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Neutron-Deuteron Scattering at High Energy

R. L. GLUCKSTKRN* AND H. A. BETHE
Cornell University, Ithaca, ¹vYork

(Received October 20, 1950}

The neutron-deuteron total scattering cross section at high energy has been calculated by expressing it
as a sum over two-particle states over a wide range of energy. A sum rule was then applied to give the total
cross section, that is, the elastic md inelastic cross sections. The calculations were performed with a Serber
type exchange force for the neutron-proton force in agreement with present neutron-proton scattering data
and a neutron-neutron force of arbitrary depth and exchange character. The neutron-neutron well depth
was then determined for an ordinary, Serber type and pure exchange force between the two neutrons by
making use of the experimental neutron-deuteron total cross section. The neutron-deuteron elastic
scattering was then calculated for the three different types of neutron-neutron exchange and was found
to agree best with the experimental value for the Serber type exchange (no force in odd states). The cross
section for production of low energy protons was also calculated and con6rmed the Serber type exchange
force between the two neutrons when compared with the experimental value. Finally, a qualitative dis-
cussion of the angular and energy distribution of the low and high energy protons was given.

I. INTRODUCTION

A T Grst glance it appears likely that the neutron-
deuteron scattering cross section can be given

accurately as the sum of the individual neutron-proton
and neutron-neutron cross sections for suKciently high
energy. However, as has been pointed out by Chew'
and others, "the interference between the free particle
collisions is appreciable at all energies, since collisions
of small momentum transfer are favored. One must
therefore correct the sum of the neutron-proton and
neutron-neutron cross sections by the correctly evalu-
ated interference term. It will be seen that another
important correction arises from the fact that the
neutron-proton cross section itself is aGected when
the Pauli principle is applied to the two neutrons. In the
process of evaluating the total neutron-deuteron cross
section, we shall determine the magnitude of both of
these eGects, as well as the inQuence of such factors as
spin dependent and exchange type forces.

Ke shall assume that the neutron-proton inter-
action is a Serber force, in agreement with the inter-
pretation of the present experimental evidence. 4 By
comparison of the calculated and experimental results
for neutron-deuteron scattering'~ we hope to derive
some information concerning the magnitude and ex-
change character of the neutron-neutron force.

The calculations will be performed using the Born
approximation; i.e., considering the interaction between
the incident neutron and either particle in the deuteron
as the perturbing potential. We shall express the total
cross section as the sum of three terms: a neutron-proton
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II. ORDINARY SPIN-INDEPENDENT FORCES
VGTHOUT PAULI PMNCIPLE

Let r1, r2, and r~ be the coordinates of the neutron and
proton in the deuteron and the incident neutron, re-
spectively. We shall transform to the coordinates R,
x, and r as shown in Fig. 1.

r= r1—r2

r1 ——R—-', x+-', r
r2 ——R——,x—~r .
rg ——R+-;x

cross section, a neutron-neutron cross section, and an
interference term. If we can then identify the neutron-
proton and neutron-neutron terms as those which would
be obtained in the corresponding Born approximation
calculations for the two-particle collisions, we can use
the experimental cross sections wherever possible. In
this way the calculated neutron-deuteron cross section
mill be more satisfactory than might be expected with
the Born approximation.

In calculating the total neutron-deuteron cross section
we shall need to sum over final states which are made up
of two-particle states covering a wide range in energy.
By rearranging the integrals we shall be able to express
the cross section as a sum over the two-particle states;
the use of sum rules will then give the total cross section
without requiring the explicit calculation of the two-
particle continuum states. However, the continuum
states anil be needed for the diBerential cross section.

In order to illustrate the method, we shall outline the
calculation in Sec. II under the following assumptions.
(a) There are no spin dependent forces. (b) There are no
exchange forces. (c) The particles are all distinguishable;
i.e., there is no Pauli principle. These assumptions will
be removed in Sec. III. The calculations will be carried
out only in the nonrelativistic case, although relativistic
corrections start to be important at about 200 Mev.
Tensor forces will not be included in the present paper.
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The energy of the entire system is

(Mft)' (Mt,)' (Mf,)'
+ y +V»(l rt »—I)

2M 2M 2'
+V»(( r,—r, ()+V~~([ rs —r2))

(3)
(3MR)' (-',Mx)' (-'Mt)'

+ + +V~&(r)
2(3M) 2(ssM) 2(-', M)

+V~+(( x—sr()+ V~~(( x+2r(),

where the dots are time derivatives and the V's are the
two-particle interaction potentials. If we now consider
the last two terms in (3) as the perturbing potentials and
eliminate the motion of the center of mass, we can
write the initial state of the system, 4;, as the product
of a plane wave normalized in a box of volume I.', and
the ground state of the deuteron, $0(r).

%;=L &exp-(ilt x)&0(r), (4)

where kh= ~3Mx;. The total energy of the system in the
laboratory system (tt = fs = 0& fI=x;) ts

E= 'Mtss s=-~Mxj—e= (9k'k'—/8M) —e (5)

where e is the binding energy of the deuteron.
We shall take for the asymptotic motion of the 6nal

state
kk'= ~~Mxf, kk"= ~Mff, (6)

but we must be careful in our choice of a wave function
for the final state. Since the energy in the center-of-mass
system is still quite large, there will always be at least
one particle which may be taken as free after the col-
lision, with a possible strong interaction between the
other two. Ke shall therefore divide the momentum
space for the 6nal state into three regions:

regions as

(a) %r=L t exp(ilt'. x)ij~"(r) particle 3 free, (9a)

(b) 0'y=L t exp[iit"' (s, r——,'x) jap' (—x——',r)
particle 1 free, (9b)

(c) eg= L texpL-s1c' (——,'r —-,'x)j
XP&-'(—x+-,'r) particle 2 free, (9c)

where kk"', kk", kh', and kk" are the momenta con-
jugate to the coordinates xsr —~sx, —x—x~r, —)r—sx,
and —x+-,'r, respectively. The wave functions, P&~,

are two particle wave functions corresponding to rela-
tive momenta kk' and may either represent the ground
state (elastic collisions) or the continuum solutions of
the two-particle problem. These are just the functions
to which we hope to apply the sum rules.

Let us 6rst consider a collision with values of h' and
lt" in region (a). The matrix element for the transition is

XexpL —i(it' —it) xj f V~~(~ x—qr~)

+V~~(( x+s'r
~ ) I drdx. (10)

If we make the change of variables r=r, x—~~r=y in
the VN~ term and r=r, x+~r=y in the VN~ term, the
matrix element becomes

OR=L ' VN~(q))"pl, "*(r)po(r) exp( ,'i l tr—)d—r.

+V~p(q), P~"*(r)fo(r) exp(sitl r)dr (11)J

(a) particle 3 free, interaction between 1 and 2
(near f', =f„.lt"=0),

(b) particle 1 free, interaction between 2 and 3
(near fs f, ; it'=rslt"), ——

(c) particle 2 free, interaction between 1 and 3
(near f& fa, lt'= ——-', lt").

with

V(q) =,~V(y) exp(~itl y)dy,

The cross section is given by

(12a)

(12b)

Since conservation of energy is given by'

k"+(4/3) k"'= k',

region (a) can be taken, for example, as

0&k"/k&s=0. 6, 1&k'/k&1=0. 7, (8)

the exact values of s and t being unimportant. A similar
choice for regions (b) and (c) is possible, but we shall
show later that the boundary of the three regions has
little bearing on the problem.

We can now write the 6nal wave function in the three

da =L'(2s./ks) jOR~'ps(lt', lt")dlt'dlt", (13a)

where s=
~
x;

~

= (3kk/2M) is the velocity of the incident
particle in the laboratory system and ps(it', lt")dit'dit"

~ We shall later show that the binding energy can be neglected
with respect to the incident energy in the conservation of energy.
See Appendix D. FIG. 1. Change of coordinates from r1, rq, rg to I, x, r.
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is the energy density of Anal states,

(Lq2 (Bk'y (Lq'
PN(k', k")dk'dk"=

/

—
f

k'
] /

dQ'] —
/

dk";
E22r) E BLJ 2" (22r)

(dE.) 3h'k'

(Bk ) y~r 2M

ply
I

Thc cross section thcl'cforc bccoITlcs

0 = "(M'/92r'h') (k'/k) dQ'(L/22r)'d k"
~

L23n
(
'. (13b)

To evaluate the total cross section we must now in-
tegrate over all values of 0', 0", and k" for which
energy is conserved, remembering however, that we
have an upper limit sk on k" which bounds region (a).
The integrations on 0' and 0" are over all solid angles.
To obtain the total cross section for region (a) we shall
hold k" (and by (7), therefore k') fixed and change
from the variable 0' to q.

q'= ik' —ki2=k"+k' —2kk' cos8; (14a)

—2qdq = 2kk'd(cose) = kk'dQ'/lr. (14b)

The cross section for region (a) becomes, using the
value of 5R from (11),

ek

(r, = (2M2/92rh4k2) (L/22l)2k'"dk" t dQ"
2

qdq VNN(q)~ f& *(r)$2(r)exp( —2'iq r)dr

FIG. 2. Region of integration for I in the tt:"q plane.

0.2, ——(2M2/92rh4k')

2k oe

X t qdqVNP'(q) " (L/2~)'dk"
4p

'2

X p„"*(r)go(r) exp(tiq r)dr, (18b)

a2.= 2 (2M2/92rh4k2)

22

qdqVNN(q) &N p(q) (L/22r)'dk"
4o

XRe
~

rt2 *(r)$2(r) exp( —
—2,iq r)dr

~

(

X I P» *(r)$2(r) exp(rliq r)dr, (18c)

+1'»(q) A-*(r)A(r) exp(2ill r)« . (15)

The region of integration is shown in Fig. 2. It is
bounded by the lines k"=0, k"=sk and by the ellipse

(q
—k)'+ (4/3) k'" =k'. (16)

'Bic point A represents a possible strong interaction
between particle 3 and either I or 2, and must be
avoided.

If we perform the integration 6rst over the entire
region between the two vertical lines q=0 and q=2k,
and then subtract the integration over the shaded area,
we obtain

(r, '= (2M2/92rh4k2) qdq (L/22r)2dk"
~

L23R ~2. (18d)

(shaded region in Fig. 2)

We have 6nally achieved what we set out to do: to
express the total cross section in some way as the sum
over final states for the two p4trticle wav-e functions. The
J;"(L/224) 2dk" represents just such a sum, and we can
now apply a sum rule to evaluate r&, o-2, and o 3,which,
as we shall show, represent the major portion of 0,.
We shall use

Qf(ff QQ)*(pf, Xpo) =Qf oMI flVo= o(M lV)o, (19)

where M and 4V are hermitian operators, and

where

t'

&a &la+02a+&3a Oa y

2M1 = $2 (r)M/1(r)dr = (f2 Mpl) ~

01,——(2M2/92rh4k2)
o-~, ~2, and 03 therefere beCOme'

qdq VN N2(q) (L/22r)'d k"
p 4o

X )~$2" (r)$2(r) exp( qi41 r)dr—, (18a)

We have assumed in applying the sum rule that for fixed q,
M and X do not depend on the final state. However, it appears
that they do, since they seem to depend on the direction as well
as on the magnitude of q. But by performing the angular integra-
tion on k" first, one can see that the integrals o1, o2, and oe are
functions only of the magnitude of q, since there is no preferred
direction possible.
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Fir. 3. Superposition of the two-particle scattered ~aves.

proximate a complete set only if both parts are taken
together.

In a similar manner the same result can be obtained
for regions (b) and (c). It now becomes clear that the
total cross section can be obtained without splitting the
region of integration by using plane waves throughout,
that is, in the entire half-ellipse in Fig. 2.

Of course, in the calculation of the angular and energy
distributions of either neutrons or protons, a better
approximation to the wave function, P~-(r) will be
necessary, since there are no sums over two particle
states. This matter will be treated in Sec. VI.

We shall now evaluate the total cross section by
replacing f&"*(r) by the plane wave

oi,= (2M2/9~k'k') qdqV, .w'(q) Po2(r)dr, (20a) fg-(r) =L—& exp(ik". r),

o2. (2M'/9xk4k') (((fql', ,'(q) Poi(r)dr,
aJ

as we have just discussed, and by extending the region
of integration for (15) to the half ellipse in Fig. 2. If

(20b) we define the momentum distribution (Fourier trans-
form) of the final state as

~2k

og, ——2(2M'/9vrk'k2) qdqV~~(q) V~p(q)
Jo q (s) = exp(iz r)Po(.r)dr, (2l)

we obtain for the total cross section

J 2k

The integration over the shaded region in Fig. 2 is

mostly for large k". In this region, we shall therefore
replace Pi,"*(r) by L &exp( —ik" r), its asymptotic
form for large k". This approximation will be justified
in Appendix E.

We have seen that the application of the sum rule to
Oi, O.~„and cr3 gives a result independent of the form
of the P~"(r). The only requisite is that the Pi"(r) form
a complete set of eigenfunctions, a condition which we

satisfy by extending the k" integration up to oo and by
including the ground state in the case of triplet inter-
action. Exactly the same result would have been
obtained if we had. used the set of plane waves
L & exp(ik" r) for the f~"(r). We therefore arrive at
the result that we can obtain the cross section o. by
using Plane waves for the two-particle wave functions in

the original region of integration I region (a)$. This is

quite startling, since it is in just this region that the
two-particle wave functions are cot plane waves. The
reason for this surprising result is that the contribution
of the elastic scattering is just canceled by the cor-
rections to the plane waves which must be applied for
the low energy free two-particle states. The elastic
scattering in a sense "robs" the neighboring low energy
two-particle states.

It now appears that the total cross section is a more
fundamental quantity than the inelastic cross section,
and calculations should be directed accordingly. To be
sure, the total cross section is made up of an elastic and
an inelastic part, but these complement one another in
such a way that the two-particle wave functions ap-

o=(2M'/9~&'k') qdq~ (&/2~)'dk"

X I Vvv(q) v (lk"+!«I)+ V-(,) v (I k"-.'-el)
I

- (22)

H we neglect the contribution above the ellipse, wc
obtain the expressions in (20) combined to give

o'= (2M'/9z k4k') qdq dr
J

& I V~~(q)+ V»(q) exp(iq r) I
yo'(r).

We shall now 6nd it possible to give a simple physical
picture to both (22) and (23).

Let us consider the wave scattered by each of two
particles, separated by a displacement, r, as in Fig. 3.
The amplitude for transferring a momentum q is pro-
portional to V(q) for each particle, and the difference
in phase for the two waves is h'. r—k. r=q r. Since the
probability of finding the deuteron with a relative
separation r is Po (r)dr, the cross section for this cal-
culation will be proportional to

"«I V»(q)+ V~p(q) exp(iq r) I Vo'(r)

which when integrated over angle with appropriate
factors gives the expression (23) for o'. The inaccuracy
in this expression then lies in the assumption that the
particle not struck remains stationary.

If instead we consider the deuteron as a superposition
of plane wave states of momenta z with amplitude q (s),
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the amplitude for scattering from the state given in

Fig. 4(a) in the laboratory system to the state in Fig.
4(c) is proportional to VNN(q) 37(z). However, we may
also obtain the final state in Fig. 4(c) by starting with

the state in Fig. 4(b) with an amplitude for this transi-
t.ion proportional to VN7 (q)s7(ls —31{). If we now let
the momentum of the struck neutron and proton
relative to their center of mass be k", we have
z=h"+-', g. The cross section for this calculation will

therefore be proportional to

I vNN(v) s (I 1 "+chill)+ vN~(v) 3 (ll "—lill) I',

which, when integrated over all values of q and z that
conserve the over-all energy, leads to the expression

(22) for ~. The reason for the validity of this picture is
that we have justified using plane waves to obtain the
total cross section.

Before calculating the value of these integrals, we

shall remove the simplifying assumptions used in this
section.

Fn. 4b. Momentum state before a neutron-proton collision.

VNN(&13) (73 +773 P13). (26b)

VVe shall choose a linear combination of signer,
Majorana, Bartlett, and Heisenberg forces for the
neutron-proton interaction. For the neutron-neutron
interaction only the %'igner and Majorana forces are
necessary.

VNp" ——VNP(r»)(m~+773„P33+b~Q»+b~P33Q»), (26a)

There are eight linearly independent and orthogonal
spin functions which may be written as

XI = a&a2a3& (27a)

H7 X3——(1/~3(aia3b3+aib3a3+bia3a3), (27b)

x3—(1/v3)(b, b3a3+bia3b3+a, b3b3), (27c)

X4= bgb2b3, (27d)

Fir, . 4a. Momentum state before a neutron-neutron collision.

X3
——L1/(6)tj(2aia3b3 —aib1a3 —bia3a3), (27e)

x3——
I 1/(6)&j(2bib3a3 —bia3b3 —uib3b3), (27f)

III. SPIN DEPENDENT, EXCHANGE FORCES
WITH PAULI PMNCIPLE

X7——(1/V2) (aib3a3 b10383),

X3= (1/&2)(b, a3b3 —u, b3b3).

(27g)

(2711)

Since the neutrons are indistinguishable, we must

apply the operator (1—P»Q»)/v2 to both the initial
and final state wave functions, where P and Q exchange
the space and spin coordinates, respectively. The
matrix element will then be

.'%= -', ( {1—P»Q13 }%7'xI, V {1 —P13Q13}4'ix, ), (24)

where X; and X~ are the initial and final spin wave
functions. The perturbation V must be chosen diGer-

ently for the direct and antisymmetrized terms; it must
be taken as the interaction between the particle de-
scribed as free in the +; or 8~34'; and the other two.
This gives

'ttt= 3({1 P»Q13}+—ixj,
{1—P13Q13} { VNV "+&'Np" }+;X;).

Sinre 1 —P&3Q13 is hermitian and

(1—P13Q13)'-= 2(1—»3Q13),

we obtain for the matrix element

~=(+y~, {1—P13Q13}{VNN"+VN7»}+'X') (25)

The first four are quartet spin functions corresponding
to a total spin of ~. The other four are states of total
spin ~, the first two of which are symmetric and the
last two antisymmetric in the tv o particles 1 and 2,
originally in the deuteron.

The initial state is clearly either a quartet or a doublet
symmetric state with a relative frequency of occurrence
of two to one. For the quartet states all the spin

FIG. 4c. Momentum state after either collision with a
momentum transfer q.
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exchange operators leave the state unchanged. The
6nal spin function must therefore be the same as the
initial one to give a nonvanishing matrix element. For
the doublet symmetric state, x~,' the spin exchange
operators Q give a mixture of Xo and X7. The final spin
function can therefore be either x~ or yz.

If we put the expressions (26) for V7I7B and V7717 into

OR given in (25), and use the initial state q7; given in (4),
we obtain

I ~OR= (0j {a1V( l
x—or l ) exp(ok x)fo(r)

+aoV(l x—
2r l) expLok (-'r —2x)]A(l x+2r I)

+aoV(l x+orl) exp(ik x)Iko(Y)

+a4V(lx+-,'rl) exp[ok (——,'r ——2«)]go(l*—2rl)

of the two neutrons in the final state;" for example,

$k+
47QU~ 74= (M'/& 77&&'k ) t (L/277)ok" dk"

J„
k-I-Ic'

7fdVIL'ORQU»l', (32)

where ORQU~B is obtained from (28) by using the
quartet values for the c's in Table I.

In considering the 6nal state we shall, as before,
divide the h', k" space into three regions. In the region
in which particle 3 can be considered free the anal state
is given by (9s,). The matrix element, after appropriate
changes of variables, becomes

+aoV(Y) exp[ik (or—2x)]A(l x+2rl)

+aoV(r) exp[ik (—or —2x)]|ko(l x——,'rl) I). (28)
where

L'OR=+ a1 Po»*(r)F4(r)dr, (33)

%e have used

P12X= X) P&2r= —r,
F1(r)=fo{r) exp{——,'iq r) V(4t),

P„x=——'r ——,'x, P~3r= —x+2r,
F2(r)=exp( —-', iq. r)J dyV(y)Iko(l y+rl)

PIex= gr=3 —1 P&sr= —x——,r1
7 Xexp[—iy (q+sok)], (34b)

TABLE I. Values of the coeKcients ai for the quartet, doublet
symmetric, and doublet antisymmetric matrix elements in (33)
and (35}.

F,(r) =Iso(r) exp(-,'iq r) V(q) = F1*(r), (34c)

al
a2
a3
a4
aq
a6

Quartet

Kn —mn—R' +m
oop+bp
mp+hp—2o —bp p—mp —hp

Doublet xs

2.0n+ ymn
$+'n+mn
2op —jbp
mp —ghp
y'N p+ $bp
kmp+khp

Doublet x7

$m„A
)m„v3
&b„v3
ghpvS
'(~ —b„)VS
)(m„—h„)V3

Xexp[ —iy (q+-'k)] =F2*(r), (34d)

Fo(r) = V(r) exp[2'ir (q+3k)]4o(l q+2kl), (34e)

Fo(r) = V(r) exp[ ——,'ir (q+3k)]22(l q+ookl)

=Fo*(r). (34f)

QIox1= x1, Q12Xo= —2Xo—2V3X7,

Q13X7 ov3xo+ 2X7~

The u's" are given in Table I. The total cross section
can now be obtained as

ITTUT 2 0 QU74B+ 2 (UDUUB BY&+I7DUUB A77TTBYM) I (31)

where the U's on the right side of (31) are given by
(13b) and (14b) except for a factor -', due to the identity

"yg and gg differ from g& and y7 by interchanging a and b so
that they need not be considered separately in obtaining the
matrix element.

'0 A sample calculation for the doublet gg a's is given in Ap-
pendix F.

Q12x1 Xlr Qloxo X6I Q12X? X71

1 1~IVQ12x1= x1, Qooxo = —
2 xo+ 2'~X7I

Q22X7= 2V3Xo+ 2X7, (3O)

When we now take l L2ORl' we obtain 36 terms of the
type

Jt P4."*(r)FI(r)dry k&I"(r) FI(r) rd

As before, we can apply a sum rule in evaluating the
total cross section. The procedure is similar to that in
the preceding section and justifies the use of plane
waves for the Po"(r) throughout the elliptical region
in Fig. 2.~

"As in neutron-neutron scattering.
~One important difference is that the F&(r) are not really

independent of the final state. In the preceding section we con-
sidered only the terms F& and F3 and we were able to show that
the variation of the direction of q over the final states had no
eEect, but the argument is not valid here since the other F's
depend on q. After the 0" and r integrations are performed the
terms will still depend on the angle between q and k which depends
on boih q and k", and can be expressed, with the use of (12b) and
(7), as

k q= $(k'2 —k~ —q~) = —gq2 —-'p"2.

However we now see that, for small k", where the sum rules are
nec~ry, the angle between q and k is reasonably constant and
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If we now set

tlat '(r)=L-&exp( —ik "r)

in the matrix e.lement (33), we &&1&tain

integrals are not distinct. In fact, there are only five
different integrals

6

IP ' ')tt =-. Q a(Ci'(,
I=i

where
0; X, A.S.

(q) q(l k"+2tl

(35)
I Gg' —— ~G6' (37a)

=U(q)~(lk"+lel), (36a) J
(37b)

X; 0, A..S.
C2= Vvx- (I-,'k+kti —k" I) v(lk"+ktll)

= U(q') t (lk'"+natl'I), («b)
l71=JI (r,'CI, —— GgG4 ——J~Cid. s, (37c)

0
G3= Vv~ (q) v'(Ik" —2ql) = U(q) v (Ik"—lql) (36c) tv= I"G/G4 GgGQ GQG3 G2G6

G4=V~p (lkk+ktt+k"I)e(lk" —ktll)

= U(q") t (lk"*'+2q" I), (36d)

0, A.S.
(I 2k+k» —k" I) q (I 2k+ a I)

= V(q')q(lk'" —lq'I), (3«)
V=, GgG4=, GIG6 —— GSGg,

J

GsG6= Jl G4Gs, (37d)

(37e)

X, A.S.
(I 2k+-'. &+k"I)«I l k+ql)

= &(q")q(lk""—2q" I) (36f)

where the subscripts and superscripts on the Vq' are
included for clarity, and describe (a) the type of force

(0, ordinary, or exchange) between (b) the two par-
ticles interacting and (c) whether or not the term
arises from the antisymmetrized part of the initial

wave function. Gi and G~ can arise in two diGerent

ways; these are separated by semicolons. The G's have
also been expressed in terms of the momentum vectors
k"'=tl+k' k'" k'=tl"+k k"' obtained from a cyclic
permutation of the three particles. A little thought
will show that the forms of the G's are necessarily the
same as in the k', k" space, since the space exchange
operators giving rise to the terms G2, G4, G~, and G6 do
nothing more than permute (and invert the "sense" of)
the three particles. In addition the density of 6nal states
can be expressed in terms of the permuted momentum
vectors since

dk'dk" dk"'dk" dk"dk"

If we now put the matrix element (35) into the
cross section (32), we find we have 6+-,'(6 5)=2j
integrals to evaluate. However, because of the sym-
metry mentioned in the previous paragraph all these

q may therefore be considered fixed. In addition it can be seen
from (3{i) that the vicinity k"=0 contributes only very slightly
in all but the 6rst and third terms.

qdq V'(q) 0'"dk" dQ" v '(I k"+-,'ql ),
~o

(38a)

xv(lk"+l~l) p(lk" —-lttl), (3~&)

0"= 4-q(2& —q) (39)

Detailed evaluation of the integrals I—V is carried out
in the Appendices A, 8, and C. However, there are
several qualitative features which may be discussed
without specifying a particular potential. If we change

&& V(l ak+l ti —k" I) t"(I k"+la I), (»c)
~2k

/ V = qdq V(q) 0'"dk" dfl"
J„

y V(l -', k+,'-q —k" I)

Xv(lk"+-''ql)q(lk" —l~i), (3gd)

pQ

qdqU(q) k"'dk" ~dfl"
0

X V(l -', k+-', q+k" I) U(l -,'-k+-,'tl —k" I)

&«(Ik"+2~I)~(lk"—k~l), (»e)
where
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result exclusively. One slight change is that the upper
limit on the q integration has been changed from 2k to
the more accurate value ~k. This agrees with the tzoo-

particle picture where the maximum momentum
transfer 2k is obtained in a head-on collision between
the incident particle and one of the particles in the
deuteron.

We have obtained our results thus far without the
use of an explicit potential. However, we must now
choose a particular form for the potential and for the
corresponding deuteron ground-state wave function.
Ke shall use the Yukawa interaction"

2k
V(r) = Voe &'/pr (43)

with Vo=67.8 Mev, p, '=1.18)&10 " cm. For the
ground state $0(r) we shall use the Hulthen wave
function

rfo(r) =X(e I" ee')— (44.)
FcG. 5. Region of int.egration for I in the sq plane.

The region of integration is shown in Fig. 5. Since the
deuteron is large compared with the wavelength of the
incident particle, s (s) will be important only for small s.
We can obtain a rough approximation to the integral
at high energy by integration from —~ to ~ on z

wherever the z integration goes through z=0, that is,
for 0&q&-,'k and using zero for the z integral otherwise;
i.e., for q &+k. If we do this, only the even part of the
z integrand will contribute and we will obtain for this
approximation to I

Since

$k Qo

1„=2s I qdqV"-(q), I s's'(s)ds.
~0

s'qP(s)ds= (1/2s) I y'-(s)dz
I a11 space

(41)

the variable 0" to s=
}
k"+-',q} as in the appendix, we

can express I as

~ k+0
7= 2s.

) dqV'(q) ) sy'(s)ds
n ke—Q

X {sq —(q'+s' —-', qk) }. (40)

with S'=aP(P+a)/2x(P a)', a—=(Me/h')&, P/a=7.
The value of 7 for P/n differs from Chew's value of 5-,'
and represents an average of the values obtained'4 by
using a variational principle on the binding energy,
calculating the effective range"" in terms of P/n,
satisfying the Schroedinger equation at r=0, and using
a variational principle on the wave function in mo-
mentum space. These criteria give values for P/a of 6.8,
6.9, 7.3, and 7.1, respectively.

We shall consider an incident energy of 90 Mev, for
which k

—'=0.72)(10 " cm. The latest value of the
binding energy" is 2.226 Mev and leads to the deuteron
radius n '=4.314X10 " cm, and P '=n '/7=0 616.
)&10 "cm.

Using the Yukawa potential (43), we obtain for Jo,
the sum rule approximation to I,

Io (2s) (4sVO/p——) (1/2p) {1—(1+9@/4p) '}. (4$)

The exact evaluation of the integral I in the appendix
shows that the value obtained for I is 14 percent smaller
than the value obtained for Io at an incident energy of
90 Mev. The main contribution to the 14 percent comes
from the fact that we have extended the lower limit
on the z integration to —~. If instead we use

s'-s '(s)ds
-)I

because of closure, I becomes

10= (2s)' I qdqV'(q).
J„

(42)

As can be seen from (20a, b) this is just what was
obtained when we neglected the contribution of the
region above the ellipse in Fig. 2 and used the sum rule

in (41), our result for Iwill be only 4-,' percent too small.
A similar phenomenon occurs in the interference

term II. If we change variables from k" and 0" to
r~ ——{k"+s'q{ and rm {k"—s'q} as in A——ppendix 8, we

"These are the values used by Chew (footnote 1) and represent
the best 6t with the Berkeley data without tensor forces.

"E.E. Salpeter, private communication.
'~ G. F. Chew and M. L. Goldberger, Phys. Rev. 77, 470 (1950).
's H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (j.950).
'~R. C. Mobley and R. A. Laubenstein, Phys. Rev. 89, 309

(j.950}.
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Ke are now in a position to evaluate the total cross
section. In order to do so, we must specify the exchange
character and spin dependence of both the neutron-
proton and neutron-neutron forces. For the neutron-
proton interaction we shall use the spin-dependent
Serber force

obtain

t'+~
tr=2T dqv'(q)

J
r, q(rr)dr,

aJ 0

(3qk —r ts —q~}&

XJf e-"F1+I'~ r1+q 1—
q ~V(T)= VoT

I
—

I{ + g { (52)
44r 4 2 ) L 2 2 )%e have shown in Appendix 8 that at high energy II

reduces to
where 41= Vos/V T=46.5/67. 8=0.686 and for thc
neutron-neutron force

3

II„=(2rr)' " qdqV'(q) P„'(r) exp(441. r)dr (47)
V()= V.'(e-"'/~ )k[-'(1+b)+-:(1—b)I'j, (53)

where 8 describes the space exchange character of the
force. ' W'e therefore have

which is the result obtained in (23) for the interference
term evaluated directly from the sum rule, independent
of the explicit form of the potential.

The exact evaluation of II in the appendix shows

that II is sma11er than IIO by 19 percent at 90 Mev.
This is somewhat larger than the error in Io but is due

to approximately the same cause.
The relative value of I and II at 90 Mev is

to„=rrsp= -', (1+g), b„=k„=4(1—g)

w„=-,'(1+b)$, Ir4 =-', (1—b)g

II=0.46I. (55)OTOT (ONP+OINTRRP+ONN)
whereThis implies quite a large interference term and is sur-

prising in view of the high energy. Because of the factor
V'(q) in the integrands, the most important momentum
transfers are of order of magnitude q p, . Since the most
important values of r in (47) are r ' 2n, the most
likely phase factor will be exp(i44/2a). Since 44 is Irol

much larger than 2n{ (44/24t) =1.8], the interference
term will not be small. Moreover, the ratio, II/I, will

not decrease appreciably with increasing energy. This
can be seen from (42) and (47), since neither Irr or IIrr
are appreciably afFected by raising the upper limit on q.
Of course, we have omitted the constant factor, which

is inversely proportional to the energy in each of these
terms. However, this does not afFect their ratio.

The evaluation of III is considerably more difFicult

and has been done only approximately in the appendix.
The va1ue obtained is

o Np = (M'/9s k4k') (1/24r) ' {4 (3+g') (I+III)
,', (5 2I1+v—p)(II—+2IV+ V) {, (56a)

or.vvr. r. r = (M /9sk ks)(1/2s)4{ 4(1+g)
X (II+2IV+ V)+44b(5+ n) (Il V) l r (561r)

o.vr, = (M'/9mk4k') (1/24c) '
X {.', (I+III)+ 'b-'(I III) }.-(56—c)

%e have used the subscripts VE', I.VTERF, and XX
to correspond to the source of these terms as evidenced
in the particular power of $ in each term.

If we had made separate calculations of free neutron-
proton and neutron-neutron cross sections at the same
incident energy using the Born approximation, we
would have obtained

(49) o g p' = (M'/9rrk'k'), '-(3+g') f qdqV'(q)III=0.43I,

which is quite large. This integral represents inter-
ference between direct and exchange boo-particle scat-
tering (GtGs, GsG4, GsGs) and is similar to the cor-
responding term arising in either neutron-proton or
neutron-neutron scattering. It need not be calculated
accurately, since it can be obtained from the two-body
scattering experiments. %e shall later group it with
terms which will represent the experimentally observed
neutron-neutron and neutron-proton cross sections.

The integrals IV and V are also evaluated approxi-
mately and represent more complicated interference
terms. Their values are

qdq V(q) V(l s &+el) ~, (57a)

TAsLE II. Values of the coef6cients a~ for the neutron-proton force
in (52) and the neutron-neutron force in (53).

Quartet Doublet 7r, Doublet y,

a1
a~
a3
84
ag
as

S(3+~)/4
g(3—~)/4
(1++)/8
(~+%)/8

((1-s)vs/4
$(1+a)v3/4

(& —&)m/8
(~-,)&/8

q%/4
~%/4

IV=O.j.jI,
V=O.OSI.

'8 b is the relative magnitude of the neutron-neutron force in
51 odd and even l states.

so that the u's take on the values in Table II. If we now
use (31), (32), and (35—38), we obtain for the total cross
section

(48)
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~fk
o~~" ——(M'/9s k'k')P -'(1+38') ~ qdqV'-(q)

(

2

I= ~qdqV'(q), x'(s)dz, (58a)

III= )tqdqV(q)
'

V(i-,'4+q —zi) x'(s)dx (58b)

integrated over appropriate values for z, where
x=k"+qq, and since

y'(s)dz= (2s)',
a11 x

we see that agog contains terms which are very similar
to the two-body cross sections. There are therefore
three corrections to considering the total cross section
as the sum of the two-body cross sections.

(a) The integrals must be performed over only those
momentum states of the deuteron permitted by con-
servation of energy.

(b) The interference term must be taken into account.
(c) There is a correction to the neutron-proton cross

section which arises from the interference between the
exchange scattering of the direct and antisymmetrized
neutrons by the proton. This is the second term in

(56a) and is considerably smaller than the first.
Since the Born approximation for the total scattering

gives a result which is a corrected sum of the two-

particle cross sections calculated with the Born ap-
proximation, it seems reasonable that the exact total
cross section would give the sum of the exact two-

particle cross sections, corrected in a similar way. If
this is so, we ought to use the measured two-particle
cross sections rather than those calculated by Born
approximation when evaluating the total scattering. An

argument which may make this more plausible is the
following.

Consider the next order Born approximation, that is,
double scattering in the potential wells of the two

TABLE III. DiViSiOn Of oND betWeen O'NP O'IN'T'gRPs and ~NN
as a function of the exchange character of the neutron-neutron
force.

X-Ã force
(= VNN j~NP~

&NP
~INTER'

&POF

0.44
71 mb

26 mb
2Q mb

1G mb

$(1+P)
0.80

71 mb
16 mb
30 mb

117 mb

P
0.77

71 mb—16 mb
62 mb

117 mb

sI

+,'(1—38'-'))~ qdqV(q)V(i-. ,'k+q~) . (57b)
0

8ince the integrals I and III are given by (38a) and
(38c) as

nucleons. This may take place either twice in the
neutron well, once in each well, or twice in the proton
well. Since the radius of the deuteron is considerably
larger than the range of the forces, the term corre-
sponding to successive scattering by the neutron and
the proton will be smaller than the term corresponding
to a double scattering in either well, and will be omitted.
If we also neglect successive scattering in higher orders,
then, roughly speaking, the amplitude for the total
scattering is just the sum of the hrst, second, and
higher order scatterings in the neutron well and the
first, second, and higher order scattering in the proton
well, that is, the sum of the true neutron-neutron and
neutron-proton scattering amplitudes (with appropriate
phase factors). We may therefore feel justified in

replacing the appropriate terms in (56) by the observed
values wherever possible. Although this treatment is
far from rigorous, "it should be a considerable improve-
ment over using the Born approximation directly.

Let us therefore adjust the constant in (56) so that,
crt' ' is 83 mb, the observed neutron-proton cross
section' where 0~~——kg' '—ho~y. The corresponding
neutron-deuteron cross sectian' is 117 mb. Since we
know all the quantities in amor except 6 and $, we obtain
the following relation between b and $:

L1—0.15]+$L0.24+0.498j+@[0.58+0.698'j = 117/83.

If we set 5=+1, 0, —1 corresponding to ordinary,
Serber, and pure exchange forces, respectively, for the
neutron-neutron interaction, we can determine $ and
therefore the relative value of each term. The results
are given in Table III.

It may be noticed from (56a, b) that the form of the
interference term for 5=0 is the same as the correction
for the neutron-proton cross section. As we mentioned
before, the reason for this is that the neutron-proton
correction term is mainly an interference term between
the exchange scattering of the direct and antisym-
metrized neutrons by the proton, a term which has
exactly the same form as the interference between the
incident neutron scattered by the neutron and by the
proton. The similarity of these two terms can be seen
more easily if we antisymmetrize the anal state instead
of the initial state. A neutron-proton exchange collision
will then give rise to a proton in the forward direction
and two slowly moving neutrons. If we now antisym-
metrize this 6nal state in the two neutrons, we see that
the two terms represent very similar states and therefore
wil1 interfere. This interference will therefore be analo-
gous to the ordinary interference between the small
momentum transfer neutron-neutron and neutron-
proton collisions. The similarity of these two terms in
magnitude is most likely accidental, since they depend
diBerently on g and $. We evaluated the form of these
two terms for a neutron-proton force of arbitrary

"Perhaps the most important error is due to the phase factors
in the exact scattering amplitudes, which cannot easily be deter-
mined from experiment.
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exchange character and found that only in the case of
a Serber force for both interactions is the form of the
two correction terms, or~~ gg~ and Aa~~, the same.

If we are to choose between the values of +1,0, and
—1 for 6, we must make use of other measured values,
such as the elastic scattering and the angular and energy
distributions. For this reason we have repeated Chew's

calculation of the elastic scattering, ' with arbitrary 8

and (. This work is discussed in the next section.

where

p2k 2

o,(= (2'/97rh4k') I qdq Q g~(
4p l~l

(59)

jj,=H, =I,= V(q)J draco'(r) exp( f2' r),

H4=I2 J"draco(r) exp(-,'iq r) dyV(y)

X/0(l y —rl) exp[ —~y (q+o&)], (60b)

Il =II —=I = (~ q+lkl) td 0o()V( )

Xexp[-', i(q+3k) rj, (60c)

and the a~'s are given as before in Table I. The integrals

Il, I2, and I3 correspond to Chew's' notation for the
elastic cross section.

With our assumptions for V(r) and fo(r) as stated in

(43) and (44), Iz and I3 can be calculated explicitly, but
I2 must be evaluated numerically. The term I~ repre-
sents a small momentum transfer to either the neutron
or proton in the deuteron and is therefore the main term,
giving a large forward peak for the incident neutrons.

I2 and I3 represent the sects of antisymmetrization
and exchange forces and include the possibility of
"pick-up" processes, that is, collisions in which the
incident neutron forms a deuteron by "picking up" the
proton in the initial deuteron, giving a small backward

peak for the free neutron.
In our sum over final spins, it must be remembered

that the deuteron exists only in a triplet spin state. The
final spin must be either a quartet or doublet symmetric
spin state, and therefore the doublet antisymmetric
term in (31) will be absent. The elastic cross section is
then given. by

=2 ~ 10 el 3frel quar+ 30 el doubp (61)

~ The factor ~ {footnote 11) is no longer present, since the neu-
tron and deuteron in the anal state are distinguishable.

IV. ELASTIC SCATTERING

The elastic scattering is obtained from (31), (32), and

(33) by replacing the two-particle wave function PI,"(r)
by the ground state Po(r). In addition, the integration
over k" reduces to the single state fo(r), so that
(I/2s. )'Jdk" in (32) is replaced by unity. We then
obtain for the elastic cross section

where oe/q„and o,& o,» are given by (59) with the
appropriate u~'s.

We have calculated II and I3 explicitly and an ap-
proximate expression for I2 assuming the range of
nuclear forces much smaller than the radius of the
deuteron" (1/p«1/a). The integrations in (59) have
been performed numerically and the 6nal result for the
elastic cross section can be obtained in a form similar to
(56). If we use the values of b and $ in Table III, we

obtain the values for O.,l of 80, 60, 30 mb for the direct,
Serber, and pure exchange neutron-neutron forces, re-
spectively. Since the measured value for the elastic
cross section is22 48 mb, it appears a Serber type ex-
change force between the two neutrons is not incon-
sistent.

It may seem surprising that the elastic scattering is
such a large fraction of the total. As we have previously
pointed out, this is due to the fact that small mo-
mentum transfers (q p), independent of energy, are
favored at high energies. For this reason the ratio of the
elastic to the total cross section should approach a
constant as the energy is increased. The value of this
constant is related to the probability of the deuteron
remaining bound after absorbing a momentum transfer
of order q

The wide variation of the elastic cross section with
the exchange character of the neutron-neutron force is
due in part to the fact that an exchange may result in
the wrong spin state for the proton and the exchanged
neutron, thus causing them to separate. It also seems
that the interference is destructive when there is a
neutron-neutron exchange. This is similar to what
happens in the total scattering where the interference
term (Table III) is negative for a pure exchange neu-
tron-neutron force.

V. LOW' ENERGY PROTON COMPONENT

The cross section for the production of protons of low
energy has recently been measured" in order to obtain
additional information about the neutron-neutron inter-
action. It was thought that low energy protons result
most probably from neutron-neutron collisions which
break up the deuteron. We shall calculate the low
energy proton cross section by erst calculating the total
cross section for low energy free and bound protons.

This cross section for the production of slow protons
will necessarily include those that remain bound in
elastic collisions. For this reason, we must evaluate the
elastic cross section for slow deuterons and subtract it
from the calculated total low energy proton cross
section. This will give us what we are after, namely, the
cross section for the production of low energy free
protons.

Protons resulting from neutron-deuteron scattering

~'This is admittedly not too good, but we shall only be in-
terested in the qualitative features of the results.

~ W. Powell (private communication)."SV. Powell, Phys. Rev. 79, 219 (1950).
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fall roughly into two groups: a high energy group which
results from small momentum transfer neutron-proton
exchange coOisions, and a low energy group which
results from all low momentum transfer collisions except
the neutron-proton exchange. These groups are quite
well separated, so that the total cross section for the
production of protons in the low energy group will
involve a sum over a wide range of final two-particle
states for all terms except those due to neutron-proton
exchange collisions, namely, F4 and Fo in (34). This can
also be seen from (36) in which the final momentum of
the proton in the laboralory system is x=k"+-,'q. For
small x all the terms except G4 and G6 can be large when
integrated over q. G& and G3 are large near q=0, and
G2 and G5 are large near q= ——,'k. VVe shall therefore
set G4 ——Go ——0 in (35) to evaluate the low energy
proton component. Using the values of 8 and $ in
Table I we obtain 66, 69, 75 mb for the direct, Serber,
and pure exchange neutron-neutron forces, respectively.

As we previously mentioned, the part of the elastic
cross section giving rise to low energy deuterons must
be subtracted. In order to do this we must confine the
integrations in (59) to values of q for which the deuteron
has low energy. Since the momentum of the deuteron
in the laboratory system after the collision is just q,
we can restrict the range of integration in q from 0 to k.
In this way, the backward peaks for I2 and I3 mentioned
in Sec. IV are omitted. The values of the integrals in

(60) change somewhat and lead to cross sections for
the collisions resulting in low energy deuterons of 65,
50, 25 mb for the direct, Serber, and pure exchange
neutron-neutron forces, respectively.

If we now subtract the cross sections just evaluated,
we obtain 1, j.9, 50 mb for the cross section for the
production of low energy protons for the direct, Serber,
and pure exchange neutron-neutron forces, respectively.

The experimental value reported for this cross section
is 6 mb in the backward direction. For lack of more
detailed information we can assume that, since the low

energy protons are more or less spherically symmetric,
the cross section in all directions" is 12 mb. This evi-
dence is therefore once again not inconsistent with a
Serber type exchange force between the two neutrons.
The discrepancy may be accounted for by the fact that
there are a considerable number of protons of quite
small energy which may not have been counted.

It may be worthwhile pointing out that the low

energy proton cross section is not directly connected
with the neutron-neutron cross section. The bound
states play an important part and must be included in
the calculation.

'4 Since the system as a whole has forward motion, there will
probably be more protons forward than backward. This will raise
the 12 mb into closer agreement with the calculated value for a
Serber exchange neutron-neutron force. We have investigated the
approximate angular distribution of low energy protons in the
next section.

(62)

where

Fi'(r) = V(r) expPzr (q+3k) joo(~ q"+ok~), (63a)

F&'(r)= V(r) expL ,'ir (q+—3—k)7oo(~q"+-,'k~), (63b)

Fo'(r) =expL —-', iq" rg~~dyV(y)fo(~ y+r()

XexpL —&y (q"+ok)j (63c)

F4'(r) = Po(r) exp( ,'iq" r)—V(—q"),

Fo'(r) =expP'iq" rj) &y V(y) 4'o(
I y r

I )

(63d)

&&exp( iy (q"+-',—k)j, (63e)

Fo'(r) = Po(r) exp(-', iq" r) V(q").

As mentioned previously, these expressions can be
obtained directly by a proper cyclic transformation of

VI. ENERGY DISTRIBUTION OF PROTONS AND
NEUTRONS AT VARIOUS ANGLES

In order to calculate the energy distribution of
protons or neutrons at various angles, we can no longer
use plane waves for the P&.(r); there is no complete
sum over final states to which we may apply a sum
rule. We must instead find a more accurate expression
for Po (r) to use in the integrations.

Before investigating the problem in detail we shall
be able to make a rough guess as to the nature of the
angular and energy distribution from the qualitative
features already discussed. There will be two main
groups of protons: a group at low energy resulting from
neutron-neutron and ordinary neutron-proton collisions
(favoring small momentum transfers) which break up
the deuteron, and a group of high energy protons which
result from neutron-proton exchange col1isions. The
low energy group will be roughly isotropic, since the
momentum distribution of the particles in the deuteron
is isotropic; but the high energy proton group will be
confined to the forward direction as in the scattering of
neutrons by protons.

In order to set up the expressions for the angular dis-
tribution, we must transform the momenta k' and k"
to the laboratory system. We shall outline the calcu-
lation for the more easily measurable proton distribu-
tion.

For the high energy proton group, it will be more
convenient to use the description of the final state in
which particle 2 is free, namely, (9c) in terms of the
quantities k" and k"'. The angular distribution of the
low energy group will require a description of the final
state in which either particle 1 or 3 is free.

If we now put the anal state (9c) into (28), the matrix
element BR in (33) becomes
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Iel'DR= g a~G~',
1

(64)

where

0; X, A.S.
G~'= s (lq"+,kl) V~~ (I ek+-', q"—k *I), (65a)

X; A.S.
&s'= s (I q"+ lk I)VN~ (lkk+ lq"+k"'I)

0
~s'= s (I k"'+-'q" I)V»(l'k+-'q" —k"'I),

(65b)

(65c)

~4'= s (Ik"*+lq"I)V»(q"),
A.S.

Ge'= s (lk"'—eq" I)V» (I ek+lq"+k"'I),
X. A.S.

~s'= s (I
k'*'—l q" I)V» (v").

(65d)

(65e)

(65f)

(65) is of course identical to (36) written in terms of q"
and kvi

The high energy proton group is obtained in the
vicinity q"=0, k'=k, k"=0. Since both y(sek) and
V(sek) are small compared to so(0) and V(0), respectively,
most of the contribution to the cross section comes from
the terms 64' and G6'. We shall therefore consider only
F4' and Fs' in (63) with a corrected expression for
Pe '(r) in order to obtain the high energy proton dif-
ferential cross section.

If we now select a particular proton direction and
energy, there still remain two degrees of freedom; these
are the two variables needed to specify the direction of
k"'. In order to obtain the diGerential cross section as
a function of the proton momentum, we must square
the matrix element (62), multiply by the appropriate
density of 6nal states, and integrate over 0", the
direction associated with k". The differential cross
section for high energy protons will therefore be given
by"

do= (M/12+4'k)(L/2~)s(dk"dk»/dE) I
Lsmt I'. (66)

Since the energy in the center-of-mass system is given
from (3) and (6) as

E= (k'k"/(4/3)M)+ (k'ks*'/M),

the relative coordinates. The similarity between (63)
and (34) is evident.

The relative importance of the various terms in (63)
can be obtained qualitatively by using the plane wave
expression for P&-'(r), that is by using

fe-*(r)=L~ exp( —ik" r) .

The matrix element (62) can now be written as

If we transform the momentum h' to the momentum
of the proton in the laboratory system

k =k"+-'k=q"+$k dk'=dk

we obtain for the diGerential cross section

where the matrix element

L'SK= V(q") ~dQe-*(r)fe(r)

X I ae exp( s'i—q" r)+asexp(qiq" r) } (69)

is obtained from (62) and (63) by using only the terms
/=4 and 1=6.

As before the cross section will be the sum of the
quartet and doublet cross sections. However, we must
now remember that the two-particle wave functions
fs- (r) for p'articles 1 and 3 will depend on the spin
symmetry between these two particles (triplet or
singlet). Since the spin states Xe and X& are neither sym-
metric nor antisymmetric in particles 2 and 3, we shall
change our complete set of spin states to x~, x~, x~, y4,
y~', xe', xy', xs', where the four quartet spin states are
unchanged and the doublet spins states are given by"

xe'= [1/(6) &1(2agbsae —agasbs —bgasas)

=QssXe e Xs+8%7& (i0a)

Xp' ——(1/V2) (agasbs —bgasas)

=Qssxv= ev3'xe+sxr (&0b)

We now obtain the cross section by summing over the
spin states x~, x~', and x7' giving

=e(«)x,+e(do)x, +e(do)x, , (&1)

where each do is given by (68). We must use the triplet
wave function Pe»r(r) in (do)x, and (do)x, and the
singlet wave function t4 's(r) in (do)», . The corre-
sponding values of as and ae, obtained from (70) and
Table II, are

(ae)». '= —e(«)x.+ev3'(«)» =(1—3~)/8 (72a)

(as)x, '= e(as)x, +e~(as)x = —(1—3n)/8, (&2b)

(a4)x, '= e~(as)x,+e(«)x, = (1+m)~/8, (72c)

(ae)x, ' =
~~v3 (as)x,+e (ae)x, = (1+g)v3'/8. (&2d)

We must now evaluate the integrals

we may use

(8E/8k") e (2k'k")/M. —— J,=~tdQ" ~t dePe '*(r)fe(r) exp(qiq" r) (73a)

~ The factor $ due to the identity of the two neutrons has been
included as before.

~ p' and p8' are obtained from p&' and p&', respectively, by in-
terchanging a and b.
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(78)

re accurate method of calculatin J~~A more
ppendix 0 but the present method

'
me o xs adequate for our purposes. ~8 H. A. Bethe and C. Lon mire Pongmire, Phys. Rev. 77, 647 (1950).
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From the curves we see that the high energy protons
are confined to high energies and small angles. This is
what we had supposed, since these high energy protons
come from neutron-proton exchange collisions which
favor small momentum transfers. The angular de-
pendence of the cross section (77) comes about pri-
marily from the factor V'(q"). For this reason the
angular distribution of the high energy protons should
be very similar to the angular dependence in neutron-
proton scattering.

One feature of the high energy proton spectrum which
is rather surprising is that the protons seem to be
crowded more toward higher energies than would be
expected in the plane wave approximation. This is due
to the interaction between the two neutrons, and since
the energy of the neutrons is small, most of the con-
tribution to the cross sections occurs for a singlet spin
state between the two neutrons. The energy width of
the proton peak is proportional to (1/a, )', whereas the
energy width for the plane wave calculation is propor-
tional to cP. The ratio of these two widths,

~~&/~.' = (1/a*)'/~". = 1/3o, (80)

is quite small and accounts for the highly peaked
proton spectrum.

The sharp peak in the energy distribution cauld be
used in practice in order to obtain very nearly mono-
chromatic beams of neutrons. For this purpose, the
inverse process is used; i.e., protons of given energy E
are permitted to fall on a deuterium target. Then, in the
forward direction, neutrons will be emitted whose energy
is slightly below E 4(e= bindin—g energy). According to
Fig. 6a, the width of the energy distribution is only
about 1 Mev, and is not appreciably increased if
neutrons up to 10' angle with the proton beam are
included. To get an appreciable neutron yield, probably
liquid deuterium should be used as a target, but apart
from this technical difFiculty the neutron beam obtain-
able seems far superior to that from other methods.

We have only performed a rough calculation of the
high energy proton distribution. More exact calcula-
tions can be performed along the lines mentioned in
Appendix G. The work is considerably more involved
and the major changes will occur where k"' and q" are
not small, that is, for proton energies away from the
maximum and for large scattering angles. However, our
results should remain essentially unchanged.

The total cross section for the production of high
energy protons can be obtained approximately by
retaining only the a4 and a4 terms in (35) and (36).
These are the terms which represent neutron-proton
exchange collisions and which therefore are mainly
responsible for high energy protons. The result is that
the cross section for high energy protons is approxi-
mately 20 mb.

As mentioned earlier there is also a group of low

energy protons in the laboratory system resulting from

Once again, only the singlet wave function contributes
and gives a value for the integral given by (74) with k"
replaced by k".

We must now remember that we are fixing the angle
and energy of the proton in the anal state. The remain-
ing degree of freedom to be removed is therefore the
angle of the vector k" not k". This integration will be
quite complicated, but we shall make sorn. e rough ap-
proximations to allow us to carry the calculation
through in order to obtain qualitative results.

As we have seen in the calculation of the high energy
proton distribution, the sharp peak was due to the
smallness of

~
1/a.

~
compared to a. The integral J, can

be given approximately from (74) by neglecting the
terms with ro, and ro&. We then have

[(1/a,)'+k'"]& n'+k"'

The cross section is now given by

da = (M'/72''k'k) (1/2w)'dk k"'

(81)

3
X) dQ"(4m)'V'(q) J,"—[4P(1—5)'+(1—g)'] (82)

64

obtained from (77) by replacing 4mk64 by k"' J'dQ"4
q" by q, J, by J,' in (76), and

—,', (1+g)'= [(a4)„,+(a4)„,]'
by

(3/64) [4P(1—6)'+(1—~)']= [(~~)x,+(~3)x,]'.
The vectors q and k" are given in terms of q" and k" as

q= k'*—(kk+kq");
k"= —-', k' ——,'(k+ q").

(83a)

(83b)

The vector q" (and therefore k„=2k+q") and the mug-
nAude of k" are fixed during the angular integration
over dQv . Both q and k" will therefore vary over the

~' The free neutron may @so be the antisymmetrized neutron,
but, since we have antisymmetrized only the initial state, we may
consider only collisions in which the incident neutron (particle 3)
remains free.

neutron-neutron and ordinary neutron-proton collisions
which break up the deuteron. Since small momentum
transfers are most probable, the incident neutron" will
continue in the forward directian and will be essentially
free. We may therefore use the representation of the
matrix element in (33) and (34) with particle 3 free.

Since we are now asking for a final state with particle
3 only "slightly" scattered, only the terms F& and F3
in (34) will contribute. If we use the approximation
@=0 in FI and F3, we see that we have to evaluate the
same integrals as before:

~00 00

r2drfq r(r)$0(r) and ' r2drgj, s(r)$0(r)
0 al 0
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integration. However, the effect of the variation of q
wB1 be dwarfed by that of k", since p, is considerably
larger than both a and

~
1/a, ); q can then be set equal

to zero in V(q).
If we now measure the angle of k' with respect to

the 6xed vector k+q", we can change the angular
variable Qv' to the magnitude of k" by using (83b). In
fact,

sk"
~
k+q"

~

dQ"= 2zdk"',
k "dQ"= (Ss/3)(dk"'/( k+q" i).

Since we are interested mainly in small k„, q" will be
approximately —+~K, so that we have

k'"dQ"'= (16~/3) (dk'"/k).

The cross section now becomes

dk'"
(84)

tfk~ &z"„~ [(1/a,)'+k"'](a'+k'")'

where E is a constant and k" z and k" are given by

85
k" „=-',k-'+-,'( k+q" (.

k" is given from conservation of energy by

k"=s'v3'(k' —ik+ q"
i
'—(4/3) Me/k') ~

where the binding energy e now becomes important.
For small h„we can write

[k+q" [
= ]-,'k —k„( =-,'k —(k.k„)/k

k"=)V3[-*k'+k k —(4/3)Me/k']&
= -,'k+-,'[(k k„)/k] —-3M'/k'k.

We can therefore set k"' = ~ and

k"'
( = Pk+(~4k k„/ )kg(Me/k—'k) ,'k——

+s4(k k,)/k]'= f [(k k,)/k] —sMe/k'kI'.

The integral in (84) can be evaluated, and for a'»(1/s, )'
is approximately

K
t

a'+ t[(k k )/k] —(Me/k'kt'
da.„= In

2a' (1/ua)'+ I[(k k,)/k] —)Me/k'kJ'I

Xkgk~'dQ„. (86)

This represents a peaked distribution of low energy
protons, but not isotropic. The maximum cross section
at a given angle, for (1/u, )'«cP, occurs approximately at

k, cos8= $(Me/k'k)+ a,

where 8 is the angle of the proton momentum with
respect to the incident direction in the laboratory
system.

Since )Me/k'k'=b/Eo, where Eo is the incident

energy, )Me/k'k will be considerably smaller than a
(a ratio of 1/20). The "width" of the peak will
therefore vary approximately as

hE~ a'/cos'8. (87a)

For angles near 90', (k k~)/k must be replaced by
k,'/k so that

d,E„(90') ak. (87b)

VII. CONCLUSIONS

(1) The total cross section (inelastic plus elastic) can
be calculated using plane waves for the 6nal state of

The distribution of low energy protons is now seen
to be approximately egg-shaped, with the peak in the
spectrum occuring at increasing energies as the angle
to the incident direction is increased up to 90'. The
term containing the binding energy in (86) will favor
the forward direction over the backward direction
slightly, but the main feature of the low energy proton
group is the large difference between the 0' and 90'
scattering.

It was mentioned before that the low energy proton
group may favor the forward direction rather than being
isotropic, because of the over-all forward motion of the
system. Although the binding energy term is in this
direction, this situation should still exist for no binding
energy. The reason for its disappearance is as follows:

(1) The reason that the forward direction should be
favored is that the two-particle collisions can only result
in an additional foneard motion to the struck particle.

(2) We have found from (81) and (84), however, that
only 6nal states for which k" is of order of magnitude
0. give much contribution. Since

q+-,'k"= —(-,'k+q") = —k„,
~ q will necessarily he about the same size as k", that is,
q~ 0!.

(3) For this reason we have neglected q compared with

p, that is we have taken V(q)= V(0). Since we have
also set q=0 in the exponentials, we have effectively
considered only eery small momentum transfers which

give practically no additional forward motion to the
struck particle.

If we were to consider the case q/0, we would have
to evaluate both the singlet and triplet integrals in (73)
and we would obtain a low energy proton distribution
which would favor the forward direction. However,
because of the above discussion the effect would be
rather small.

It should be mentioned that the free particle cal-
culation with q=O predicts an isotropic low energy
proton component varying as qP(k~) and therefore
having an energy width d,E„cP,agreeing qualitatively
with the more correct width given by (87a) near the
incident direction. As can be seen from (86), however,
the spectrum predicted does not agree.
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the three particles involved. No such simple method is
available for the inelastic scattering alone, or for the
difkrential cross section.

(2) The total cross section is given within about 20
percent by elementary interference theory, in which the
amplitudes of the waves scattered by a neutron and a
proton at rest are added, taking into account spin and
symmetry. A better approximation is obtained by con-
sidering the motion of neutron and proton in the initial
state of the deuteron. (See Sec. II.)

(3) From the total cross section one cannot deduce a
unique value for the neutron-neutron cross section.
Di6'erent assumptions on the exchange properties of
the neutron-neutron force lead to values of cr~~ at 90
Mev from 20 mb for ordinary forces to 62 mb for pure
exchange forces (Table III). The interference between
the scattering from neutron and proton may give either
a positive (for ordinary Itr X force—s) or negative
(exchange forces) contribution. (See Sec. III.)

(4) The elastic scattering permits a decision between
the various types of neutron-neutron forces, being
greatest for an ordinary force (Table IV). The experi-
mental value of about 50 mb is closest to the result for
a Serber type jar—X force (Sec. IV).

(5) The cross section for the production of low energy
protons does not agree with the X—X cross section
(Sec. V and Table IV) but is generally smaller. The
observed cross section is again compatible with a
Serber force.

(6) The energy distribution of the protons in the
forward direction show a very sharp peak near the
incident neutron energy (Fig. 6a, b) which is closely
related to the cross section for the photo-magnetic disin-

tegration of the deuteron. The reverse reaction, i.e., the
bombardment of deuterons with high energy protons,
should yield very nearly monochromatic neutrons.

(r) In Table IV, we have summarized the most im-

portant results not contained in Table III.

APPENDIX A.

EVALUATION OF INTEGRAL I
The integral I given in {38a) can be evaluated completely once

the radial dependence of the potential and the deuteron ground
state are decided upon. We shall use the Yukawa potential and
Hulthhn wave function as given in (43) and (44).

The variable 0" in (38a) represents the angle of k" and can be
taken with respect to q if k" and q are kept constant. Let us now
change from the variable D" to the variable s=!h"+)tt! just as
we did in (14) when setting up the integral over the final states.

k"dQ" =4~zdz/q.

The z integration must now be performed first between the limits
!$q —k"! and $q+k", so that I is given by

I=2vf dq1e'(q}f 2k"dk"J „sip'(s)ds, {A1}

where P= gq(2k —q) and where $q —k" has been written without
an absolute value sign, since the integrand is an odd function of z.
We would now like to interchange the order of the k" and z
integrations and can do so with proper regard to the limits, The

TAsxz IV. Calculated cross sections in millibarns for diferent
exchange character of the E-E interaction.

E-X force
Total elastic
Elastic scattering giving low energy deuterons
Low energy protons
E—Ã cross section

1 ){1+v) E
80 60 30
65 50 25

1 19 50
20 30 62

integral then becomes

I=2vf dqD{q)f sdses{s)J 2k"dk". (A2}

If the k" integration is now performed, we obtain
k 4+0I=2x dq V'{q) zdzP(z) (zq —{z'+q~—$kq) ). (A3)

The region of integration in the qz plane is shown in Fig. 5.
We now have to determine V(q) and y(z). Using {43)and (44)

we readily obtain

"()=(".)(;,', ) (A4)

1 1
q(z) =421-$

a+z P+zl
If we now interchange the order of the q and z integrations, we
obtain

X dqf*+ q(z+gk} —z' —q~

g (+%+ A)
2

(A5)

where
z~= 8+hz~ f(P+$z}(P—kz) )~-

If we now perform the q integration, we obtain

where

2 3 —&k 0{+z~ p+z~

X (z~+ p,') (M —tan 'm), (A6)

= 128/(~"+z') }I(B+$z)(4k—kz) l'. (A&)

The remaining integration can fortunately be performed by
contour integration if we notice that m is real for —)k&z&~&k
and imaginary for other values of z along the real axis. Therefore,
tan 'm will be real for —gk&z&gk; for other real values of z,
since

tan 4 !tv!=—.ln
1 1-!w!

tan 'te will be imaginary as long as !w! &1. If we write

~= {2i&/(&'+z') ~ ~z' —(gz+ P)'~&,

we see that for z& —$k and for z&$k we may write

!w! &2m/(~'+s') &1.
We can therefore extend the integral along the entire real axis
and take the real part in order to obtain the integral between the
limits —)k and $k. If we now close the contour in the upper half-
plane, we find that we must avoid the four branch points z= —qk,
z= $k, and z=zI, z=zm, the two branch points for which m= ~i.
The contour is shown in Fig. 7. The integrals from zI to ce and
z2 to ~ can be readily evaluated, since tan 'm changes by ~2+i
on going around the branch points z& and z2. zI and z& are given by

zI=gijM, + {-fp,'+$sj{ckJ&, m = —s, (A8a}
zg= —$iy+ ( fp,'—gijtgk j &, e =+i, (A8b)
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-kI
2 fo Real Ax»

perform the r2 integration giving'

11o=32xrof dqV'(q) f drxf, gdsxko(g) sinrxgf, dye o{y)

XLcosqy cosr&y+sinqy sinr&y j. (83)
Only that part of the integrand which is even in r& contributes,
so that the cosine term vanishes. If we now perform the r~ inte-
gration, we obtain a delta-function; in fact,

x&0
sinxr~ sinyf jar~ =xb{x—y) y

so that IIp becomes
Fro. 7. Contour integration for I in the complex z plane.

S'(z) =w —tan 'm W(z) =
1++ dz'

and m is given by (A7). Using the numerical values

p, '=1.18X10 "cm
a '=4.31X10 "cm
P '=0.616X10 "cm
k '=0.720X10 is cm

which have previously been given, we obtain

I= I(2~)~/2&s I I4 V,/& Is{0.739).
From (45) Ip can be evaluated to give

Ip= I(2 )I/2ps I {4xVp/p) (0.858).

We therefore have

I=0.86Ip.

The discussion of this result follows {45) in Sec. III.

(A10)

(Ai 1)

(A12)

(A13)

APPENDIX 8»

EVALUATION OF INTEGRALS II AND IIp

We shall Grst show that at high energy II given in (46) goes
over into IIp given in (47). In this limit we may replace the
elliptical region in the rlq plane by the strip 0&q&gk and—~ &r~& ~ as before {Fig. 5). The upper limit on the r~ inte-
gration can also be made in6nite. Let us now express rp(r~) in
terms of Pp(r) by integrating (21) over angles

ox(rx) = {4or/rx)J gd~o(g) sinrxg. (81)

The integral II then goes over into

$k cps oo

IIo=32 ' dq~(q) dr md~ (x) sinr s

Xf drof yd~o(y) sinroy. (B2)

If we interchange the order of integration for rs and y, we can

where the "angle" of the square roots is taken between 0 and ~.
The only poles of the integrand inside the contour are at z=iu
and z=iP, and residues must be taken at these points.

If we now evaluate the residues, subtract the integrals along
the branch cuts, and take the real part we obtain

IIs—n 1 1 ps —p 1 1

2 cP+z ' a'+zms 2 P+zP 4'+zc'

21 '—&—P' (&+z ')(P'+zP)+
2{p ~) '" (~+,P)(p+„.) ("')

where

IIo= (2 )oxfrqdq Vo(q)f d oo(g)4g(sinqg/qg)godg. (B4)

This is clearly the same as

II o=( 2g) foqdqV {q)fxkoo(r) exp(iq r)dr (B5)

after performing the angular integration on r in (85).
We can carry out the x integration in (84) by using the ex-

pression (44) for ift p(x). This gives

11o= (2g)o4gIP dqVo(q) (tan xLq/2ag

+tan 't q/2Pj —2 tan 'fq/(a+P) jI. (86)
This integral can be readily performed by numerical methods and
gives

IIp =0.49Ip. (87)
In order to evaluate II in (38b) we shall change the variables

of integration from k" and fi" to rx= )k"+)of( and ro= (io"—$q).n

The volume element becomes

k" dk"dQ"= 2mjdrkrsdr2/q.

We must now determine the limits on the r~ and r~ integrations
to give as the region of integration the sphere of radius Q shown
in Fig. 8. For a fixed value of rg, the limits on r2 will depend on
whether Q is greater than or less than $q and whether r~ is greater
or less than ~Q

—$q~. Specifically,

0&r&&Q—$q, (q —rx~ &ro&q+r& (88a)
Q&H o—»«o+ke Ix— I«(»x —"—rxhxxx)
Q&gq: $q —Q&rx&gq+Q ~q

—rx~ &ro&(3kq —rxo —qo)i. (Bgc)

Let us now consider the integral over the regions

ox—O«o, lx —
I
«(»x — '—r)')Q&kq 0&rx&Q —$q, ~q

—rx~ &ro&(3kq —rxo —
q )&

Since the integrands are odd functions of r~ and r2, if we change
the sign of r~ in the first of the two regions, we must then subtract
the two regions of integration from one another. This means that
the region

0&r, &Q—gq, q+r, &r, &(3kq—.P—qs)I

must be subtracted from the region,

0(rx&Q $q, )q —rx~ &r—o&(3kq —rxo —qo)&,

leaving the region

Q&)q: 0&rx&Q —fq ~q
—rx[ &ro&q+ro.

The region given in (88a) is therefore equivalent to the regions in
(89). If these regions are now combined with the region in (88b),
we obtain the same region as in (88c), so that the integral

» f' qdqV*={q)f'k'"dk"f«"~(ll "+kql)~(ll" kql)—
@my finally be written as the single integral

k k+0 (3hq —rk& —p)&II=2~ dqV'{q) r~dr~qff (r3) r2drscp(r2).

Io The upper limit gives no contribution since an exponential convergence
factor must be used.

~k rk and rs are directly related to spheroidal coordinates. See, for example,J. A. Stratton, Electroyqgcgnetic Theqyry (McGraw-Hill Book Company, Inc&a
New Vork, 1941), p. $6.



NEUTRON —DE UTE RON SCATTER I NG AT H I GH EN E RG Y

The absolute value sign has been dropped from q —r~, since
r2q (r2) is an odd function of r2. If we now put in the expressions
(A4) and (AS) for q(s) and V(q), we obtain

II= (16m VpX/p)22m- (IIaa —IIap —IIpa+IIpp },
where

rk dq fis+el ridr~ f(3ks rx' —s'}&—trdrr'
IIap=

0 (+2+q2}2 ~& tat 4}r2+~12 g —rk jlti2+ P 22

and II „,IIp, and IIpp are similarly defined. We can now perform
the r2 integration giving

1 j'2& dq j'Q+Q

2 Jp (~2+q2)2 jiq q ++~~2

X (ln(P2+Bqk —rP —q2) —ln(P +(q —r&)2) j.
Let us make the change of variable

x =Bqk —rP —q2; xdx= —rjdrs, a'+rP =cI +Bqk —q2 —x'

in the first term in the bracket. The limits on x become

~;.= (Bqk —q2 —qq~Q}2)~=gq ~Q.
mtLx

If we make the change of variable

x=q —rg,- dr= —dr&„. cP+rP=—H+(q —x)2

in the second term in the bracket, the limits on x also become

~ - =q —(kq~Q)=kq~Q.

The integral II p may therefore be written as

X(x' q —S
a2+Bqk —q2 —x a +(q —x)2

with similar expressions for II, IIp, and Imp. If we now inter-
change the order of integration as we did for I, we can perform
the q integration by partial fractions. The x integration remaining
is quite complicated and can only be done numerically. The result
of the numerical integrationm is

II=0.81IIp II=0.46I.

APPENDIX C.

EVALUATION OF INTEGRALS III, IV, AND V

The integral

«I J"qdq=v(q) f' k'"dk"fdtt" v(l s&+sq h"I)e(i—~"+kql)

can be evaluated accurately but only after an extremely laborious
numerical integration. We have previously mentioned that the
value of this integral need not be calculated accurately, since it
can be obtained indirectly from the two-particle cross sections.
We shall therefore evaluate III approximately by assuming that
the major contributions to the integral come near

I h"+gql =0.
The integral then becomes

III =f qdqV(q} V(I sh+ql) f, k" dk"f dtt"H(l ~"+kql).

The k" integration is now the same as the one encountered in the
evaluation of I in (38a). We shall therefore make use of our
experience with I in Appendix A: the integral is 14 percent less
than the Q= a2 value (Ip), and the limit of 2k on q is changed to
the more accurate value $k. We therefore have

III =(2s}'(086)f, qdqV(q) V(I gh+ql}.

Near h"= —qg we have

I ssh+ql
'= {9/4)k'+q'+8k q =(9/4)k' —$q' 2k"' = (9/4}k' —q'.

So that the integral becomes

@~a qdqIII =(2')'(0.86)(4~Vp/p) g ( 2+/)( '+9k'/4 —2)

= (2~)'(0.86) (4~Vp/i )'(1/2p')
X f1+(9k2/8') J

' ln (1+(9k2/4@2) ).
Using (43) and (A10) we therefore obtain

III =0.56I.
We have made a rougQ calculation of the error in III due to the

approximations made and have found it to be quite large. This
error cannot be easily calculated; but, as we have mentioned, and
as we shall show, the value of III need not be known accurately.
We shall include the rough estimate of the error and use the value
III =0.43I.

The integral

Iv= f, qdqV(q) f k"'dk"J d&"V(lsh+sq —h" I)

x &(Ih"+sql) &(Ih"—yql)

is quite difhcult to evaluate, but can be done approximately with
little difBculty. We shall again assume that the deuteron is large,
so that the main contribution to the integral occurs near
Ih"+&ql =0 and lk"—gql =0, that is, near k"=0, q=0. We
shall therefore set k"=q=0 compared to )k in the second V term.
This then gives

IV=V(sk) J qdqV(q) f k"'dk"f dn"

xs(l&"+kql) ~(l~"—gql).

The similarity between this integration and the one in (38b) for
the interference term II, is now evident and we shall once again
make use of our experience with II. The calculation of II in
Appendix 8 gave the result that II is 19 percent less than the
value calculated for Q= a2 (IIp) and that the upper limit for the
q integration changes to $k. We therefore have for IV

IV =(2s)'(0.81)V{sk)f qdqV(q) f i&0'(r) exp(sq r)dr

= (2s)'(0 81)V(gk)4. sIqsf dq V(q)

X ( tan '(q/2a. )+tan (q/2je) —2 tan 'Eq(ax+0)

as in (B6). This integral can be readily performed by numerical
methods and gives IV =0.11I.

FIG. 8. Diagrams to de-
termine limits on r~ and r2
after change of variables in
Appendix B.

» All the calculations were originally performed with the incorrect value
of 5$ for P/a. The calculations for I, lo. and IIo were repeated for P/a ~7
and were found to give values that differed from the old by approximately
0 to 2 percent. Since the work involved in calculating II was quite com-
plicated, the value of II for P/a ~7 was inferred from the way in which
the others changed. The value given for II (and for III, IV, and V) should
be good to within ~.01 E.
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TABLE V. Table III recalculated with the uncorrected value
of the integral III=0.56I instead of the corrected value III=0.43I
used in Table IV.

N-N force
(= Verger/Vzrp~

&NP
&INTER/
&NX
&TOT

1
0.46

72 mb
26 mb
19 mb

117 mb

&(1+»
0.79

72 mb
15 mb
30 mb

117 mb

P
0.83

72 mb—16 mb
61 mb

117 mb

APPENDIX D.

EFFECT OF INCLUDING THE BINDING ENERGY IN
THE CONSERVATION OF ENERGY

If the binding energy had been included, the conservation of
energy (7), would have been

k"+(4/3)k"*=a—(4/3)(m, PP).
The arguments given for replacing tl4-(r) by a plane wave in the
half-ellipse of Fig. 2 are still valid; but the ellipse is now given by

(q —k)~+(4/3)k" =k (1—5) .
where

1—b= (1—(4/3)N'p/4~k~ )&p B~g~p/h'k =$(a/k)~.

In order to determine the effect of 8, we need only consider the Ip

term, which now becomes

Ip'= (2 ) fprPgdq V'(g),

where the upper limit is determined by ~here the new ellipse in

Fig. 5 crosses the q axis. Clearly, at the lower limit, the factor q
in the integrand will make the change small; and at the upper
limit the change will also be small because of the size of V {$k).
In fact, the fractional change can be given approximately as

Ip —Ip'
(0 86)

(&k)'/28'+(&k) (8)/(C'+9k'/4)'
Ip

0.86' k 0.64&k P
gP (pP+9JP/4)~

which can certainIy be neglected.

The integral

v J=4d4J k"'dk"fdo"v(I~a+)q+v'I)

x V(I 8+km —&"I) p (II "+kpII) p (I&"—kpt I)

can be treated in an analogous way and gives

Vpp(2pr)p(0. 81)vp(fk)4prlpf, dgltan 'Lq/2aj

+» 'L4/203 —2» 'L4/(~+0) jl
The integral can be performed directly and gives

V =0.03I.
%'e shall not try to estimate the errors made in the approximations
used in evaluating IV and V.

We shall now demonstrate that our results do not depend
critically on the numerical value of III. In order to do so, we shall
repeat the calculations for Table III with the uncorrected value

III=0.56I.

The new numerical values given in Table V are quite close to
those in Table III and show clearly that the exact value of the
ratio III/I, is unimportant. As previously mentioned, this is
because the total cross section was expressed as the sum of the
three terms a~P, o J~pgRg, and o~~, and the experimentally ob-
served value of ogp was used.

fg 'pr'(r) yp(r)dr =0. (K3)

From (Ei) we therefore must have

VprJf()t", r)d p(r)dx= f exp—( ilr" x)rpp(r)d—r= —
p (k"). (E4)

In the case of a singlet potential we have

fg p"8(r)gp(r)dr=L &rp(k")+L &Vpaff(k", r)|kp(r)dr.

Using (K4), this becomes

0'-()0o()~ =L ' (k")(1—Vo /Vo )

{K5)

We therefore reach the following conclusions.

(1) In the case of a triplet interaction we have subtracted too
great an amount in the region near the origin. A calculation of the
integral using a plane wave in this region shows that I should be
increased by about 4 percent.

{2) In the case of the singlet interaction we have again sub-
tracted too much in the region near the origin, but this time by
an amount

4 percent {1—(1—Vp /Vp )~)

since the integral (E2) appears squared in (18). Using the value
of Vp~/V@=0. 686, this becomes 3$ percent, or approximately
the same as in the triplet case.

This adjustment is also necessary in the other integrals, II-V,
and will be approximately the same. For this reason the ratios
(48), (49), (50), and (51) will not change appreciably and all the
numerical results in Table III should be valid.

The use of a plane wave for the Pq"(r} should be better at
higher k". The failure of the plane wave to be orthogonal to the
ground state for the triplet case makes little difference, since the
factor exp(~qiq r) is now a rapidly oscillating function. The
reason is that the most important values of q are large because of
the factor V(q).

Ke have investigated the validity of using the plane wave in
the entire shaded region in some detail and found that the cor-
rection is quite appreciable —in fact, it is about one-half of the 14
percent discrepancy between the values of I and Ip. However,
this correction must also be applied to the integrals II-V. As
mentioned before, this will leave the ratios (48), (49), (50), and

APPENDIX E.

VALIDITY OF THE ASSUMPTION OF A PLANE %'AVE
FOR Qp"(r) IN THE SHADED REGION OF FIG. 2

In the justihcation of the use of plane waves in the elliptical
region in Fig. 2 it was assumed that P&. (r) could be replaced by
a plane wave in the shaded region which occurs mostly for large
k". The most questionable region for this assumption is in the
lower left corner of the shaded region where k" can be small. The
lower right corner will give a small contribution because of the
factor V (q) = V (2k).

In order to obtain a more accurate expression for Pq"(r) in the
region mentioned we shall use the Grst Born approximation in a
deuteron potential, so that pk" (r) will be given by

pg,-{r)=I. & exp{ik" r)+L &Vpf{h", r), {Ei)
where f{h",r) is a function depending on the details of the Born
approximation and Vp is either the triplet or singlet Yukawa well
depth. We now wish to evaluate the integral in (18):

A"*(r)tIt'p(~) exp(~km' r)«. (E2)

Since the region being considered contains only small values of q
(much smaller than k", since the boundary ellipse is given by
q=, k'"/k near the origin), we shall set the exponential equal to
unity. The remaining integral mill be just the orthogonality
integral and will necessarily vanish for a triplet wave function;
that is,
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(5i} only slightly changed and will not appreciably affect the
numerical results in Table III.

APPENDIX F.

EXAMPLE OF EVALUATION OF COEFFICIENTS ag

IN TABLE I

APPENDIX G.

A MORE ACCURATE CALCULATION OF J1 AND J2
IN EQ. (V3)

%Ve were faced with the evaluation of

and

Jz=fda" fdry «&'(r)go(r) exp(gg" r)
'

(Gia)

» J&& '((s(1=A("'()( () w"()'a" )

XJS u ()(() xr((~."-')f (G())

As an example of the manner in which the u~'s in (28) and in
Table I are obtained, we shall evaluate the doublet x3 coefBcients
in (28). This means that both the initial and Gnal spin states will

be x3. H we then insert (26) into (25), we obtain for the matrix
element

W = (+yxs, {i —P13Q13 I ~NN(r13} I~n+~nP13 }+ix5}
+(+Ixs, {i—P13Q13 }~NP {r23)

X {~~+~„P23+bpQ23+h/'23Q23 }+'x3). (Fi)
From (30) we 6nd that

(x3, x3) = i, (xo, Q13x3) = —k

(xo, Q23x3}= —k (xo, Q13Q23xo) = —k

so that (Fi) becomes

9R= (4'f, {(R„+)nt„)+()uf„+nt, „}P]3 }VNN(r13) 4'$)

+(%1, {(m„—gb~) +(m~ —)h~)P23+ ()mal+ gb~)P13

+(~~~+~&s)P13P» }~&p(r») +') (F2}

If we now use (29) and the initial state

e;=I.-~ exp( —~h x}Po(r).

(F2) goes directly into (28) with the ug's as given in the doublet

x3 row of Table I.

for both the triplet and singlet Pq& (r) . Since we are interested in
these integrals only for small values of k", we must Gnd an ap-
proximate expression for pg, {r) at low energies. Vfe shall there-
fore expand pg &(r) into spherical harmonics with the intention of
using only the lowest order terms. %'e shall set

yl,.d(r) =~i~ i(k"r) Fio(&", r), (G2)

where the FP(k", r} are spherical harmonics in terms of the angle
of h" with respect to the polar axis in the direction r, and the
A g(k "r}are the corresponding coefBcient in the expansion. If we
also expand the exponential

exp($iq" r) =Z&" B&"*($q"r)F& '(r, q"} (GB)

and use the addition theorem

YP(t", r) = t 4~/(2l+ 1)g&Z~ F*, (k"', q"}F,~(r, q"), (G4)

the integral J1 in (Gia) becomes

{4n-)'

mme
'

XA t (k"r') F*t~{&",q")Yt (x, q") Ft ~'(&" q")
XFi "'(q", r') Bi-*(kq"r}Bi -($q"r')

X F i '(r, q") Ft -'(r', q") (GS)
Since

the integral reduces to
' 2

Z, fA)(k"r)8((1q"r)$0(r)r~dr f4w/(2l+1) ).

From this result we see that the various angular momentum states
in the sum {G2) do not interfere with one another in the cross
section. Ke can therefore evaluate the cross section for different
l's and add the individual results. The same will be true for the
second integral J2 in (Gib) .

The integral for l =0 at low energy can be treated quite satis-
factorily by the effective range method, but for higher l's we shall
use the corresponding components of the plane wave approxima-
tion. The result is that the integrals J1 and J2 can be written as

J=A o+JPw —JPW ) o,

where J~ o is the l 0 term evaluated by the effective range
method, JP~ is the integral evaluated using a plane wave for
pq~ {r},and JPqr ~~ is just the l =0 term of the plane wave
approximation.


