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Radiative Processes in the Presence of Heavy Nuclei
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Calculations of the cross sections for bremsstrahlung and pair production are carried out without the use
of the Born approximation, but by reducing the calculation of these cross sections to the calculation of the
exact elastic scattering of electrons and positrons, the last quantities having been tabulated to some extent.
Large deviations from the Born approximation results are obtained in the angular distributions of these
radiative processes, but arguments are presented that the Born approximation should yield the integrated
cross sections correctly at sufBciently high energies. The failure of the Born approximations for relativistic
equations is explained in a purely classical way.

I. INTRODUCTION

T is known that for radiative processes like brems-
~ ~ strahlung and pair production in the presence of
heavy nuclei, the application of the Born approxima-
tion may lead to some error. Exact calculations are
very difficu1. t to perform. However, it may be possible
to express the cross sections for these processes in terms
of the exact elastic scattering cross sections for a cou-
lomb 6eld, which has been tabulated to some extent.
This idea is suggested by the usual perturbation calcu-
lation mhereby the process is visualized as taking place
in tmo steps, one of which is the scattering of the elec-
tron by the nucleus. In the following it is shown that
this idea can be carried through in the high energy limit,
and the calculation of the cross section for these radia-
tive processes is reduced to the calculation of the elec-
tron and positron scattering amplitudes.

The results show rather large deviations from the
Born approximation expressions for the angular dis-
tribution of these processes at the larger angles, but
small deviation at the smaller angles where these
processes are concentrated. Thus, the corrections to the
integrated cross sections (that is, integrated over the
angles) are small.

II. THE HIGH ENERGY %'AVE FUNCTION

It has been observed that for the scattering of elec-
trons in the presence of heavy elements, it is not cor-
rect to apply the Born approximation to the Dirac
equation. It has also been pointed out, by investigating
the behavior of the phase shifts at high energies, that
this breakdown of the Born approximation is not pe-
culiar to the coulomb 6eld, but occurs whenever the
potential is strong enough, and is an effect characteristic
of relativistic equations.

%e shall show that the failure of the Born approxima-
tion can be understood and can be corrected, at least
theoretically, in a purely classical way. Let us consider
a very high energy particle incident in the 2 direction
with velocity z being scattered by a potential V(r)
that has no pole. The particle is given a transverse
momentum hp perpendicular to the direction of in-

' G. Par@en, Phys. Rev. 80, 355 (1950).

cidence. If the energy is high enough, me may assume
the path of the particle to be almost a straight line
parallel to the Z axis. If the particle enters at a dis-
tance p from the Z axis, then its transverse momentum
when it reaches the point (z, p) is given by,

Ap =— I (BV/Bp)dt

= —(8/cjp)(1/z) V(p, z) dz,

where in the integration, V= V(r) = V(p, z), r= (p'+z') &

and the variable p is held constant.
Now if the particle is nonrelativistic, as the energy

increases, ~~ and hp —+0; that is to say, the particle
spends so little time near the scatterer that it gets no
transverse momentum at all. However, if the particle
is relativistic, then as the energy increases, ~c and the
transverse momentum approaches the definite value of

Z

Ap = —(1/c) ) (8V/Bp)dz.

This has the consequence that the wave function of
the relativistic particle, forgetting for the moment the
spin variable, cannot approach the form exp(ikz) at
high energies, for this does not give the correct trans-
verse momentum, which can be large if the potential
is sufficiently strong. Instead, the wave function mill
have the form,

ci(ks+e)
%~os

(3a)

u being a function which is independent of the mo-
mentum hk. If we choose I as given by

(3b)

then the expectation value of hP calculated from (P

will agree with Eq. (2).
We now obtain the result indicated by Eq. (3) more

formally. Let us treat at 6rst, a particle which obeys

08



RADIATIVE P ROCESSES 809

Q= Qo+Qy+Q2+ ' ' ' (6)

where up is independent of k, u~, of order 1/k, etc.
Collecting the lowest power of 1/k, we get

Bup/Bs= —E V/k,

so that neglecting terms of order 1/k, we can write,

P= e'&P*+"& Buo/Bs= —V (8)
and

up= —
) V(p s) ds,

where p is held constant in the integration. Equation
(8) agrees with Eq. (3), if it is remembered that k= c= 1.

The form of a Dirac wave function at high energies
can be obtained by a similar procedure. We write P
as fq a&, exp[i(kz——+up)7, X=1, 2, 3, 4, where the aq

are constants, and substitute in the iterated Dirac
equation,

(V'+k' 2EV+ V')f—=i(e gradV)f.

If we expand aq and uq in powers of 1/k,

~a= ~) ( '+~) + ' ' '

Q), =Q), "'+Qg&"+ ~
(10)

then collecting the lowest power of 1/k gives

a), "&[(au), "'/az)+ (EV/k) 7 =0

For a plane wave in the z direction, with the spin in
the +s direction, when k—+, the a) are given by

1 0
aj o ———

s2 1
(12)

.0
then the solution of Eq. (11) with the correct limiting
form is

the Klein-Gordon equation,

(V'+k' 2E—V+ V')/=0,

where we put k=c=1. Let /=exp[i(ks+u)7, then we
get the equation for Q,

iV'u g—rad'u 2—k(Bu/Bz) 2—EV+ V'=0 (5)

We now assume an expansion for Q in inverse powers
of k,

The phase surfaces of P given by ks+up ——constant are
no longer plane surfaces, but have a slight curvature
near the Z axis, bulging out in +Z direction for a re-
pulsive potential and in the —Z direction for an at-
tractive potential. If we imagine the path of the par-
ticle to be perpendicular to these phase surfaces, the
curvature of the surfaces will cause the path to deviate
from a straight line showing the transverse momentum
of Eq. (2).

Let us now consider the coulomb potential V=Ze'/
(p'+s')&. From Bup/Bs= —V, we get,

up ——Ze' 1nr(1 —cos8). (15)

This will be recognized as the usual distortion of the
plane wave obtained in coulomb scattering. In the
derivation of Eq. (15), the indefinite integral was taken
as the definite integral diverges. However, Eq. (15)
does not give the entirely correct behavior of the cou-
lomb wave function at high energies. Where our deriva-
tion breaks down can be easily seen from the classical
treatment, where we assumed the path of the particle
at high energies to be a straight line. The deviation of
the path from a straight line for large impact parameters
can be avoided by screening the coulomb field; but
since the coulomb field has a pole at the origin, then
no matter how high the energy, near the origin the
field is strong enough to curve the particle path. We
also know from the exact solutions of the Dirac equa-
tion for the coulomb field that the wave function has a
singularity at the origin which Eq. (15) has not. The
error in our power series expansion in 1k of P probably
lies in omitting the higher order terms which, though
they go to zero for increasing k, have a singularity at
the origin and are not negligible. Thus, we can say that
Eq. (15) will represent the wave function well at large
distances but not near the origin. The validity of Eq.
(15) will be discussed further in Sec. V.

IV. SOME CHECKS OF THE HIGH ENERGY
VfAVE FUNCTION

As a test of the wave function given by Eq. (3), we
can consider what it means in terms of the phase shifts.
Let us treat the simpler Klein-Gordon wave function
in a central field. We expand f in spherical harmonics,

III. SOME EXAMPLES OF THE HIGH ENERGY
WAVE FUNCTION

Let us consider the gaussian potential V= Vo

Xexp[ —a'(pP+s')7, then

and

f= aug exp[i(kz+up),
Bup/8s = —V,

up= —t V(p, z).dz. (13)

/=+~i'(2l+1) ea'R~(r). P~(cos8), (16)

where R~(r), the radical part of the wave function, has
the asymptotic form,

R~(r)~(kr) ' cos[kr —s(l+1)pr+8g7. (17)
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Using the orthogonality property of Pi(cos8), we get and the cross section for an unpolarized beam is
given by,

2 i'e'"R[(r) = e""~"+"'P&(cos8)sin8 d8. (18)
4p

Now let r—&oo in Eq. (18) and integrate the right side

by parts, dropping terms of higher order than 1/r, then,

2.i' e"''(kr) -' cos(kr ——',(1+1)w+ 8[)
—(jar) &oi[i—7+a(o&[ ( )[oi[—&r+u(r&& (19)

and thus we get for the phase shifts,

where

and

ir(8) =E'(1—[&' sin'-'8).
~
F~',

F=(2/4&)rexp( i—k r) V e'&'~"& dr (25)

I= t V(p. z) dz.

V(r) dr. (20)

&&[(0) =exp~ i —V dz ), (21)

It has been shown' that the phase shift b~ approaches
the quantity 8„= J'o" V —dr when 0—+io. Equation
(20) shows that the use of our approximate wave func-
tion is in agreement with this result.

Another test is to consider the value of the wave
function at the origin. According to Eq. (3), fz ——zi(E+r») (1+cos8) F,

f4=-', (E+r&[)sin8 F.

Thus, at high energies,

(26a)

(26b)

The direct application of Eq. (25) is difFicult, for the
integral is not easily computed. However, the form is
simple and some general relations can be obtained
quickly.

By introducing an explicit representation for e and
P, and for akp the spin or part of a plane wave in the Z
direction with spin in the Z direction, we 6nd' for
f3(8, [[:) and fi(8, [[&),

V dz=— V dr=8, ~ fa/f~~ =cotz8. (27)

[[(0)=exp(ib ) (22)

f(8)=(E ek —Prw) ) exp(—ik—r). V y.dr. (23)

Putting p=ako exp(['ko r), a plane wave in the k&

direction, in Eq. (23) yields the Born approximation,
which gives f(8) correct to first order in V. However,
there are terms which are of higher order in V but do
not decrease with increasing energy. That is to say, the
Born approximation is the Grst term in an expansion
in V and not in I/O, so that it is not correct even at
very high energies if the potential is strong enough.

If we substitute the wave function given by Eq.
(13) into Eq. (23), we should get an expression which is
correct at high energies,

f(8)=(E ek Pm) a—k. —

~ exp( ~k r) V—.e"~~"& dr (24)
J

~G. Parzen, reference 1. It was shown there for the Dirac
equation, but it can be shown to be true for the Klein-Gordon
equation as well.

The mathematics will not be gone into here, but we
can show that when 0—+o&, $(0) does approach exp(igloo)
if the potential function has no pole at r=o.

V. THE EXPRESSION FOR THE SCATTERING
CROSS SECTION

For the Dirac equation, the scattering amplitude is
given, in relativistic units k=c= j., by'

on=(1 —o'sin'(-', 8) oxo.

VI. THE COULOMB FIELD

(29)

It was indicated above that Eq. (13) does not repre-
sent the coulomb wave function near the origin. The
question arises now as to how well Eq. (25) will give
the coulomb cross section. %'e were unable to do the
integral involved, and thus we cannot make a direct
comparison of Eq. (25) with the exact coulomb cross
section as derived by Mott. However, the correctness
of certain general features derivable from Eq. (25)
seems to indicate it is fairly reliable for the coulomb

3 N. F. Mott, Proc. Roy. Soc. (London) A124, 426 (1929).

Relation (27) has the physical signif&cance that, even
after scattering, the spin lies along the direction of
motion, and an unpolarized high energy beam remains
unpolarized after scattering. In the case of the coulomb
field, fz and f4 have been calculated exactly by Mott. '
His formulas in the limit k—&oo show that [f3/f4~
=cot-,'e. However, as the coulomb 6eld has a pole at
the origin, we could have expected Eq. (27) to hold
only for the smaller angles,

A second immediate relation is the connection be-
tween Klein-Gordon scattering and Dirac scattering.
The expression for the cross section oKG for a particle
obeying the Klein-Gordon equation is, at high energies
and if the potential is not singular at the origin,

oKo=E' ~F~'

and comparing this with expression (25) for the Dirac
scattering of an unpolarized beam, we get
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6eld. Thus, the relation
I foI foI =cotq8 derived in Sec.

IV does hold for the coulomb 6eld. The wave function
f= aao exp[i(ks+I)], with I=Ze' lnr(1 —cos8) does
represent the wave function correctly at large dis-
tances, and so we would expect Eq. (25) to give the
scattering correctly at the smaller angles.

Another property of the exact coulomb cross section
is that the ratio o/os, where os ——(csc'o8)/k is essen-

tially the Rutherford scattering cross section, is inde-
pendent of energy past about 4 Mev for electrons. 4

According to Eq. (25) the energy dependence of o/&rs

is given by (1—v' sin'-, 8), which is independent of the
energy except at angles very close to 180'.

In the following sections we will apply our approxi-
mate wave function as given by Eq. (13) to the calcula-
tion of bremsstrahlung and pair production in the
presence of heavy nuclei. %e shall not actually apply
Eq. (13) to a coulomb 6eld, but use the form of Eq.
(13) to derive certain relationships.

VII. BREMSSTRAHLUNG

we can write Q(r, yo) as,

1 p 4n.

P(r, yo) =
~~ ds exp(is r) f(s, yo), (33)

(2or)o & go po
where

i
f(s, y,)= (—E,—es—P—m) )I exp( i—s r)Vfdr (34)

4m

is a generalization of the scattering amplitude. If
I
s

I
=p, , then f(s, yo) is the elastic scattering amplitude

for an electron incident in the po direction to be scat-
tered by the potential into the s direction.

The calculation of the bremsstrahlung cross section
for an electron incident with momentum po and scat-
tered to momentum p while emitting a photon with
momentum k requires the calculation of the matrix
element,

M= I f"(r, y) exp( ik —r) aq. P(r, yo)dr, (35)

In the usual perturbation treatment of bremsstrahl-

ung, it is considered as a two-step process, the emission
of a photon and scattering by the nucleus. The break-
down of the Born approximation in treating brems-
strahlung may be thought of as stemming from the
application of the Born approximation to the scattering
by the nucleus. This indicates that it may be possible
to express the bremsstrahlung cross section in terms of
the exact coulomb cross section, which has been tabu-
lated fairly well by Bartlett and %'atson, ' and by
McKinley and Feshbach. 4

In order to formulate this idea mathematically, let
us set up the exact expression for the bremsstrahlung
cross section. Let f(r; yo) be the wave function for an
electron, which is incident with momentum po in the
6eld of a potential V(r). We can write this wave func-
tion as'

where ~ is the component of the Dirac e-matrix along
a polarization direction. Using expression (31) for
P(r, y) and the Fourier integral expression for p(r, y),
we can write for M,

M=[4or/(yo k)' —y']f*—(yo k, y)—agapo

+[4 /(k+y)' —yo')ap*~if(k+ y, y.)

+ dr p*(r, y)exp( ik r—) aqua(r, yo). (36)

At high energies, assuming k, p, and po are of the
same order of magnitude, we can show that the third
term in Eq. (36) is of order ohio/Po compared with the
other two. To compare these terms, substitute into the
integrals the asymptotic form of g(r, yo), f(8)exp(iPor)/r.

The evaluation of Eq. (36) at high energies reduces
them to evaluating f(s, yo) at high energies. We will
show that f(s, yo) can be evaluated in terms of the
elastic scattering amplitude.

Using our approximate wave function (13), we can

(30)P(r; yo) =apo exp(iyo r)+@(r, yo),
where

1
4 (r, yo) =(E—o —~y —P~)—

4m

f(., yo) =-;(Eo-a. s-Prro) apo F(s, yo), (37a)

.expi[yo r+u(r, yo)]dr. (37b)
exp(ipo I

r—r'I)

w nte f(s, yo) as,
~exp(iPo r—r' )

X~ V(r')4(r') d.', (31)

and Eo= (po'+m') &, y= i grad. —
Using the Fourier integral representation of exp[ipo

x Ir-r'I)/Ir-r'I,

I
r—r'I (2v)o

4
ds exp[is. (r—r')], (32)

g2 p2
' W. A. McKinley, Jr., and H. Feshbach, Phys. Rev. 74, 1759

(1948).
~ J. H. Bartlett and R. E. Watson, Proc. Am. Acad. Arts Sci.

74, 53 (1940).

And the function oo(r, yo) depends only on the direc-
tion of po, not on the energy of the particle. Now
F(s, yo) by (37b) depends only on q= yo —s and on a
the angle between q and yo. But the quantity F(s, yo),
by Eq. (25), is also involved in the calculation of the
elastic scattering cross section. In this case, when

IsI =po, we can write F(s, yo)=F(8, Eo), 8 being the
angle of scattering, Eo the energy of the incident par-



G. PARZEN

F(s, yo) =F(8', Eo')

I q I
=

I yo
—s

I
= 2po' sin-,'8' (38)

ticle, and q= 2pp sino 8. We can evidently relate F(s, yp)
to F(8', Ep') for any s, and yo, by choosing 8' and Ep'

so as to get the same q and 0.. Thus,

and 2Ze'/q' is the Born approximation result for F(s, po).
Thus, putting H(s, yo) =1 in what follows will bring us
back to the Born approximation and the Bethe-Heitler
formula.

With Eq. (42) and the matrix element (41), we can
write the bremsstrahlong cross section as,

Rnd
8= X A~

18~ l o'(8, y, 8o) ' dQpdQ = (Z'e'pEEok dflpdf7/137s'poq')

F(s, yo) =F.i(8', Eo'),
where

where n is the angle between yp and q.
However, if it so happens that 0. is larger than 90',

then this situation cannot be duplicated in elastic
scattering where 0. is always less than 90'. By taking
the conjugate of Eq. (37b) we can change the direction
of q to —q, which will make an angle of less than 90'
with yp, but we have also changed the sign of N(r, po),
which means we must relate F(s, yp) to positron scat-
tering rather than to electron scattering. So, in general,
if 0,&90',

(39a)

X I Z IL(a"a')(ap *a.a")/(E.—E, )]
(43)

H*(Po—&, P)+ [(ap*a~ao")(ap"*app)/(E, .—E,")]
H(P+&, Po) }I',

where dQ and dQI, are the solid angles of scattered elec-
tron and emitted photon, respectively. Expression (43)
diBers from the Bethe-Heitler formula' by the ap-
pearance of the two H(s, yo) factors which are equal to
unity in the Born approximation. If we perform the
indicated sum, ' we get the result for the bremsstrahlung
cross section,

If 0.&90'

where

8'/2 = -,' pr —a,

q= 2po' cosa.

F*(s, yo) =F„„(8',Eo'),

8'/2 = -', pr —a, (39b)

+= (Z'e'P dk sinHdHdy sinHpdHo/2m" 137Ppkq )

X IQ(8, y, 8o) IH(yo —&, P) I'+E(8, y; 8o)

X IH(y+lr, Po) I +E(8, y, Ho)LH*(Po —&, P)

'H(p+lr yp)+c c]} (44)

q= 2pp cosa.

F,~(8', Ep') and Fo„(8', Ep') are the functions involved,
according to Eq. (25), in the cross sections for electron
and positron scattering, respectively.

Thus, we have reduced the calculation of the brems-
strahlung matrix element M to calculating the elastic
scattering amplitudes of both positrons and electrons.
To put our result in a form where it can be easily com-
pared with the Bethe-Heitler formula, we note the
relationship,

2'(ap'a'*/Ep —E')
= (1/E, '—E ')(Ep —a y' —Pm) (40)

Here 8, 8p, and q are as defined in Heitler. '

pp' sin'8o 2k
Q=,(4E'—q')+

(Ep—pp cosHp) Ep pp cosHp—
)& [Poo sin'Hp —PpP sinH sin8o cosy

+k(E+ p cos8)] (45s)

p' sin'8 2k
R=-- ,(4Eo'—q')— [p' sin'8

(E pcosH)' — (E pcos8)—
—p,p sinH sin8o cosy —k(Ep+ pp cos8p)] (45b)

X[q'—3k' —4EoE+k(Po cos8p —P cos8)]—2pppok'}

summing over the 4 free particle S= IPoP sinH sinHo cosy

state with the same momentum p'. Now substitute
Eqs. (40) and (37) into Eq. (36):we get,

kr = —(4o/2) Ip„.[(ao"ao ) (ap *a~apo) F*(po—lr, p)/

(Eo—E;)]+2' [(ap*a~ao") (ao"*apo)F(y+ &, yo)/

(Eo. E' )]}, (41)—

where
y'=pp —k, and p"=p+k.

Now let,

where we may note that

(45d)

P' sin'8 Poo sin'8p
(45c)

E—p cos8 Ep —
pp cos8p

where
F(s, po) = (2Ze'/q')H(s, po), (42) '%'. Heitler, Quantum Theory of Radiation (Oxford University

Press, London, 1944), second edition, p. 164.
I vmuld like to thank Dr. S. C. Wright for his aid in breaking

down the hremsstrahlung formula.
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Pss sin'8s
T- (4Es' —q')+ (4E' q')—

(E pc—osg)' (Eo—po cosgs)'

p' sin'8

2PPp slug slugs cosmos
(4EsE q'+—2k')

(E pcos8—)(Es—ps cos8s)

ps sjnsg+ p 2 sjnsgs
+2k' (45e)

(E pcosg)—(Ep ps co—sgs)

and is the expression that occurs in the Bethe-Heitler
formula. Thus, putting H(ys —k, y)=H(p+k, ys)=1
in Eq. (44) will yield the Bethe-Heitler formula.

Assuming the correctness of applying relation (13)
to our problem, the only situation in which expression

(44) may break down is if in calculating H(s, ys), the
energy Ep' of the equivalent elastic scattering is small

compared with the rest mass. Since ps' ——q/2 cosa, this
situation can only arise if q(&m, that is, for small 8

and Hp, and also if cosa. is not too small. For small 8

and Hp we can write as an order of magnitude relation,

kgp+ p(8+ Hp)

ps p k+ skg—s'+—s p(8+go)'
(46)

and q psg. If ps p k, then tana ps'gs/m' and
Es' m if 8, Hs (m/ps)f. In the exceptional case when

P«m, then Es' m if 8, gs m/Ps. Formula (44) will

give large deviations from the Bethe-Heitler formula,
as much as a factor of 6ve, at the larger angles, but
gives very small deviations at the smaller angles
8-gs-m/ps where most of the bremsstrahlung occurs.

As an example, let us consider the case when 8p=o
and 8»m/ps. In this simple case, H(ps —k, y) =H(8', E')
where 8'=8 and E'=E to terms of order m/Ps, and

H(y+k, ps)=H(8", E") where 8"=8 and E"=Es.
Since H(8, E) is independent of energy above 4 Mev
for electrons, ' we can write at gs ——0, g»m/p, ,

H(p. —k, p) =H(a+k, 1 ) =H.t(8). (4'f)

Thus, the deviation may be expressed as

4/ref»= IH.t(8) I' (48)

where ~srr stands for the Bethe-Heitler cross section.

~
H, ~(8)

~

' is plotted in Fig. 1 for atomic number Z= 82.2,
and one can see clearly the large deviation for large 8
when Hp=o. The neglect of screening should not be im-

portant in a result like Eq. (48), for we have restricted
ourselves to the larger angles where the screening
should have little eBect.

Although the Born approximation leads to large
errors in the angular distribution of the bremsstrahlung,
this is not so after the cross section has been integrated
over the angles 8, 8s, and y. Our formula (44) shows that
the integrated cross section as obtained by the Born
approximation has a percentage error which is at most

G0 90 lpo

Scofter)ny ~nf le —+

I

le

Fzo. 1. ~H, &(al es, the ratio of the exact coulomb cross section
to the Born approximation cross section, plotted as a function of
the scattering angle 8 for a=82.2 at high energies.

Real
a.I(e)

Imaginary
a .(e)

Real Imaginary

25'
30'
45'
60'

120'
150'

—0.211
0.820
1.34
1.60
1.72
1.68
1.56

—1.05—0.890—0.389
0.128
0.994
1.54
1.89

—0.26—0.62—0.82

—0.92—0.69—0.47

the order of (m/pp)». This results from the fact that
the percentage deviation expected at angles 8 Hp

-m/ps, where the bremsstrahlung is greatest, is only
of the order of m/ps. We placed the error at (m/ps)f in-
stead of (m/ps), because our expression (44) does not
hold for angles smaller than (m/ps)f.

%'e have not taken screening into account. However,
one might expect this result, that the Born approxima-
tion leads to little error in the integrated cross section
at high energies, to carry over when screening is in-
cluded. For, as the above calculation indicates, the
Born approximation will give the small angle brems-
strahlung correctly and thus also the integrated cross
section.

In Table I, we have tabulated H(8), so that using
relations (39), (42), and (44), the bremsstrahlung cross
section can be calculated at different values of 8 Hp,

and ff. H(8) is independent of energy, for sufficiently
high energies and is related to the function' ' G(8)
which occurs in the calculation of coulomb scattering

TABLE I. H, i(8) is the ratio of the exact scattering amplitude
to the Born approximation expression for the scattering amplitude
of electrons in a coulomb 6eld where Z=82.2 and Ze'/Ac=0. 6
~II~, (8) is the corresponding quantity for positron scattering. For
high enough energies, H(8) is independent of energy.
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by the equation, where again we may note that

H(8) = (2kc/Ze') tan'-,'8 G(8). (49)
(51d)Q+R+2S= T

p+' sin'8+

,(4E-'—q')
(E+ p+ c—os8+)'

p 'sin'8
+ (4E+'—q')

(E pcos8—)'

2p+p sin8~ sin8 cosy+
+ (4E+E +q' —2k')

(E+ p+ cos8+)—(E pcos—8 )VIII. PAIR PRODUCTION

Table I is calculated for Z=82.2, Ze'/Ac=0. 6. For
electron scattering, H, i(8) was calculated by extending

and

the results of Bartlett and Watson for 3.35 mc' energy
and Z=80 to higher energies. For positron scattering,
the tables of McKinley and Feshbach were used. Since
these tables give results with an error of order of 10
to 15 percent, the results for angles above 60' turned
out not to be meaningful. For 60' and less, the results
given have an error of 10 to 15 percent. For angles
smaller than 15', H(8) can be calculated from the small
angle formula of Bartlett and Watson.

Here, as when one applies the Born approximation,
the calculation of pair production is identical with that
of bremsstrahlung. Therefore, only the results mill be
given here. The result for the angular pair-production
cross section is

+=—( Ze' p+p& E+sin8+ sin8 d8+d8 dy+/2r 137k'q')

X }Q(8+, y+, 8-) IH(p- —1, —p+) I'+R(8, y+, 8-)

XIH(-p, +i, p )I+S(8„„,8 )

XLH'(p- —p, —p+) H( —p++ l, p-)+c c j}, (5o)

where the same notation is used as by Heitler.

p 'sin'8
Q= ,(4E+'—q')+

(E pcos8 )' — E pcos8—
X[p 'sin'8 +p+p sin8+sin8 cosy+

k(E++p+ cos—8+)j (51a)

p+' sin'8+ 2k
(4E '—q')+

(E+ p+ cos8+)' —E+—p+ cos8+

X[p+' sin'8++ p p+ sin8+ sin8 cosy+

—k(E +p cos8 )) (51b)

(E= p cos8 )(E+ p+ cos8+)—

X }—p p+ sin8 sin8+ cosy+Lq' —3k'+4'+
+k(p cos8 +p+ cos8+)—2m'k'}

p+' sin'8+ p
' sin'8—k ' +, (51c)

IE+ p+cos8+ E= p cos8 I—

p 'sin'8 +p+'sin'8+—2k' (51e)
(E Pcos8 ) (E—+ P+ cos8+)—

and is the expression that occurs in the Born approxi-
mation formula. '

In the past experiments on high energy bremsstrahl-
ung and pair production in the presence of heavy nuclei,
only the integrated cross sections were measured. The
deviations from the Born approximation obtained were
of the order of 10 percent at energies of the order of
20 Mev. Of course, one must take screening into ac-
count in calculating the integrated cross section. How-
ever, as mentioned above, our calculations lead us to
believe that when screening is included, we would ex-
pect the Born approximation to be in error by at most
of the order of (m/po) &. This is not in contradiction with
the measured deviations.

To repeat, the one weakness in the above treatment
seems to be the application of our high energy wave
function LKq. (13)j to the coulomb field which has a
pole at the origin. However, the general nature of our
results should still be valid in any case. The basis for
our remarks concerning the integrated cross sections is
not affected as our high energy wave function should
give small angle scattering correctly. The large devia-
tions from the Born approximation results obtained at
the larger angles should still be expected, although they
may not be given entirely correctly by our formulas.

In Eq. (35), iP"(r, p) should really have an ingoing
scattered wave. However our results are independent of
this point.

Reference 6, p. 196.


