the Fermi distribution. It is assumed that the
magnetic field is in the Z-direction.

If o. is large, a Brillouin zone with energies given by
(2.3) can accommodate only a small number of elec-
trons; if the states are filled to a maximum energy E,:

n~„.= (1/3~')(3mE, /k')'(aia2na)-l. (2.5)

We shall not restrict n, to the small value given by (2.5),
but shall suppose that there is a sufhcient number of
zones to accommodate any desired number, n„of
electrons.

The condition that x( —1/4x, corresponding to a
perfect diamagnetic, is:

n,n'aia2/E, & 1/2w.

We shall show that (2.6) is equivalent to the condition
for the validity of the London theory, and that the
wave functions of the electrons are not modified very
much by the magnetic 6eld. When (2.6) applies, it is
no longer permissible to assume that the magnetic Geld
is uniform in the specimen. The current density and
magnetic Geld shouM be determined by a self-consistent
field procedure. The current flow depends on the mag-
netic field which in turn is determined in part by the

"See, for example, F. Seitz, Modes Theory of Solids {Mcoraw-
Hill Book Company, Inc. , New York, 1940), p. 316.

current Qow. We first calculate the current under the
assumption that the wave functions are not altered very
much by the field. The penetration of the field into the
specimen then follows from the London theory. We
shall then show that if (2.6) is satished, the wave func-
tions are not significantly altered so that the initial
assumption is justified.

We consider a metal whose surface is the plane @=0.
The magnetic field, 8, has only a Z-component and
decreases from a value Bo at @=0to zero in the interior
in the case of a perfect diamagnetic. It is most con-
venient to choose the vector potential A in such a way
that

A =A, =O, (2.7)

d'A„/dx' = —
4irj „/c. (2 9)

We next consider how j„depends on A. The wave func-
tion, Pi, is of the form:

iP&=exp/i(k„y+k. s)5 f(x) . . (2.10)

As the eGective mass for motion in the y-direction is
tn/a2, the y-component of current density for an elec-
tron in the state Pq is

—(a2e/m) [Ak„+(%)A„7&i,*iPI, (2..11)

If the wave function for the state +k„does not diBer
appreciably from that for —k„, the sum over k„vanishes
and the total current density is

where
j I= (a2e /—mc)n, A„,

n, =~6*4 i

(2.12)

(2.13)

is the concentration of electrons, which we shall assume
to be constant.

When (2.12) is inserted into (2.9), there results an
equation of the form:

O'A„/Bx' =A„/d', (2.14)

where d is the penetration depth of the London theory:

d = (mc'/4na, e'n, ) &

The appropriate solution of (2.14) is:

(2.15)

(2.16)

Under what conditions is it valid to assume, as we
have done above, that the wave function for the state
+k„ is nearly the same as that for —k„? The wave
equation for the electron is

(1/2m) [nip, '+ a2(p„+eA„/c)'+ nap, '7y =Ey (2.17).
We may set p„=haik„and p, = kk. , so that (2.17) reduces

while A„(x) is independent of y and s. Then B, which
depends only on x, is given by:

B,=B„=O, B.(x) = i7A„/Bx . (2.8)

The equation which determines A from the current
density, j, is:



J. BARDEEN

appa'/2m =E,. (2.20)

The value of V, is then —E, at x=o, and the negative
potential extends over a distance of the order of the
penetration depth, d. This potential will not aff'ect the
wave function very much, and there will be no sta-
tionary state if

to an equation in x alone. The dNerence between the
second term of (2.17) and aap„'/2m is an effective
potential, V„which is large only near the surface:

I'.=(~p/2~)((pp+e~p/c)' pw'j— (2 18)

The potential is negative (attractive) if p„ is opposite
in sign to eA„/c and is a minimum at a position x=xp
such that

p„+eA„(xp)/c =0. (2.19)

In the usual theory of diamagnetism, the state corre-
sponding to this value of p„ is localized near x=xo.
States localized very close to the surface correspond to
boundary orbits whose moments nearly cancel those of
states localized in the interior. "%e shall show that if
(2.6) is satisfied, there are no localized quantum states
either at the boundary or in the interior, and that the
wave function does not depend very much on the sign
of k„.

The maximum negative potential at the surface
occurs when p„has its maximum value given by

Ckfk+Zp&CkaMk&k =EkCk, (3.2a)

ca (ea +kpiaa )+caMaa =Eaca, (3.2b)

in which ek and ~k are the energies of the Bloch states,
Ek is the energy of the superconducting state, 4'k, and
Mkk is the matrix element and cokk the angular fre-
quency for the normal mode kk'. Equation (3.2b) can
be solved for ck .

ca = fifaa ca/(Ea pa &~aa )— — (3 3)

of Bloch states, fa, which have energies in the range
between Ep —e~ and Ep+e~ where EJ is the energy of
the Fermi surface of the normal metal at T=O'K.
In %F they were taken to be of the form

%=caPa+Za ca [qaa/(qaa), *56' (3 1)

Here, qkk is the amplitude of the normal mode whose
wave vector connects the states k and k'. The states |pa
have energies in the range between EI and EI+~~, and
the states isa have energies between Ep pi an—d Er.
There is one superconducting state for each Pa. The
value of e& is chosen to make the energy a minimum
when interactions between electrons and normal modes
are taken into account and is presumably of the order
of kT,.

The equations which determine the coeScients ck and
ca are Eqs. (3.20) of WF:

t pgx&ip, (2.21)
When (3.3) is inserted into (3.2a), there results an
equation for Ek.

p, (2pipE, /ai) & for x& d. (2.22)

where p, is computed classically for an energy E=E,.
If (2.21) is satisfied, the change in phase of the wave
function in the %.K.B. approximation is less than one
radian. The value of p, is 0 for x) d and is

J~aa f'

Ek —Cki —AMkk~

=Ek —8k. (3.4)

In order to get an approximate solution of (3.4) we
shall replace ek +Lrkk by an average value, e'. Equation
(3.4) then reduces to

Condition (2.21) is then approximately

(2mE./ni) &d & )'p,

or

where
(Ea pa) (Ea «') =~—', —

~'=&a (~aa )'.

(3.5)

(3.6)

uih'/2mE&) 1.

With use of (2.15) for d, this relation becomes

'i4ii CkiAp/Eg) 1/81r, (2.24)

which, except for a numerical factor, is the same as (2.6).
%e have thus shown that when the Landau-Peierls

theory indicates a perfect diamagnetism, there are no
bound states and the wave functions of the electrons
are not altered very much by the 6eld near the surface.
The conditions for the London theory are satisfied.

III. EFFECTIVE MASS OF SUPERCONDUCTING
ELECTRONS

VVe have shown in KF that the wave functions of
the superconducting electrons are linear combinations

~ E. Teller, Z. Physik 67, 3ii {i93i).

Ea ———,'(pa+ p') —6—[(pa —p')'/85 j. (3.8)

"Note added ie proof. —It has been pointed out to the author
by J. H. Van Vleck (private communication) that a lower energy
is obtained if the pk are taken in the range between Eg—~1 and
Ep and the pg, ' in the range between EJ and Err+&1. The diBer-
ence is small when ck—e't &2A so that (3.8) may be used. This
condition is equivaent to the criterion for superconductivity
given by Kq. (4.17) of WF and is required to get a small eGective
mass for the superconducting electrons. The approximation
{Eg,)A&= (i/2)(ek+e')Aif —6 used in WF is independent of whether
the states fk are taken in the high energy or the low energy range.

The solution of (3.5) is familiar from the theory of
nearly free electrons in metals:

Ea= p(pa+a') +pHpa —p')'+4~'j' (3.7)

The low energy state, which is the one of interest,
is that with the negative sign. For

~
pa —p'~ &2A, the

approximate solution of (3.7) is"
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Be@ F' B&a l Bea (B&i )
m, )g

4~ BK, EBK,)., BK, &BK,).„
(3.10)

We can use the free electron approximation,

eg
——k'k'/2

m, (3.11)

to estimate the order of magnitude of (3.10). Since the
angles between k and k' are in general large, each of the
factors is of the order of

Bey (Bey~) Beg k k0

BK iBKJ A, BK m
(3.12)

where k0 is the magnitude of k on the Fermi surface.
Thus we have

(m fi) '~(a'/46)(k2ka/m)'~m '(Ep/2A) (3 13)

As h~kT, 10 ' ev and Ei is several ev, (m, ii) ' is of
the order of 10 4 m. A similar estimate was obtained
by a slightly different procedure in WF.

We shall see in Sec. IV that the effective mass should
be computed from energy changes which involve shifts
of k and all the k' by the same small vector displacernent
K in h-space. The normal modes which connect k and
k' are then unchanged, since they depend only on the
vector displacement between k and k'. We also want to
consider virtual shifts in which it is assumed that the
matrix elements M~~ are independent of K. The
effective mass tensor is defined by

L(m ff) ')„;=k '(B'Eg/BK;BK, )ir 0 =.(3.9)

In differentiating (3.8), with respect to K to get the
efFective mass, we therefore assume that 6 and (hcoi& )A„

are independent of K. The largest contribution comes
from differentiation of the third term of (3.8);

q. V.(r), (4.3)

where q, is the amplitude of a mode with wave vector
s and V,(r) gives the interaction for unit amplitude.

The superconducting states can still be designated by
k„and k„but it is in general necessary to replace k~

by a different quantum number which need not be
specified. The wave function is then of the form

p(r, q,) =exp/i(k„y+k, s)] U„(r, q,). (4.4)

Owing to the interaction terms, the complete hamil-
tonian is not periodic, so that U(r) is not periodic, as
it would be for Bloch functions. There are, however,
various ways in which U& may be so specified as to
express a wave function in the form (4.4). One might
require, for example, that when U is expanded in a
power series in the q, 's, the term independent of the q, 's

be periodic. In other words, U~ should be periodic when
all the q, 's are set equal to zero.

If (4.4) is substituted into (4.1), the following equa-
tion is obtained for U~.

k' ehk„( e—(k '+k')+
~

p„+ A„) U-
2m m& c

k'p'
+ +V+Hr, +Hr U=EU. (4.5)

Let us now change k„ to k„+6k„, and treat the terms
in Dk„as a perturbation. Terms linear in Ak„are

potential may be defined as in (2.7), so that

H.=(1/2m)Lp'+(p. +eA./c)'+ p*'j+ V(r) (4 2)

where the subscript i represents the ith electron. Since
A„ is a function only of the x coordinate, the periodicity
in the y and s-directions is not destroyed.

A typical term of Hz is of the form

IV. CURRENT FLOW IN THE LONDON THEORY (krak„/m) (kk„+p„+eA„/c) (4.6)

It is not at once evident that an effective mass should
be used in the expression (1.5) for the current density in
the London theory, because it is the ordinary mass
which appears in the expression (1.4) for the average
velocity. We shall derive an expression for the current
density, su%ciently general to apply to superconducting
as well as to Bloch wave functions, in order to show why
the effective mass appears.

The hamiltonian for an electron interacting with the
normal modes can be expressed in the form (WF):

(H,+Hi, +Hi)iP=EiP, (4.1)

where H, is the hamiltonian for the electrons with the
ions in their equilibrium positions, H~ is that for the
vibrations and Hq represents the interaction terms
between the electron and normal modes.

%e again consider a metal with a surface at x=0
subject to a magnetic field in the Z-direction. The vector

=(k/m)) i',~(P„+eA„/c)i',dr (4.7)

The term on the right is just k times the average
velocity v„. Thus, just as for ordinary Bioch functions,
we have

v„=BE/kBk„. (4.8)

This equation is valid if the change in energy is
computed by assuming that the interaction terms remain

We suppose that the interaction terms remain un-
changed. The change in energy, hE, corresponding to
the change bk„can be obtained by first-order perturba-
tion theory. It is required that U~ be of the form
specified above so that k„does not enter into the
boundary conditions for U~. There results:

AE/Ak„= (k/m) ~ Uk*(kk„+p„+eA„/c) Ukdr,
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unchanged. This requires that when k„ in a wave func-
tion of the form (3.1) is changed to k„+&M„, k„' must be
increased to k, '+6k„. The normal modes will then be
unchanged. Furthermore, in computing the change in
energy, it must be assumed that M~I, depends only on
the vector displacement between k and h'. Even if this
latter condition is not satis6ed, we can consider virtual
displacements in which it is. Equation (4.8) will then
be valid if the energy is calculated for such virtual dis-
placement.

We shall now suppose that A„(z) is such that the
wave functions are not altered very much by the field.
The conditions for the London theory are then satisfied.
We may then treat the terms in A„as a perturbation
and calculate the energy, EI,~, arising from the magnetic
held by first-order perturbation theory. The total
energy is

EI =EIp+EI g+. (4.9)

The average velocity of the electron can be obtained
by use of (4.8)

v„= f(BE»o/8k„)+ (BE»,/8k„) j/h (4.11).

The change in energy with k„ is to be computed as
required for (4.8) to hold. This expression is accurate
to terms of the second order in the wave function.

The expression for EI,j can be simpli6ed if it is
assumed that A„ is a slowly varying function which
can be treated as a constant while the integration is
carried out over a unit cell. We can then use (4.8) to
replace p„/m by v„ for zero held, and obtain

t t'e BE»p e'
Ao+ Ao I+»o*+»odr. (4.12)

Ec Bk„2'' )
If we now make the reasonable assumption that the
average value of +kp~%kp over a cell is independent of
changes in k„, we find

1 BEg,p t e 8Eg,p

+ I A,+»o*%'»odr (4 13)
h Bky ~ h'c Bk„'

The 6rst term gives the normal current which aver-
ages to zero, and the second term is that arising from
the magnetic field. It is similar to that used by London
except that an effective mass, given by

(ooo gf)
—'=h 'c7'E /c7k '- (4.14)

where E« is the energy for a wave function 4'kp cor-
responding to zero 6eld and

2e e'
E»» =—I 0'»p —p„A„+—A„' 4'»odr. (4.10)

2m~ . c c'

y= p(r)P, (r), (5.2)

where Pp(r) is the Bloch function for k= 0. The method
can be applied to slowly varying magnetic 6elds, in
which case oo is a solution of (2.17).

One way to get the appropriate effective mass for
motion, say, in the x-direction is to compare the energy
of a Bloch function with a sinusoidal modulation with
that of the corresponding plane wave. Such a function is

',i(f»+, f—»-,)~sin—a+»,

for which the energy is approximately:

E= ,'[e(k+a)+o(k-a)j-
=o(k)+ 'a'8 /Bkoo*'-

(5.3)

(5.4)

If the added energy is compared with hoa'/2', it can
be seen that the effective mass is h '8'o(k)/Bk~', as given
by (2.2).

The added energy is that required to localize a wave
function centering about f» within a distance or/a. The
above argument can be extended without modi6cation
to apply to superconducting wave functions. The change
in energy with k should then be computed on the
assumption that the interaction terms remain un-
changed, as discussed below (4.7) for application to the
calculation of average velocity. It should be noted that
in our model the effective mass is negative so that the
hole theory should be used for the superconducting
electrons.

replaces the ordinary electron mass. The current density
which arises from the magnetic field is

j„=—(e'/h'c) (O'E» p/Bk„') A„Q+»p*%'» p, (4.15)

where the sum is over all occupied states. This com-
pletes the proof that an effective mass should be used
in London expressions for the current density.

V. JUSTIFICATION FOR USE OF EFFECTIVE MASS

There remains to discuss the justification for using
an effective mass, ra/a», in the condition for the validity
of the London theory, (2.3), which came from Eq. (2.17)
and following. The method of the effective mass has
been used for the discussion of the motion of electrons
in a slowly varying potential, V„superimposed on the
periodic potential of the crystal lattice. In an energy
band in which the energies are given by an expression
of the form (2.3) it is possible to omit the periodic
potential and calculate a wave function from the
equation:

D2m) '(c»»p, '+nop„'+nop»')+V, jr=Esp (5.1).

To a close approximation, the true wave function is


