double bond character as well as by the ionic character of the bond. Pauling⁸ has suggested resonance with various double bonded structures as a possible cuase for the bond shortening in molecules of the above type. However, because he neglected the shortening caused

⁸ L. Pauling, Nature of the Chemical Bond (Cornell University Press, Ithaca, 1939), Ch. VII, p. 210.

PHYSICAL REVIEW

VOLUME 81, NUMBER 5

bond angles.

MARCH 1, 1951

The Spectrum of Iodine Excited in the Presence of Argon

PUTCHA VENKATESWARLU* Department of Physics, University of Chicago, Chicago, Illinois and Division of Physics, National Research Council, Ottawa, Canada

(Received August 15, 1950)

Iodine vapor was excited by an uncondensed transformer discharge in the presence of argon. A new band system $\lambda 2785-2750A$ is recorded. In addition a large number of new bands are found in the band systems λ 3455-3015A, λ 2730-2520A, and λ 4420-4000A reported by earlier workers. These band systems are analyzed and explained in terms of the fairly well-established term scheme of the iodine molecule. The absorption data in the region $\lambda 2000-3500A$ are discussed in the light of the present results.

I. INTRODUCTION

HE electrical and fluorescent excitations of iodine vapor are known to give a discrete band system in the visible region and a number of groups of semicontinuous (or diffuse) bands in the region $\lambda 4800$ to 2400A. The discrete band system is due to a transition from the upper electronic state $\sigma_q^2 \pi_u^4 \pi_q^3 \sigma_u, 0_u^+(^3\Pi_u)$ to the ground state. The groups of semicontinuous bands were explained in earlier papers by the present author¹ as due to transitions from various stable upper electronic states to various repulsive lower states dissociating into ²P+²P iodine atoms. It was known by experiments of earlier workers²⁻⁴ that the spectrum obtained by fluorescent excitation of a mixture of iodine and nitrogen is different from the fluorescent spectrum of pure iodine vapor. Elliott⁴ obtained four band systems in the regions λ 4630 to 4440A, 4321 to 4041A, 3450 to 3040A, and 2730 to 2520A. Since these band systems were obtained only in the presence of nitrogen, it was not clear which of them were actually due to the I_2 molecule. Hence, the discussion of these band systems was omitted by the present author in his earlier papers on the iodine molecule. Recently, Professor Mulliken kindly showed to the author an unpublished spectrogram which was taken a number of years ago on a medium quartz spectrograph by exciting iodine vapor by active nitrogen. It appears from the spectrum that the effect of active nitrogen on iodine vapor is the same as that of the fluorescent excitation of iodine vapor in the presence of nitrogen.

by resonance with ionic structures, his treatment over-

emphasizes the contributions from double bonded

structures. It is of interest that \angle FGeF in GeF₃Cl,

107.7°, is nearly tetrahedral like the corresponding one,¹

 \angle FSiF, in SiF₃Cl. Pauling⁸ has pointed out that partial double bond character seems to have little influence on

Waser and Wieland^{5,6} excited iodine vapor in the presence of argon by a high frequency discharge and reported the last three of the above four band systems obtained by Elliott in fluorescence in the presence of nitrogen. The first system ($\lambda 4630$ to 4440A) was attributed by them to IN. They gave the vibrational formulas for the bands of the second and fourth systems but not of the third (λ 3450 to 3040A), for which, apparently, they accepted Elliott's analysis. The latter appears to be quite uncertain, since out of the 73 bands reported by Elliott in the region 3450 to 3040A, 27 bands were not classified in his vibrational scheme. Further, the constants used by Waser and Wieland for the lower state of the fourth system ($\lambda 2730$ to 2520A), which represents the ground state of the iodine molecule, are different from those obtained by Rank⁷ from the resonance spectral data of iodine. These constants used by Waser and Wieland do not fit in with the resonance spectral data; and, therefore, it has become necessary to analyze also the band system $\lambda 2730$ to 2520A.

Because of these reasons, a reinvestigation of the spectrum of iodine excited in the presence of argon was made by the present author. The band systems reported by Elliott and by Waser and Wieland, together with a new band system here obtained, were then analyzed and interpreted in accordance with the fairly wellestablished term scheme^{8,9} of the iodine molecule.

^{*} National Research Laboratories, Postdoctorate Fellow,

¹ P. Venkateswarlu, Proc. Indian Acad. Sci. 24A, 480 (1946); 25A, 119, 133 (1947).

²O. Oldenberg, Z. Physik 25, 136 (1924).

⁸ F. Duschinsky and P. Pringsheim, Physica 2, 923 (1935). ⁴ A. Elliott, Proc. Roy. Soc. (London) 174A, 273 (1940).

⁵ J. Waser and K. Wieland, Nature 160, 643 (1947).

 ⁶ K. Wieland, Victor Henri Memorial Volume 229, 1947–48.
 ⁷ D. H. Rank, J. Opt. Soc. Am. 36, 239 (1946).
 ⁸ R. S. Mulliken, Phys. Rev. 46, 549 (1934).

⁹ R. K. Asundi and P. Venkateswarlu, Indian J. Phys. 21, 101 (1947).

Skorko	Present expen	riments (electric	al excitation of	I2 ⁺ argon)	Skorko	Present expe	riments (electric	al excitation of	I2 ⁺ argon)
absorption	λ _{air}	Vvac	v', v''	^ν calc	absorption	λ_{air}	^v vac	v', v''	^v calc
	3454 4f	28940	2.62	28940				9.61	29762
	3452.3	28958	0,60	28957		3358.6	29766	19.71	29770
	3450.2	28976	11.71	28975		3357.8f	29773	8.60	29774
	3448.3f	28992	12.72	28991		3356.3f	29786	1.54	29785
	3446.7	29005	13.73	29009		,		7.59	29788
	3444 1	29027	14 74	29031		3354.2f	29805	6.58	29804
	3442.0	29045	3 62	29042	3353	3353.0	29815	0.53	29811
	3440.6	29056	15,75	29054	0000	3352.3	29822	5.57	29821
	3430 7	29064	11 70	29062		3351.0	29833	15.66	29837
	5457.1	27001	1 60	29060		3349.8	29844	4.56	29841
	3438 1 <i>f</i>	20078	12 71	29075		3348.2f	29858	19,70	29856
	3437 3	20084	16 76	20080		3346.2 f	29876	9,60	29875
	3436 3f	29004	13,72	20001		3343 4	20001	22,73	29897
	3432.04	20120	15 74	20130		3342.0	20014	1 53	20014
	3430 0	20146	4 62	20144	3330	3338.4	20046	13 63	29947
	3430.0 3427 6f	29140	2,60	20163	0009	0000.4	2//10	0,52	29941
	3427.0	29107	2,00	29105		3336 7f	20061	11 61	20064
	2424.04	29109	14 72	29190		2225 24	20074	10,60	20076
	2422.01	29197	15 72	29191		2222 2	20002	3 54	20000
2410	3422.9	29207	10,73	29200		3333.3	29992	0.50	20000
3419	5419.1 <i>j</i>	29239	10,07	29239		2221 0	20004	9,39	29990
	2417 5	20252	0,03	29241		2220 1	20021	0,00	20016
	3417.5	29255	4,01	29254		3330.1	30021	2,33	20025
	2446.4	000/0	12,09	29252	2207	3329.2	30029	1,51	30025
	3410.4	29262	13,70	29202	3327	3327.9	30040	13,04	20040
	3415.4	29271	14,71	29275		3325.0	30001	12,01	30004
	3413.5f	29287	15,72	29290		3324.8	30008	3,33	30008
	3412.8	29293	1,58	29293		3324.2	30074	0,51	30074
	3411.7	29303	19,77	29306		2245 6	20124	11,00	30077
	3409.4f	29322	17,74	29328		3317.6	30134	17,05	30135
	3406.3f	29349	6,62	29348		3316.3	30145	15,63	30146
			12,68	29345		3315.6	30152	14,62	30154
	3405.7	29354	13,69	29352		3313.9	30167	13,61	30164
			5,61	29356		3312.2	30183	1,51	30177
	3404.5	29364	4,60	29367		3311.1	30193	5,54	30194
			14,70	29362				11,59	30192
3403	3403.1f	29377	19,76	29376	3309	3309.0	30212	0,50	30212
	3402.4	29383	3,59	29380		3307.1	30229	9,57	30227
	3401.9	29387	16,72	29389		3305.8	30241	16,63	30245
	3400.3f	29401	20,77	29404		3304.3	30255	15,62	30253
	3399.5	29408	17,73	29406		3303.0	30267	14,61	30264
			1,57	29412		3302.1	30275	7,55	30272
	3397.5f	29425	18,74	29427	1	3300.2	30293	12,59	30292
	3395.9	29439	9,64	29439		3299.0	30304	11,58	30310
			11,66	29438	3295	3296.2	30329	10,57	30328
			12,67	29440		3294.1	30349	0,49	30346
	3394.7f	29449	7,62	29450				9,56	30349
	2		13,68	29445		3292.6	30362	15,61	30363
	3393.2	29462	15,70	29461		3291.1	30376	14,60	30377
	3391.5f	29477	20.76	29474				8,55	30373
	3389.0f	29499	3,58	29498		3290.0	30386	3,51	30382
3386	3385.6	29528	19.74	29528		3288.5	30400	7.54	30398
	3384.1	29541	13.67	29540		3287.0	30414	2.50	30415
	000111	2/011	10,64	29540		3286.1	30422	6.53	30425
	3382.2f	29558	0,55	29556		3285.0	30433	19.64	30435
	0002.25	27000	7 61	29560	3283	3284.0	30442	18.63	30443
	3381 5f	20564	16 70	29560	0200	3282.2	30459	16.61	30462
	3370 6f	20581	5 50	20584		3270 0	30480	4 51	30484
	3377 34	29501	4 58	20600		3278.6	30492	14 59	30492
	2271 54	29001	20,74	29000		3278 0	30408	8 54	30400
	2271 95	29020	10.63	29025		2276.6	30511	13 58	30510
	3371.8j	29049	0.62	29040		2274 7	30578	7 53	30527
2260	3360.25	20672	7.60	29032		5414.1	50520	12 57	30520
3309	3367 04	29072	10 72	29073	3272	3271 7	30556	6 52	30555
	5507.9J	27004	6 50	23000	5215	5211.1	50550	2 40	30552
			0,39	23000		2771 7	30561	17 61	30561
	2266 1	20407	0,34	29082		34/1.4	30501	10 55	30575
	3300.4	29097	23,11	29098		3209.3	30377	10,55	20573
	2265 0	20707	20,73	29701		3201.0	20424	14,30	30610
	3305.2	29707	ఎ,ఎర	29702	2062	3204.3	30024	0,47	30027
	3303.8	29720	4,5/	29719	3203	3203.4	30034	21,04	20649
	3302.4f	29732	13,05	29738	1	3202.2	30043	19,02	20651
	5300.7	29747	11,05	29/4/		3201.8	30049	12,50	30031
		// / / h 1				\$ //NILU			

TABLE I.* Band heads and vibrational analysis of the band system $\lambda 3455$ to 3015A.

* The bands marked f have been observed also in the fluorescence of $I_2 + N_2$ by Elliott.

Skorko	Present expe	riments (electric	al excitation of	I ₂ + argon)	Skorko	Present expe	riments (electric	cal excitation of	I ₂ + argon)
absorption	λ_{air}	^{<i>v</i>} vac	v', v''	vcale	absorption	λ_{air}	$\nu_{\rm vac}$	v', v''	Fcale
			3.49	30654		3166.0f	31576	5.44	31574
	3259.6	30670	17.60	30674		3164.4	31592	15,51	31593
	3258.9	30676	11.55	30676		3163.4	31602	11.48	31606
	3257.9	30686	6.51	30688		3162.3	31613	1,41	31617
	3256.2	30702	10.54	30701				23.57	31613
3253	3253.6	30726	9.53	30729	3161	3161.2	31624	4.43	31621
	3251.4	30747	20.62	30746		3160.0	31636	7.45	31631
	3249.4	30766	0.46	30770		3159.5f	31641	10.47	31646
	3248.4	30776	12.55	30776		3154.8	31689	9.46	31688
3245	3245.7	30801	11.54	30802		3151.7	31720	2.41	31720
	3243.6	30821	6.50	30823	3151	3150.4f	31733	8,45	31732
	3241.9	30837	2.47	30833	0.01	3146.7f	31770	4.42	31772
	3240.9f	30847	21.62	30844		3142.3	31815	30.61	31817
	3239.7	30858	5,49	30858	3141	3140 6f	31832	9.45	31833
	020/11	00000	9,52	30859	0111	3137 1f	31867	15,49	31865
3238	3237.7f	30877	13,55	30876		3134.0	31899	26.57	31902
0200	3236.2	30892	8 51	30891		3133.24	31907	14 48	31906
	3234.8f	30905	12 54	30902	3132	3130.0f	31930	1.39	31929
	3233.7	30915	0.45	30015	5152	5150.9	51550	7 43	31027
	3232.1	30931	11 53	30031		3128 6f	31054	20,52	31053
	3230.21	30040	15 56	30050		3127.0	31061	24,55	31057
	3778.8	30062	10,50	30060		5121.9	51901	16.40	31064
	5220.0	50702	6.40	30060	2122	3124 OF	31002	12.46	31000
3228	3777 7	30073	2.46	30076	5125	3124.9	32028	5 41	32026
5220	3221.1	31006	19 59	21006		5121.4	32028	9 1 2	32020
	3224.3	31000	10,30	21019		2110.4	22048	14 47	32028
3210	3222.15	31021	22,62	21020		2119.4	22040	14,47	22047
5219	3220.47	31045	23,02	21050		2117 5	32037	23,33	32033
	3210.1	21075	15 55	31002		3117.5	32008	29,50	32009
	5217.1	31075	13,33	31073		3110.5	32080	4,40	32079
	2214 54	31100	5,40	21100	2112	2112 16	22112	22 52	22115
	2212.5	21110	26.64	21114	5112	2105 2	22104	23,33	22101
	2213.5	21122	20,04	21121	2105	3103.5	32194	2,30	22202
2011	2210.2	21126	2,43	21120	5105	2000.0	32200	17,40	32203
5211	3210.0	31130	3,41	31139	2005	3099.9	32230	1,57	32240
	3209.0	31140	17,50	31148	3095	3090.4J	32280	0,40	32203
	3208.0	31157	12,52	31101		3092.7	32323	21,50	32319
2100	3203.1	31211	0,43	31211	2004	3088.1	32373	27,54	32370
3199	3200.1j	31240	0,47	31241	3084	3083.85	32418	22,50	32410
	3197.15	31203	9,49	31204		3082.2	32435	15,45	32434
	3195.2	31288	12,51	31294		3081.1	32447	18,47	32443
	3193.0	31309	1,43	31314	2076	2075 01	20501	3,37	32451
	5191.7	31322	20,57	31321	30/0	3075.9f	32501	21,55	32499
2100	2100 74	21240	4,45	31325	3067	3067.3f	32593	28,53	32595
3188	3189. <i>1</i>	31342	1,41	31343		2050.04	22/02	0,38	32597
	3180.2	31370	23,59	31376	3059	3058.97	32682	13,42	32682
	3181.75	31391	13,51	31394	3052	3053.7f	32738	21,47	32737
	3184.0	31398	17,54	31399		3048.7f	32791	23,48	32790
	3182.7	31411	2,43	31417		3045.3	32828	19,45	32829
	3181.7	31421	27,62	31422	3042	3043.0	32853	28,51	32858
3180	3180.3	31435	26,61	31437		3040.5f	32880	15,42	32881
	3179.1f	31446	8,47	31444				21,46	32880
	3177.6	31461	15,52	31460		3037.8	32909	9,38	32903
	3173.1f	31506	10,48	31505	3035	3032.8	32963	8,37	32960
3171	3169.9f	31538	21,56	31541	3029	3027.3	33023	21,45	33025
	3167.6	31561	16,52	31559		3019.7	33106	11,38	33105
	3166.8	31569	2,42	31568		3014.6	33162	10,37	33162
			,		1			,	

TABLE I.*—(Continued).

II. EXPERIMENTAL RESULTS AND VIBRATIONAL ANALYSIS

The iodine vapor was excited in the presence of argon (5 to 60 mm) by an uncondensed transformer discharge and the spectrum obtained was photographed on large and medium Hilger quartz spectrographs. The spectrum of iodine without the introduction of argon was also taken on the same plates for comparison. The discrete band system 6700 to 5000A, which one obtains in all kinds of excitation of pure iodine vapor is absent in the experiments with the mixture of iodine and argon. The several groups of semicontinuous bands obtainable in fluorescence or by electrical excitation of pure iodine vapor, discussed previously,¹ are all absent except for the three bands at 4747, 4662, and 4575A. However, some diffuse bands which were not obtainable in the excitation of pure iodine vapor appear in the present experiments with the mixture of iodine and argon. They are at 5100, 3524, 3481, 2880, 2868, 2857, 2847, 2836, and 2825A. Some of these bands were obtained by Elliott and by Waser and Wieland. These bands are presumably due to transitions from upper stable elec-

Intensity	λ _{air}	vvac	v', v''	^v cale
1	2784.5	35903	5,62	35904
2	2779.8	35963	0.57	35959
5	2776.0	36012	5.61	36014
2	2775.3	36022	4.60	36023
5	2774.6	36031	3,59	36035
2	2773.2	36049	2,58	36049
6	2772.1	36063	1,57	36063
2	2771.4	36072	,	
1	2770.3	36086	0,56	36081
3	2769.4	36098	9,64	36103
			10,65	36103
?	2768.7	36107	8,63	36106
6	2768.2	36114	6,61	36117
			7,62	36111
1	2767.3	36126	5,60	36127
3	2765.4	36150	3,58	36153
3	2764.1	36167	2,57	36168
2	2762.8	36184	1,56	36185
2.	2762.4	36190	,	
?	2761.5	36202	11,65	26205
			10,64	26206
2	2760.1	36220	7,61	36221
1	2759.3	36230	6,60	36230
1	2758.6	36240	5,59	36242
?	2757.5	36254	4,58	36254
4	2756.1	36272	3,57	36272
2	2755.0	36287	2,56	36290
1	2750.7	36344	6,59	36345
?	2748.3	36375	4,57	36375

TABLE II. Band heads and vibrational analysis of the band system $\lambda 2785$ to 2750A.

tronic levels to repulsive states dissociating into ${}^{2}P+{}^{2}P$ iodine atoms. We hope to discuss these bands in a later paper.

Beside the above bands, there are four band systems in the regions: (1) 4420 to 4000A, (2) 3455 to 3015A, (3) 2785 to 2750A, and (4) 2730 to 2520A. Of these, the system $\lambda 2785$ to 2750A is new, and the other three are the same as those obtained by earlier workers,^{4,5} except that a large number of additional bands belonging to these systems are found in the present work. The band heads of all these systems are degraded to longer wavelengths.

The band system λ 3455 to 3015A is very extensive, and its band heads are very close to one another. The wavelengths and wave numbers of the band heads in this system are given in Table I. All the bands were found to fit into a single vibrational scheme and could be expressed by the formula,

$$\nu = 39131 + (103.0v' - 0.1v'^2 - 0.001v'^3) - (213.798v'' - 0.614v''^2 - 0.000932v''^3 - 0.0000187v''^4).$$

with v' = 0-30 and v'' = 37-77. The constants of the lower state of the system which represents the ground state of the iodine molecule are those obtained by Rank⁷ from the resonance spectral data. The (v', v'') values and the corresponding wave numbers calculated from the above formula are given in Table I.

The band system $\lambda 2785$ to 2750A is not extensive, and it is weaker than the 3455-3015A system. The band heads of this system are also quite close to one another. The wavelengths and the wave numbers of the bands, together with their estimated intensities, are given in Table II. The bands could be fairly well represented by the formula,

$$\nu = 45781 + (104.5v' - 0.1v'^{2}) - (213.798v'' - 0.614v''^{2} - 0.000932v''^{3} - 0.0000187v''^{4}),$$

with v'=0-11 and v''=56-65. The lower state is again the ground state of the iodine molecule. The (v', v'')values and the corresponding wave numbers calculated according to the above equation are also given in Table II.

The vibrational scheme of the band system $\lambda 2730$ to 2520A is shown in Table III. The bands could be well

TABLE III.^a The vibrational scheme of the band system $\lambda 2730-2520A$.

×"			45					50					55					60					65	
0			38932 14	38787	38643	38502	38366	38230	38097	37961	37834	37706	37580 6 12	37457 3 01			37088 11	36978	36866					
				38887 1	38739	38601	38460	38326	38192	38056 36 1	37929	37796		37550	37425			93 37071	36959		36746	36631 5		
2		39275	39121		38834	38697 7 14	38555	38421	38285		38020	37890 30		37647 12	37525				37056 11	36940 6 10	36838 22		36631	
		39366	39215	39069	38932 37					38250	38117	37991	37860 31		37613	37502						36823		
4	* 39605 14	39456 9 14	39310 6 14	39167	39019 48					38341 12	38213 28				37701			37354				36922		
				39258		38973													37337	37220				
6											38391					37772	37647			37316		37106	36992 4 9	36894 8
																	37746					37197		
8																							37176	
			39767																	37580		37367		
10																						37457		

* The bands marked * are from Elliott's data in fluorescence.

\mathbb{X}		10					15					20					25					30					35		
0		24566 10	24462			24140 10	24040	23939	23840 9 99 9	23745	23646 9 9	23552 4 9	23459	23370	23282	23201		23032	22955			22731							
	24784		24566				24140	24040	23939	23844			23569	23475	23387	23301	23214	23131			22911		22766						
2							24239	24134							23491	23400	23315	23231	23153										
	24985			24 6 5 8			23342					23860	23768		23590	23503	23422		23258	23184	23109 5 92-							22638	
4							24442	24340					23868	23780	·			23441 - 92 -	[23282 8	23201	23131							
						24641 - 98	24540						23960		23786	23705	23615	23533			23301	23231						22840	
6						24739								23976	23885			ļ					23258	23184					
					24947 1(24840 795 -								24068		ļ	23818 94							23282 6	23214	23153 95-5	23094 9 90 <u>6</u>	23032 2	 22911 - 103 -
8						24935		ļ			ļ					23994 - 93-	23912							ļ	23315	23248 7 99 ⁶	23184 4		 23014 - 95
						ļ		24329		24628 - 96 -	 					24087		23924 - 98 -						ļ		23347			 23109
10								ļ		24724				24358	24276		24104 - 92	24022							ļ				
									24919								24196												

TABLE IV.* The vibrational scheme of the band system λ 4420-4000A.

* The bands marked * are from Elliott's data in fluorescence.

represented by the expression,

$$\nu = 47150 + (96.21v' - 0.49v'^{2}) - (213.798v'' - 0.000187v''^{2}) - (0.614v''^{2} - 0.000932v''^{3} - 0.0000187v''^{4}).$$

with v'=0-10 and v''=43-66. The lower state of the band system is again the ground state of the molecule. We see from the equation that the present analysis of this system does not change the vibrational constants⁵ of the upper level, but changes its position^{9a} to 47150 cm⁻¹ from the previous value 46441 cm⁻¹ obtained by Waser and Wieland.⁵

Waser and Wieland, as mentioned above, gave the vibrational formula for the bands of the system $\lambda 2730$ to 2520A, but have not yet published their experimental data and their vibrational analysis. The vibrational scheme of this band system as obtained from the present work is therefore shown in Table IV. The following formula of Waser and Wieland represents fairly well the bands of this system:

$$\nu = 25757.2 + (101.88v' - 0.3v'^2) - (126.57v'' - 0.75v''^2 - 0.0033v''^3)$$

Bands with v'=0-11 and v''=9-38 are recorded in the present work. The lower state of this system is the $\sigma_g^2 \pi_u^4 \pi_g^3 \sigma_u$, $0_u^+(^{3}\Pi)$ state at 15598 cm⁻¹.

III. ELECTRONIC TRANSITIONS INVOLVED

According to the vibrational analyses discussed above, three of the band systems have their upper electronic levels at 39131 cm⁻¹, 45781 cm⁻¹, and 47150 cm⁻¹, respectively, and have the ground state of the iodine molecule as their lower state. The fourth system in the region λ 4420 to 4000A has its upper level at 15598+25757=41355 cm⁻¹ and its lower level at 15598 cm⁻¹. The lower level in this case, as mentioned above, is well known to be $\sigma_g^2 \pi_u^4 \pi_g^3 \sigma_u$, $0_u^+({}^{3}\Pi_u)$, which dissociates into ${}^{2}P_{3} + {}^{2}P_{3}$ iodine atoms. Therefore, the upper state according to the selection rules should be 0_g^+ or 1_g . A consideration of the electronic term scheme of the iodine molecule, discussed in earlier papers and shown to some extent in Table VII, shows that the upper state of the band system is very probably a 0_g^+ state corresponding to $\sigma_g^2 \pi_u^2 \pi_g^4 \sigma_u^2 {}^{1}\Sigma_g^+$. This state is predicted^{1.8} to be stable because it dissociates probably into ions $I^+(p^4, {}^{1}D)+I^-(p^6, {}^{1}S)$, while its very low ω_e (102 cm⁻¹) is understandable in view of the presence of two strongly antibonding electrons (σ_u^2).

We now consider the probable electronic terms for the three levels at 39131 cm⁻¹, 45781 cm⁻¹, and 47150 cm⁻¹. The electron configuration $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$ gives rise among others to the terms ${}^{1}\Sigma_u^{+}(0_u^{+})$, ${}^{3}\Sigma_u^{-}(0_u^{+}, 1_u)$, and ${}^{1}\Delta_u(2_u)$, the symbols in the parentheses being those for case *c* type coupling. These terms are predicted to dissociate into ions I^++I^- , and so are expected to be stable. The remaining terms of the configuration are predicted to dissociate into ${}^{2}P^{+2}P$ atoms, and so (in view of their height) should be unstable. For case *a* coupling the only possible transition from the above terms to the ground state ${}^{1}\Sigma_g^{-}(0_g^{+})$ is that from ${}^{1}\Sigma_u^{-}(0_u^{+})$. However, in the iodine molecule, where we expect a strong tendency towards case *c* coupling, the transitions ${}^{3}\Sigma_u^{-}(0_u^{+}, 1_u) \rightarrow {}^{1}\Sigma_g^{+}(0_g^{+})$ are also allowed.

The fact that the three observed levels under consideration have vibrational frequencies of the same magnitude suggests that the electronic terms responsible for these levels arise from the same configuration, presumably $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$. Then the low ω_e values observed for these three levels will be in harmony with the presence of the two strongly antibonding σ_u electrons. Assuming that ${}^{1}\Sigma_u^{+}$ is above ${}^{3}\Sigma_u^{-}$, one could

 $^{^{9}a}$ Dr. Wieland, in a recent private communication to Dr. Herzberg, mentioned that the position of the upper level of the above band system has probably to be changed from 46441 cm⁻¹ to 47151 cm⁻¹, which is in perfect agreement with the above result. The author wishes to express his thanks to Dr. Herzberg for this information.

Position of the levels	First	Three different possible electronic terms Second	Third
39131 cm ⁻¹	$\begin{array}{c}\sigma_{\varrho}^{2}\pi_{u}^{3}\pi_{\varrho}^{3}\sigma_{u}^{2} \overset{3}{\Sigma^{-}}(0_{u}^{+})\\\sigma_{\varrho}^{2}\pi_{u}^{3}\pi_{\varrho}^{3}\sigma_{u}^{2} \overset{3}{\Sigma^{-}}(1_{u})\\\sigma_{\varrho}^{2}\pi_{u}^{3}\pi_{\varrho}^{3}\sigma_{u}^{2} \overset{1}{\Sigma^{+}}(0_{u}^{+})\end{array}$	$\sigma_{\rho}^{2}\pi_{u}^{3}\pi_{\rho}^{3}\sigma_{u}^{2} {}^{1}\Sigma^{+}(0_{u}^{+})$	$\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2 {}^{3}\Sigma^{-}(0_u^+)$
45781 cm ⁻¹		$\sigma_{\rho}^{2}\pi_{u}^{3}\pi_{\rho}^{3}\sigma_{u}^{2} {}^{3}\Sigma^{-}(1_{u})$	$\sigma_g \pi_u^4 \pi_g^4 \sigma_u^3 \Sigma^{+}(1_u)$
47150 cm ⁻¹		$\sigma_{\rho}^{2}\pi_{u}^{3}\pi_{\rho}^{3}\sigma_{u}^{2} {}^{3}\Sigma^{-}(0_{u}^{+})$	$\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2 {}^{1}\Sigma^{+}(0_u^+)$

TABLE V. Identification of electronic terms.

attribute ${}^{1}\Sigma_{u}^{+}(0_{u}^{+})$ to the level at 47150 cm⁻¹ and the components of ${}^{3}\Sigma_{u}^{-}$ to those at 39131 cm⁻¹ and 45781 cm^{-1} . As the band system that arises in 39131 cm^{-1} is more intense than the one that arises in 45781 cm^{-1} , we might attribute ${}^{3}\Sigma^{-}(0_{u}^{+})$ to 39131 cm⁻¹ and ${}^{3}\Sigma^{-}(1_{u})$ to 45781 cm⁻¹; but it is very difficult to understand how the separation of the two components 0_{u}^{+} and 1_{u}^{+} of ${}^{3}\Sigma_{u}$ could be as much as 45781 - 39131 = 6650 cm⁻¹. To avoid this difficulty one might attribute ${}^{3}\Sigma_{u}^{-}(0_{u}^{+})$, ${}^{3}\Sigma^{-}(1_{u})$, and ${}^{1}\Sigma_{u}^{+}(0_{u}^{+})$ to the levels at 47150 cm⁻¹, 45781 cm⁻¹, and 39131 cm⁻¹, respectively. This assignment is in good agreement with the observed relative intensities of the respective band systems; i.e., the 39131 system is most intense and the 45781 system is weakest of the three. Further, the component separation of ${}^{3}\Sigma_{u}$ will be 47150-45781=1369 cm⁻¹, which appears to be reasonable for the case c coupling. The only questionable point about this assignment is that the relative positions of ${}^{3}\Sigma_{u}^{-}$ and ${}^{1}\Sigma_{u}^{+}$ are reversed; i.e., ${}^{3}\Sigma_{u}^{-}$ is above ${}^{1}\Sigma_{u}^{+}$. Recknagel¹⁰ has worked out the relative positions of ${}^{1}\Sigma^{+}$ and ${}^{3}\Sigma^{-}$ for the configurations $\pi^3\pi'$ and $\pi\pi'$. For the configuration $\pi\pi'$, $^3\Sigma^-$ is lower than ${}^{1}\Sigma^{+}$; and for the configuration $\pi^{3}\pi'$, ${}^{3}\Sigma^{-}$ is higher than ${}^{1}\Sigma^{+}$. However, the relative positions of ${}^{3}\Sigma$ and Σ of the configuration $\sigma_q^2 \pi_u^3 \pi_q^3 \sigma_u^2$ have not been calculated so far. But one will presumably expect in simple molecules that the $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$ case will be similar to $\pi\pi'$; i.e., ${}^{3}\Sigma^{-}$ will be lower than ${}^{1}\Sigma^{+}$. However, in the case of iodine molecules, it is conceivable that the calculations for $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$ may show that ${}^3\Sigma^-$ is higher than ${}^{1}\Sigma^{+}$. Therefore, the assignment of ${}^{3}\Sigma^{-}(0_{\mu}^{+})$, ${}^{3}\Sigma^{-}(1_{u})$, and ${}^{1}\Sigma_{u}^{+}(0_{u}^{+})$ to the levels at 47150 cm⁻¹, 45781 cm⁻¹, and 39131 cm⁻¹, respectively, appears to be reasonable.

TABLE VI. Alternative configurations in I_2 for dissociation into atoms in ²P states.

Dissoci- ation products	Odd electron terms derived according to case c type coupling	Case A The electron con- figurations of odd unstable states if $\sigma_{g}\pi_{u}^{4}\pi_{g}^{4}\sigma_{u}^{3}\Sigma_{u}^{+}(1_{u})$ does not dissociate into ${}^{2}P_{1/2} + {}^{2}P_{1/2}$ atoms and so is stable	Case B The electron con- figurations of odd unstable states if $\sigma_0 \pi u^4 \pi_0^4 \sigma_u^{-3} \Sigma_u^+(1_u)$ dissociates into ${}^{2}P_{1/2} + {}^{2}P_{1/2}$ atoms and so is unstable
² P _{1/2} + ² P _{1/2}	0-, 1	$\frac{\sigma_{g^{2}\pi_{u}^{3}\pi_{g}^{3}\sigma_{u}^{2}}^{3}\Sigma^{+}(1_{u})}{\sigma_{g^{2}\pi_{u}^{3}\pi_{g}^{3}\sigma_{u}^{2}}^{3}\Sigma^{+}(0_{u}^{-})}$	σ _g πu ⁴ πg ⁴ σu ³ Σ ⁺ (1u) σ _g πu ⁴ πg ⁴ σu ³ Σ ⁺ (0u ⁻)
² P _{3/2} + ² P _{1/2}	0 ⁻ , 1, 1, 2 0 ⁺ (stable)	$\begin{array}{c} \sigma_{g}^{2}\pi_{u}^{3}\pi_{g}^{3}\sigma_{u}^{2} \ ^{1}\Sigma^{-}(0_{u}^{-}) \\ \sigma_{g}^{2}\pi_{u}^{3}\pi_{g}^{3}\sigma_{u}^{2} \ ^{3}\Delta(1_{u}) \\ \sigma_{g}^{2}\pi_{u}^{3}\pi_{g}^{3}\sigma_{u}^{2} \ ^{3}\Delta(2_{u}) \\ \sigma_{g}^{2}\pi_{u}^{4}\pi_{g}^{3}\sigma_{u} \ ^{1}\Pi(1_{u}) \end{array}$	$\begin{array}{c} \sigma_{g^{2}}\pi_{u}{}^{3}\pi_{g}{}^{3}\sigma_{u}{}^{2} \ \ {}^{3}\Delta^{+}(0_{u}{}^{-})\\ \sigma_{g^{2}}\pi_{u}{}^{3}\pi_{g}{}^{3}\sigma_{u}{}^{2} \ \ {}^{3}\Sigma^{+}(1_{u})\\ \sigma_{g^{2}}\pi_{u}{}^{3}\pi_{g}{}^{3}\sigma_{u}{}^{2} \ \ {}^{3}\Delta(1_{u})\\ \sigma_{g^{2}}\pi_{u}{}^{3}\pi_{g}{}^{3}\sigma_{u}{}^{2} \ \ {}^{3}\Delta(2_{u}) \end{array}$

¹⁰ A. Recknagel, Z. Physik 87, 396 (1934).

One may also consider another point of view. The electron configuration $\sigma_{q}\pi_{u}^{4}\pi_{q}^{4}\sigma_{u}$ gives the terms ${}^{1}\Sigma_{u}^{+}(0_{u}^{+})$ and ${}^{3}\Sigma_{u}^{+}(1_{u}, 0_{u}^{-})$. The transitions ${}^{1}\Sigma_{u}^{+}(0_{u}^{+})$ $\leftrightarrow^1 \Sigma_g^+(0_g^+)$ and $^3 \Sigma_u^+(1_u) \leftrightarrow^1 \Sigma_g^+(0_g^+)$ are both allowed. The level $\Sigma_{u}^{+}(0_{u}^{+})$ is expected¹¹ to dissociate into I^++I^- and it is stable. Its position¹¹ is at 51683 cm⁻¹ with ω value 165 cm⁻¹, and it forms the upper level of iodine absorption bands in the region 1770 to 1950A. According to case a coupling, the level $\sigma_g \pi_u^4 \pi_g^4 \sigma_u^3 \Sigma_u^+(1_u)$ is expected to dissociate into ${}^{2}P_{1} + {}^{2}P_{1}$ iodine atoms, and hence to be unstable. In the case of the iodine molecule, one might expect that $\sigma_{g}\pi_{u}{}^{4}\pi_{g}{}^{4}\sigma_{u}{}^{3}\Sigma_{u}{}^{+}(1_{u})$ will go to higher dissociation products to avoid crossing the $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2 {}^3\Sigma_u^{-}(1_u)$. In this case the latter will dissociate into ${}^{2}P_{1} + {}^{2}P_{1}$ atoms, and so be an unstable state, and $\sigma_q \pi_u^4 \pi_q^4 \sigma_u^3 \Sigma_u^+(1_u)$ will be a stable state. Then we will have $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2 {}^3\Sigma_u^{-}(0_u^+)$, $\sigma_g \pi_u{}^4 \pi_g{}^4 \sigma_u \, {}^3\Sigma_u{}^+(1_u), \text{ and } \sigma_g{}^2 \pi_u{}^3 \pi_g{}^3 \sigma_u{}^2 \, {}^1\Sigma_u{}^+(0_u{}^+) \text{ for the}$ three levels at 39131, 45781, and 47150 cm^{-1} , respectively. The validity of this assignment is somewhat doubtful, since, according to it, $\sigma_g \pi_u^4 \pi_g^4 \sigma_u^3 \Sigma_u^+(1_u)$ is at 45781 cm⁻¹ and its ω value is 104.5 cm⁻¹, whereas the ω value of ${}^{1}\Sigma_{u}{}^{+}(0_{u}{}^{+})$ at 51683 cm⁻¹ from the same configuration is 165 cm⁻¹. Moreover, the value 104.5 cm^{-1} is much nearer to the ω values 103.0 and 96.2 cm⁻¹ of the other two states arising from the configuration $\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$. This difference in ω value of the two states, 0_u^+ at 51683 cm⁻¹ and 1_u at 45781 cm⁻¹, can be understood if they dissociate into different components of I^++I^- . For example, we know that the vibrational frequencies of ${}^{3}\Pi(0_{u}^{+})$ and ${}^{3}\Pi(1_{u})$ of the configuration $\sigma_g^2 \pi_u^4 \pi_g^3 \sigma_u$ are 128 cm⁻¹ and 44 cm⁻¹, respectively. This is because ${}^{3}\Pi(0_{u}^{+})$ dissociates into ${}^{2}P_{4} + {}^{2}P_{4}$ iodine atoms and ${}^{3}\Pi(1_{u})$ dissociates into ${}^{2}P_{4} + {}^{2}P_{4}$ iodine atoms. Thus, there are three different possible ways of identifying the electronic terms at 39131, 45781, and 47150 cm⁻¹, which are summarized in Table V.

The rotational analysis of the band systems, which requires quite large resolution instruments, will show which one of the three possible configurations in Table V is correct. However, from the considerations of relative intensities of the band systems, the vibrational frequencies of the three levels, and their relative mutual separation, we prefer the second assignment, which is included in Table VII.

If one accepts the second assignment, a change in the assignment of electronic terms for the odd unstable states, dissociating into ${}^{2}P+{}^{2}P$ iodine atoms, is neces-

¹¹ P. Venkateswarlu, Proc. Indian Acad. Sci. 24A, 473 (1946).

sary, as those assignments in the earlier papers¹ were made with the assumption that $\sigma_g \pi_u^4 \pi_g^4 \sigma_u^3 \Sigma_u^+(1_u)$ would be a stable state.¹¹ The two alternative configurations for the odd unstable states dissociating into ${}^{2}P+{}^{2}P$ iodine atoms are given in Table VI for the cases (A) if $\sigma_a \pi_u^4 \pi_a^4 \sigma_u^3 \Sigma_u^+(1_u)$ dissociates into higher dissociation products, say I^++I^- , and hence is a stable state, and (B) if $\sigma_g \tau_u^4 \pi_g^4 \sigma_u^3 \Sigma_u^+(1_u)$ dissociates into ${}^{2}P_{\frac{1}{2}}+{}^{2}P_{\frac{1}{2}}$ atoms and is therefore unstable. The assignment (A) was adopted in the earlier papers¹ by the writer, but the assignment (B) is to be preferred to (A) if one accepts the second possible configuration given in Table VI for the levels at 39131, 45781, and 47150 cm^{-1} .

IV. REMARKS ON THE KIMURA-MIYAMISHI, PRINGSHEIM-ROSEN, AND SKORKO BANDS IN ABSORPTION IN THE REGION 2000 TO 3500A

In an earlier paper¹² the present author arranged the Pringsheim-Rosen, Kimura-Miyanishi (P-R, K-M) bands in one vibrational scheme; but the wave number separations were so irregular that no equation was developed for the bands. However, with the assumption that the P-R, K-M bands are all due to a single electronic transition from the ground state, the upper electronic level was extrapolated to be 44900 cm⁻¹. According to the present experiments, we have a level at 45781 cm⁻¹ which forms the upper level of the band system $\lambda 2785$ to 2750A discussed above. Though one might argue that, in view of the large extrapolation involved, the position of the level extrapolated from the analysis of the P-R, K-M bands coincides roughly with the position of the level at 45781 cm⁻¹, it is uncertain whether all the P-R, K-M bands have this upper level. For (1) the ω -value for the single vibrational scheme of the P-R, K-M bands was about 90 cm⁻¹, and the present level has $\omega = 104.5$ cm⁻¹; (2) as stated above, the wave number separations in the analysis of the P-R, K-M bands were irregular and no equation had been developed. Further, we see that all the transitions from the ground state to the states at 47150 cm⁻¹, 45781 cm⁻¹, and 39131 cm⁻¹ are possible in absorption, since the reverse transitions do occur in emission. These transitions in absorption can be expected to give rise to the bands in the region 2000A to 3500A. It is probably for this reason that the attempts so far made to develop a single vibrational scheme for all the P-R, K-M, and Skorko^{13,14} bands did not succeed. Future reinvestigation of the absorption spectra of iodine in the region 2000 to 3500A at varying temperatures from room temperature to 1300°C and the reanalysis of all the absorption bands in that region may show definitely the existence of the above three transitions in absorption. With the present knowledge about the iodine molecule we can say that the P-R, K-M bands are due to the overlapping of transitions from the ground state to the two levels at 45781 cm^{-1} and 47150 cm⁻¹; and the Skorko bands to a transition from the ground state to the one at 39131 cm⁻¹. The wavelengths of the Skorko bands in absorption are included in Table I, where the emission bands from the level at 39131 cm⁻¹ to the ground state are given. The agreement of the wavelengths confirms the above statement with regard to the transition of the Skorko bands. Therefore, the tentative explanation suggested for these Skorko bands in an earlier paper¹² must be abandoned.^{14a}

For convenience, the positions of all the stable electronic levels of the I2 molecule observed either in absorption or emission, their term designations and probable electron configurations are given in Table VII together with their vibrational frequencies.

The Absence of the Band System $\lambda 6700$ to 5000A

As mentioned in the beginning, the discrete band system $\lambda 6700$ to 5000A which is due to a transition from 0_{u}^{+} to the ground state, is absent in the excitation of the mixture of argon and iodine. Normally, when there is no foreign gas, the molecules which are excited to 0_u^+ come back to the ground state giving the discrete band system. However, when foreign gas is introduced, the excited molecules in the 0_{μ}^{+} state very probably go over, by collisions, to the repulsive state 0_u^- which either touches or crosses the 0_u^+ and dissociate into ²P₄+²P₄ iodine atoms as suggested by Van Vleck¹⁵ in explaining the magnetic quenching of iodine fluorescence and Turner's fluorescence experiments¹⁶ in a mixture of iodine and argon. Turner¹⁶ also reported that he compared the spectra in the visible region of the discharges in pure iodine and in iodine and argon mixtures. All bands of wavelength longer than 5440A were reported to appear to have normal intensities, while the bands of shorter wavelength were considerably weakened in spectra of the mixture, but in the present experiments the whole band system is absent. The difference between the present experimental results and those of Turner may be due to the higher pressure of argon used in the present experiments.

The other characteristic features of the spectrum of the mixture of iodine and argon, as already described, are (1) the absence of certain groups of semicontinuous emission bands which are present when iodine is excited alone and which arise in levels whose r_e values are not very different from the r_e values of the ground state, and (2) the presence of the four band systems which arise

 ¹² P. Venkateswarlu, Indian J. Phys. 21, 43 (1947).
 ¹³ Skorko, Nature 131, 366 (1933).

¹⁴ Skorko, Acta Phys. Polonica 3, 191 (1934).

^{14a} The explanation given in the earlier papers (references 9 and 12) for the continua in absorption at 3413A and 3263A still holds good. They are not due to the same transition as the narrow absorption bands (Skorko bands discussed above).

 ¹⁵ J. H. Van Vleck, Phys. Rev. 40, 544 (1932).
 ¹⁶ L. A. Turner, Phys. Rev. 38, 574 (1931).

Floatron configuration	Electro Case <i>a</i> or <i>b</i> type	on states Case c or $\Omega - s$	Nome	Position of the levels ^a T_0 in	ω ₀ in	Probable dissociation products if there is to be no effect	Remarks
$\frac{\sigma_{g}\pi_{u}^{3}\pi_{g}^{4}\sigma_{u}^{2}}{[\sigma_{g}^{2}\pi_{u}^{4}\pi_{g}^{3}^{2}\Pi_{\frac{1}{2}}]\sigma_{u}6p}$	¹ Π _u ³ Π _u	$\frac{1_u}{\prod_{1,0u^+}}$	Q P O	64329 62802 61824	(93) (297) (96) (212)	$\frac{5p^{4} {}^{1}D_{2} + 5p^{6} {}^{1}S_{0}}{ex + 5p^{5} {}^{2}P}$ $5p^{4} {}^{3}P_{0} + 5p^{6} {}^{1}S_{0}$	J, K, M, N, O, P, and Q form the upper levels of the seven groups of bands ob- tained by Cordes ^b in absorption in the
ͺ <i>Ϲϭϼ²π</i> ₄ ³ π _θ ⁴ 11ϳͺͿϭ _Ͼ Ος <i>σ_θπ</i> ₄ ³ π _θ ⁴ σ ₄ ²	³∏ <i>u</i>	11,0u ⁺ 1 _u	N M	59217 58937	(203)	$ex+5p^{\circ} P^{\circ}$ $5p^{4} P_{1}+5p^{6} S_{0}$	separations in all these seven groups are very irregular, and so the positions and frequencies of these levels are to be taken as doubtful until they are confirmed by future experiments.
$\sigma_g \pi_u^4 \pi_g^3 \sigma_u^2$	¹ Πg	1,,	L	58578	120	$5p^{4} {}^{1}\mathrm{D}_{2} + 5p^{6} {}^{1}\mathrm{S}_{0}$	Three groups of diffuse emission bands arise in this level (reference 1).
$\left[\sigma_g^2 \pi_u^4 \pi_g^{32} \Pi_{\frac{1}{2}}\right] \sigma_u 6p$		II 1, 2u	K	57794	(246)	ex+5 p^{5} ² P	$X \rightarrow K$ gives part of absorption bands in the vacuum region.
$\left[\sigma_g^2 \pi_u^3 \pi_g^{4\ 2} \Pi_{\frac{3}{2}}\right] \sigma_g 6s$		II 1, 2u	J	56933	(207)	ex+5 <i>p</i> ⁵ ² P	$X \rightarrow J$ gives part of absorption bands in the vacuum region.
[σ _g ² π _u ⁴ π _g ^{3 2} Π ₄]σ _g 6s		Π1, 20	Ι	56000	(360)	ex+5p ⁶ ² P	Five groups of semicontinuous bands arise in this level (reference 1). The abnormally high value for the frequency separation (360 cm^{-1}) for these bands may be partly only apparent and due to the shape of the repulsion curves of the lower states of these bands.
$\sigma_g \pi_u^4 \pi_g^4 \sigma_u$	${}^{1}\Sigma_{u}^{+}$	0 _u +	H	51683	164.5	5p ⁴ ¹ S ₀ +5p ⁶ ¹ S ₀	$X \rightarrow H$ gives Cordes absorption bands $\lambda 1950-1770^{11}$. Five groups of semi-continuous bands in emission (reference 1) arise in this level H .
$\sigma_{g}\pi_{u}{}^{4}\pi_{g}{}^{3}\sigma_{u}{}^{2}$	³ П ₀	1,,	G	51528	215	5p ⁴ ³ P ₁ +5p ⁶ ¹ S ₀	Five groups of diffuse semicontinuous emission bands arise in G and have for their lower levels different repulsive states dissociating into ${}^{2}P+{}^{2}P$ iodine atoms (references 1 and 9).
$\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$	³ Σ _u	0 _u +	F	47150	96.2	5p4 ³ P ₂ +5p ⁶ ¹ S ₀	$X \leftrightarrow F$ gives emission bands 4420-4000A in the presence of a foreign gas and also probably part of P-R, K-M absorption bands.
$\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$	³∑ <i>u</i> [−]	1 u	Ε	45781	104.5	5p4 3P2+5p6 1S0	$X \leftrightarrow E$ gives emission bands 2785-2750A in the presence of a foreign gas, and also probably part of P-R, K-M absorption bands.
$\sigma_g^2 \pi_u^2 \pi_g^4 \sigma_u^2$	${}^{1}\Sigma_{g}^{+}$	0_g^+	D	41355	101.9	5p ⁴ ¹ D ₂ +5p ⁶ ¹ S ₀	$D \rightarrow B$ gives emission bands 2730-2520A in the presence of a foreign gas.
$\sigma_g^2 \pi_u^3 \pi_g^3 \sigma_u^2$	¹ Σ _u +	0 _u +	С	39131	103.0	5p ^{4 1} D ₂ +5p ^{6 1} S ₀	$X \leftrightarrow C$ gives emission bands 3455-3015A in the presence of a foreign gas, and absorption bands recorded by Skorko at high temperatures.
- 2- 4- 3-	3тт	$\int_{0}^{0} u^{+}$	В	15598	126.6	5p ⁵ ² P ₃ +5p ⁵ ² P ₃	$X \leftrightarrow B$ gives absorption bands 8600–4300A and emission bands 6700–5000A (reference 9).
υg ⁻ πu ⁻ πg ⁻ υu	-11 <i>u</i>	1 _u	A	11803	44	5p ⁵ ² P ₃ +5p ⁵ ² P ₃	$X \rightarrow A$ gives absorption bands in the region 9300–8375A (reference 9).
$\sigma_g^2 \pi_u^4 \pi_g^4$	${}^{1}\Sigma_{g}^{+}$	0 ₀ +	X	0	213.8	5p ⁵ ² P ₃ +5p ⁵ ² P ₃	Ground state.

TABLE VII. Observed stable electronic states of iodine molecule.

In column 7 of this table, "ex" stands for an excited neutral atom of the configuration of the type 5p⁴ 6p or 5p⁴ 6s. The positions of the levels in column 5 represent the heights of the zero vibrational levels of the respective states over that of the ground state.
 ^b H. Cordes, Z. Physik 97, 603 (1935).

in levels with smaller ω_e values and hence larger r_e values than those of the ground state. This shows that collisions with the foreign gas the make molecules in the higher excited states go over into lower excited electronic states in the energy range 39131 to 47150

cm⁻¹, with larger r_e values and smaller ω_e values, in the manner discussed by Wieland.⁶

The author wishes to express his thanks to Dr. R. S. Mulliken and Dr. G. Herzberg for their kind interest in the work.

PHYSICAL REVIEW

VOLUME 81. NUMBER 5

MARCH 1, 1951

Relation between Lattice Vibration and London Theories of Superconductivity

J. BARDEEN

Bell Telephone Laboratories, Murray Hill, New Jersey (Received November 2, 1950)

A gas of noninteracting electrons of small effective mass, m_{eff} , has a large diamagnetic susceptibility. It is shown that the London phenomenological equations of superconductivity follow as a limiting case when $m_{\rm eff}$ is so small that the Landau-Peierls theory yields a susceptibility $< -1/4\pi$. Justification is given for the use of an effective mass, $m_{\bullet} \sim 10^{-4} m$, for superconducting electrons in the lattice-vibration theory of superconductivity. This value is sufficiently small to show that the theory gives the London equations and, as a consequence, the typical superconducting properties. The concentration of superconducting electrons, na, is smaller than the total electron concentration, n, by about the same ratio as the effective masses, so that $m_*/n_* \sim m/n$, and thus the penetration depth is of the same order as that given by the usual London expression.

I. INTRODUCTION

THEORY of superconductivity based on inter-A actions between electrons and lattice vibrations has been discussed in two previous communications.^{1,2} The second of these (to be denoted by the letters WF), deals with wave functions for superconducting electrons. Fröhlich³ has independently developed a theory along similar lines. These earlier papers have been concerned primarily with the energy of the lowest state of a superconductor and have not discussed in any detail how the electrodynamic characteristics of the superconducting state-perfect diamagnetism and infinite conductivity-follow from the model. We shall show here that the theory leads to the London phenomenological equations⁴ in the manner indicated in our earlier papers.

The present theory is similar in many respects to one suggested some years ago by the author.⁵ In the earlier theory it was proposed that in the superconducting state there is a small distortion of the lattice which produces Brillouin zone boundaries with small energy gaps, $\sim \kappa T_c$ (T_c = transition temperature) at the Fermi surface. There would be a resultant decrease in energy of electrons in states on the low energy side of the gap. Associated with the small energy gap is a small effective mass ratio, $\sim \kappa T_c/E_F$, for electrons with energies near

the Fermi surface, E_F . It was shown that a sufficiently large diamagnetism for superconductivity will occur if there is a sufficient number of electrons of small effective mass. The difficulty with the theory as formerly proposed is that it appears that the energy required to distort the lattice and so to produce the zone boundaries is larger than the energy gained by the electrons.

In the present theory, zero-point vibrations replace the small permanent distortion of the lattice. The effective mass of the superconducting electrons is small as in the earlier theory, and we have suggested^{1,2} that the explanation of the superconducting properties in terms of a large diamagnetic effect of the electrons is similar.

It has been recognized for some years that the Meissner effect ($\mathbf{B}=0$), is a more basic property of the superconducting state than infinite conductivity (E=0), although, from a purely macroscopic point of view, neither one is a consequence of the other. Both follow from the London equations which can be derived most readily from a consideration of the magnetic properties.

From a formal point of view, a perfect diamagnetism can be described by a diamagnetic susceptibility equal to $-1/4\pi$. Landau⁶ has shown that, as a consequence of quantum theory, a gas of free noninteracting electrons obeying Fermi-Dirac statistics has a diamagnetic susceptibility:

$$\chi_0 = -(n/2E_F)(e\hbar/2mc)^2 = -n\mu^2/2E_F, \quad (1.1)$$

Here *n* is the number of electrons/cm³, E_F is the

¹ J. Bardeen, Phys. Rev. **79**, 167 (1950). ² J. Bardeen, Phys. Rev. **80**, 567 (1950) (referred in the text as WF)

³ H. Fröhlich, Phys. Rev. 79, 845 (1950)

⁴ F. and H. London, Physica 2, 341 (1935). ⁵ J. Bardeen, Phys. Rev. 59, 928 (A) (1941). This work, done while the author was at the University of Minnesota, was interrupted by the war and was never published in full.

⁶ L. Landau, Z. Physik 64, 629 (1930).