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Electromagnetic transition processes in nuclei are considered
on the assumption that the in6uence of an external electromag-
netic Geld on a nucleus can be incorporated into a gauge invariant
Schroedinger equation for the nudeons (phenomenological theory).
From the results of the preceding paper it is concluded that equa-
tions for electric multipole transition probabilities have the usual
form but that the f-sum rule is modiGed in a manner depending
on the nuclear interactions. Explicit expressions for the generaliza-
tion of the f-sum rule to all electric multipole orders are given for
exchange and velocity dependent interactions. The magnetic
multipole moments, and therefore the corresponding transition
probabi1ities, depend markedly on the form of the interaction with
the electromagnetic Geld. General formulas are given for all mag-
netic multipole moments of nuclei in which exchange forces and
velocity dependent interactions play a role. In addition it is
possible to incorporate into the theory the spin-antisymmetric

addition to the magnetic dipole moment implied by the static
moments of H' and He'.

Detailed application is limited in this paper to magnetic dipole
transitions. The theoretical cross section for the capture of thermal
neutrons by protons is found to have about a 4 percent addition,
due entirely to the spin-antisymmetric term. In heavier nuclei
this spin term, exchange interactions, and the velocity inter-
action proposed to account for high energy nucleon-nucleon scat-
tering contribute to the magnetic dipole transitions. The ratio of
magnetic dipole to electric quadrupole transition probabilities is
of the order of' (25/ho)~A 'l3, where A is the nuclear mass number
and Aao is the photon energy in Mev. Similar emphasis of the
magnetic over electric transitions at low energies is anticipated
for higher multipole orders, so interpretations of isomeric transi-
tions on the basis of lifetime require re-examination.

I. INTRODUCTION

HE structure of nucleons and the mechanism of
interaction between nucleons seem to involve

charge bearing quanta in some way. It should therefore
be possible to investigate questions of either structure
or interaction mechanism by utilizing the inhuence of
an external electromagnetic field on a nuclear system.
For example, Pais' and Villars' have shown that in

meson theory nuclear radiative transition probabilities
and nuclear magnetic moments may depend on the
detailed nature of the meson field. Relationships of
this type were first emphasized by Siegert. '

At present the theoretical investigation of such prob-
lems by means of meson theories has all the disadvan-

tages of the tenuous nature of current theories. This,
combined with the difBculty of carrying through the
required calculations, discourages the study of electro-
magnetic effects in terms of a detailed meson theory.
As a matter of fact, certain general properties of the
electromagnetic effects are obscured by the complicated
character of each meson calculation. To the extent
that the description of a nucleus may be given by a
gauge invariant Schroedinger equation involving only
nucleon variables and electromagnetic field variables,
such properties of electromagnetic effects can be associ-

ated with the interaction appearing in the Schroedinger
equation. 4 While a theory of this type may not have a
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domain of validity much beyond that of the adiabatic
approximation in meson theory, it does provide a simple
phenomenological approach which yields quantitative
results. It is the purpose of this paper to derive some of
the results which such an approach yields for radiative
transitions in nuclei.

Specific examples of the relationships to be con-
sidered here have already been discussed. Feenberg
has shown' that space exchange forces cause a modifica-
tion of the f-sum rule for electric dipole transition
probabilities, and this fact has been applied~' many
times. Furthermore, certain phenomenological mag-
netic moments, ' which are a direct consequence of the
assumption of exchange forces, indicate a modification
of magnetic dipole transition probabilities.

It has been customary to call all effects associated
with the nuclear interactions exchange decks. In view
of the fact that they are not necessarily related to an
exchange process the term seems to be inappropriate.
In this paper they will instead be termed interaction

sects For example. , interaction moment designates any
contribution to the magnetic moment which is associ-
ated with the nucleon-nucleon interaction mechanism.
The term exchange egect will be reserved for the par-
ticular interaction eGects which arise directly from the
introduction of a space exchange operator in the nu-
cleon-nucleon coupling. Since even this does not yield
a unique definition, ' "because free choice of a diver-
genceless term in the current is possible, we choose to
include only those effects which arise in the "natural"

' E. Feenberg, Phys. Rev. 49, 328 (1936).
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way (i.e., according to a conventional prescription)
demonstrated in reference 9.

II. NATURE OF THE RADIATIVE EFFECTS

The most convenient expression of the interaction
with the electromagnetic field is for present purposes
given by Kq. (&-21), which exhibits all first-order
radiative interactions of a system. The equation gives
the efkctive interaction for the emission of a photon
in a nuclear transition. It is apparent that, as has often
been conjectured for the dipole term, the electric multi-

pole terms do not depend explicitly on the nuclear
interaction. "That this result is plausible may be seen

by an extension of the argument of Siegert. Although
a modification of the definition of current density may
be forced' ' by the forms of the nuclear interactions,
the dehnition of charge density need not be changed.
Thus, one would expect the electric moment operators
to be unchanged, but the magnetic moment operators
to reflect the change in the current density.

The change in the magnetic moment operators is
contained implicitly in the form of the M~ given by
Kq. (S-26).There are two distinctly di8erent reasons for
believing that the M~ contain terms in addition to the
ordinary 2'-pole magnetic moments. One is the evidecne
that the nuclear interactions involve a space exchange
factor, which is already known to lead to additional
terms. The other is the relationship between the nuclear
interaction mechanism and static magnetic moments
which is so strongly suggested by the apparent" non-

additivity of the spin and orbital moments in H' and
He'. Theories which have been devised to account for
the phenomenon would appear to fit into the gauge
invariant Schroedinger formalism treated in &. They
involve the introduction into the nuclear hamiltonian
of an interaction between the electromagnetic field and
pairs of nucleons which is antisymmetric in the nucleon
spins2 ~0 ~3

Both contributions may lead to observable modifica-
tions of magnetic multipole transitions in nuclei.

For the particular case l= i, the operator M&, which

provides magnetic dipole transitions, is identical with
the static magnetic moment operator. This exhibits
the close correspondence between static and dynamic
effects and has the consequence that any interaction

egect on the magnetic moment shonht show Np as an
equioalent egect on the magnetic dipole transition proba

bility. Thus, the aforementioned interpretation of the
H' and He' moments must have immediate conse-
quences for magnetic dipole transition probabilities in
all other nuclei as well as for their magnetic moments.

There appear to be several possibilities for the ex-

"This fact is convenient for calculation and has been used in
the dipole case by several authors. Since the forms of the operators
are not aGected by the nuclear interactions, it is necessary only
to guess at wave functions in order to estimate nuclear electric
mul tipole transition probabilities.

~ R. Avery and R. G. Sachs, Phys. Rev. 74, 1320 (1948).
"Blanchard, Avery, and Sachs, Phys. Rev. 78, 292 (19SQ).

perimental investigation of the eGects discussed here.
One would be the interaction effect on the cross section
for photo-disintegration of the deuteron or on the in-
verse process of neutron-proton capture. Another possi-
bility concerns the interpretation of isomeric transi-
tions. It would seem that those parity and angular
momentum assignments made on the basis of lifetime

maybe in error wherever a magnetic multipole transition
is a possibility. The probabilities for magnetic transi-
tions may be suSciently increased by interaction eGects
that they would be confused with electric transitions
of the same multipole order.

Conclusions concerning the absorption of high energy
gamma radiation by nuclei are also aftected. Thus an
extension of the calculation of Levinger and Bethe, '
taking into account the magnetic dipole eBects, would
seem to be in order.

It is of interest that the treatment of electric dipole
absorption by Levinger and Bethe o6ers a good example
of an interaction effect on electric multipole transitions.
They make use of the modification of the f-sum rule due
to exchange forces. A similar modification for the quad-
rupole and higher multipole transitions is provided by
Eq. (&-35). From this equation it is seen that although
interaction eGects on electric multipole transitions are
not immediately apparent, they do appear for the sum
rules. However, here the second-order term, H2, in the
hamiltonian is involved, rather than the first-order
term, Hj, which contains all the magnetic interaction
eQ'ects.

Formulas are given in the Appendix for the magnetic
multipole moment operators of nuclei and the general-
ized f-sum rules for ordinary interactions, exchange
interactions, and the velocity dependent interactions
linear in the momentum.

DI. MAGNETIC DIPOLE EFFECTS

Applications of the phenomenological method will be
limited in this paper to interaction eBects on mag-
netic dipole transitions, and three cases are considered.
These include the two eGects whose existence was
emphasized in the preceding section, and a third but
much more tentative eGect associated with a velocity
dependent nuclear interaction. This interaction was
introduced recently to account for high energy nucleon-
nucleon scattering as well as spin-orbit coupling in
heavy nuclei " '4

The transition probability due to exchange effects
can be computed from the exchange moment operator
whose form, already known, is given by Eq. (A-16).
However, as the exchange moment does not account"
for the static moment anomaly of H' and He' the need
for some other moment operator is seen. Fortunately,
rather general statements can be made concerning the
form of the required operator.

'4 K. M. Case and A. Pais, Phys. Rev. 80, 203 (1950).
'~ R. Avery and E. N. Adams, Phys. Rev. 75, 1106 (1949).
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The interaction moment is presumed to arise in con-
junction with two-body interactions. Then it must
have an operational form satisfying the following con-
ditions. '" (a) It is a sum of operators, each depending
on one pair of particles. (b) It is symmetric for inter-
change of any pair of nucleons (in isotopic spin nota-
tion). (c) It can be written in terms of the internal
variables, y, and other internal operators such as the
spins and relative momenta. (d) It is a pseudovector
which changes sign on time reversal.

The operator making up the sum in (a) will contain
as a factor a symmetric scalar function, 4 (~ y~ ~ ), which

gives the intensity of the interaction effect as a func-
tion of the distance between the pair.

All proposals extant concerning interaction moments
lead to a magnetic moment operator satisfying these
conditions. ' ""Of the operators satisfying (a), (b), (c),
and (d), there is one particularly simple form which is

capable of accounting for the H' and He' moments if
the ground states of these nuclei are assumed to be
predominantly S state. This is

dMg ——(sk/2')$ P (e —ep)(r~/2)4~. (1)
a, P

For the sake of definiteness Eq. (1) will be used as the
basis for the discussion of radiative transitions. "Analy-
sis of the three-body problem assuming that the form
ofC is

4'(p) = (~~o/&'p')(~"'/r p), (2)

with p, '=1.18&10 "cm, leads to

Jo =—13 Mev,

as the value required to account for the moment
anomaly.

Turning to the velocityAependent interaction of
Case and Pais, '4 we note that they 6nally settled on
the linear combination'" $(II+III'+ IV), which is just
(3) of reference 13. The additional interaction moment
operator thereby produced is given by the same linear
combination of the corresponding magnetic moments,
given in the Appendix:

1—r 3+v .~p
a„M, =(e/4ac) p ~ Lp.x(sexy.p)]

N, p l 2 2

l T~p 1+egg'cs]
(e-sX—p—p S s)Ee-Xtsj— ~~" (4)

2a 2 2 I

The factor J~("' is taken to be"

~"(p) =(~./4) (s "'/&p)
~P p)

'"See Appendix for notation.
'6 All statIc terms which are capable of yielding the three-

body moments are incorporated in Eq. {1) if the de6nition of
4 p is extended to include terms linear in y +yp as well as func-
tions of y~p. The only information concerning 4~p is to be ob-
tained from the three-body moments, and this one datum would
not appear to justify talong too general a form for the function.

with
J, =3Mev. (6)

Es h'y'/M, —— (8)

so 1/2 y is the "radius" of the deuteron. For p '= 1.18
X10 "cm we have y=0.28p, and the value of (7) is

(aM)/(M) =0.03.

The transition probability is proportional to the square
of the matrix element of the total moment, so the change
in the cross section introduced by Eq. (9) amounts to
about 6 percent.

An accurate determination of this interaction effect
requires a detailed knowledge of the distribution func-
tion 4 (p) in Eq. (1).A convenient way to avoid too de-
tailed assumptions is to treat the auxiliary problem of
the effect produced by a thin shell distribution,

4(p)=4pb(p —b), (10)

as a function of the radius, b, of the shell. I'"rom the re-
sults, it is possible to draw rather general conclusions

'~ For a detailed discussion of the comparison with experiment
see H. A. Bethe and C. Longmire, Phys. Rev. 77, 647 (1950).

IV. NEUTRON-PROTON CAPTURE; PHOTO-EFFECT
ON THE DEUTERON

The capture of slow neutrons by protons provides
the clearest nuclear example of a magnetic dipole
transition. Theoretical determinations of the capture
cross section have not taken into account the inter-
action effects; yet they are in quite good agreement
with the experimental value. "A large interaction effect,
and therefore any interaction which leads to such an
effect, is to be excluded. However, it turns out that
none of the interactions set forth in Sec. III is excluded
in this way.

The velocity-dependent term, Eq. (4), makes no con-
tribution to the deuteron problem, since it vanishes for
all even states of the two-body system. Similarly, the
exchange moment operator, Eq. (A-16), vanishes for
the two-body system, since it is proportional to pgy.
Thus, the only interaction effect on the capture cross
section arises from the operator, Eq. (1), whose intro-
duction is an immediate consequence of the interpreta-
tion of the H' and He' moments. This suggests that the
neutron-proton capture might provide a direct test of
that interpretation.

The interaction moment acts only within a region
comparable with the range of the forces, while the
spin-orbita1. moment acts over the entire volume of the
deuteron. Thus, for this 'S—+'S transition the ratio of
the matrix element of the moment Eq. (1) to that of
the ordinary moment can be estimated as

(AM)/(M) =—(MJo/h' p') (2y/p)'2/(p p —pm), (7)

where p~ and p~ are neutron and proton moments in
nuclear magnetons. The quantity y is related to the
deuteron binding energy by
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concerning the form of the distribution. This calcula-
tion was carried out as follows. The interaction moment
of the triton was determined from Eqs. (1) and (10)
by using the space-symmetric 'S wave function given
in reference 15, normalized to 100 percent. The value
of Co(b) was fixed by setting this moment equal to
0.27 nuclear magnetons, the presumed experimental
value. Then the matrix element of the operator Eq. (1),
for the same function C, was calculated for the '5—+'5
transition in the deuteron, using wave functions given
by Bethe and Longmire. "The resulting relative con-
tribution to this matrix element is shown in Fig. 1.

The exponential rise of the curve for large values of
b is a direct consequence of the small size of the triton
relative to the deuteron; since the triton function is
small at large distances, a very large Co is required
when b is large compared with the triton radius. It fol-
lows that if the actual distribution function C has a~
preciable magnitude beyond distances comparable to the
triton radius, a large interaction effect would result.
On the other hand, if the distribution of magnetization
is limited to a small radius, the effect is very nearly
independent of the shape of C and the change, e;, in
the cross section has the minimum value, 3.5 percent.
Thus"

e;~0.035.

The inQuence of variations in the triton wave function
may be estimated by noting that in the region of in-
terest e; is roughly proportional to the damping length
of that function.

Since the interaction effects are expected to occur
only within the range of the nuclear forces and since
the triton wave function extends somewhat beyond this
range, the value of e; is not likely to exceed greatly the
lower limit given in Eq. (11).However, any excess may
be of some use in determining the shape of C. A nu-
merical example may serve to illustrate the point. For
4~8»/pp, with p '=1.18X10 I cm one finds
=0.036. On the other hand, for C' p'e»/pp the dis-
tribution is moved out far enough to yield e;=0.052.

The conditions which must be met in order to obtain
an experimental value of ~; are best expressed in terms
of the ratio of theoretical to experimental cross section,
Referring to the paper by Bethe and Longmire, "
modi6cation of their expression to include the inter-
action effect yields

o,h/o, o
——1.10L1—0.116(r.,—r„)+2.8eg+1.5om

—0.15og—e4+ o ). (12)

Here r„and r, g, are the singlet and triplet effective
ranges, expressed in units of 10 "cm; e~, e2, e3, ~4 are,
in order, the experimental uncertainties in deuteron
binding energy, slow neutron-proton total scattering
cross section, slow neutron-proton coherent scattering

"Note that the term linear in y~+yp, mentioned in reference
16, would contribute neither in the deuteron nor in the triton '5
state.

DEUTERON MAGNETIC DlPOLE

EFFECT AS INFERRED
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Fzo. 1. Relative contribution of thin shell (8-function) inter-
action moment operator to the matrix element for a radiative
transition in the deuteron. The corresponding contribution for
any other distribution of magnetization, 4(p}, is the harmonic
mean of this curve with respect to a weight function given by
multiplying C(p) by the product of the initial and final state
radial wave functions of the deuteron.

eg= —0.004a0.001. (14)

The best value~ of e3 is taken from the liquid mirror
experiments:

&3= —0.08&0.02. (15)

The value chosen for r, g is" "
r, &

= (1.59+2.7eq+5.0e2—1.5eq). (16)

For r„we take the value" from the proton-proton
system

r„=2.71~0.13. (17)

The introduction of these into Eq. (12) gives

o g,/o, ,= 1.02&0.05+e;, (18)

if the uncertainties are all treated as random.
Comparison of Eqs. (11) and (18) leads to no con-

tradiction. It does suggest that e; has nearly its mini-

'9 R. C. Mobley and R. A. Laubenstein, Phys. Rev. 80, 309
{1950).

"Hughes, Surgy, and Ringo, Phys. Rev. 77, 291(L) (1950}.
~' H. A. Bethe, Phys. Rev. 76, 38 (1949).

cross section, and slow neutron-proton capture cross
section. The values used by Bethe and Longmire are:
H' binding energy, 2.235 Mev; thermal XP total scat-
tering cross section, 20.36X10-'4 cm'; thermal EP
coherent scattering cross section, 0.624X10-'4 cm';
thermal EP capture cross section, 0.310X10 ~ cm' at
2200 m per sec neutron velocity.

Ke take the e2 and e4 values of Bethe and Longmire

&2= &0.005, &4= +0.04. (13)

The best value" of e~ appears to be
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TAaxz I. Selection rules for magnetic dipole transitions.

Magnetic
moment Parity

Con6gura-
tion

Spin orbital dd'~ +1,0 No AI. ~ +1,0
change

M ~ +1,0 No change.

Exchange AJ ~ +1,0' No dL, &1,0a
change

Interaction, LkJ ~ %1,0a No AL ~0b
W. (1) change

M~&1,0

Velocity,
Ea (4)

hJ ~+1,0 No dL ~ +2.+1,0 AS~+1,0
change

At most
two particles
change state.
At most
two particles
change state.
At most
two particles
change state.

& 0-4 forbidden.
b dL, ~+2, &1 would be allowed if a slightly more general form than

Eq. (1) were assumed.

mum value, as expected. The result indicates that a
more precise determination of the cross section for the
capture of slow neutrons by protons would be very
useful. In the measurement of that quantity lies the
principal source of the uncertainty in Kq. (18).

Examination of the behavior of the interaction effect
at somewhat higher energies shows that it should be of
greater relative importance than at thermal energy.
This occurs because the range of the interaction mo-
ment operator is small compared with the size of the
deuteron. Therefore, the contribution to the matrix
element by the interaction moment arises from a region
in which energy changes of the free neutron state have
very little infiuence on the 'S wave function, at least
until the neutron wave length is comparable to the
range of the forces. On the other hand, the matrix
element for the usual magnetic efFect involves prin-

cipally the outer region and decreases rapidly with

energy.
Such behavior immediately suggests that a measure-

ment at higher energy should yield more de6nite in-

formation concerning the interaction efFect. Unfor-
tunately, with increasing energy the electric dipole
moment rapidly becomes the main contributor to
photo-disintegration, so that a separation of magnetic
and electric efFects is required as a preliminary to the
resolution of the interaction efFect. The separation can
be accomplished in principle by a measurement of the
angular distribution of the photo-disintegration prod-
ucts, but this difBcult experiment has not yet been carried
out with an accuracy at all sufhcient for our purposes.
The relative contribution of the interaction moment
to the photo-magnetic effect nevertheless is given in

Fig. 1 for a photon energy of 13 Mev. Note that for
small b this contribution is much larger than at low

energies, but not yet so strikingly large as to be sepa-
rable, for the photo-magnetic cross section at this energy
is only about 2 percent of the photoelectric cross
section.

V. MAGNETIC DIPOLE TRANSITIONS IN
HEAVXER NUCLEI

The interaction efFects on heavier nuclei might be
expected to ir1~uence lifetimes in isomeric transitions

as well as level widths in nuclear reactions. The former
usually correspond to transitions of higher order than
magnetic dipole. However, in order to obtain an early
judgment concerning the order of magnitude of the
effects, estimates will be made here only for magnetic
dipole transitions.

Each of the three interaction moments described in
Sec. III can be expected to play a role in the emission
of quanta in magnetic dipole transitions. The selection
rules for their contributions to the magnetic moment
are given in Table I. J is the total angular momentum,
L the orbital, and S the spin angular momentum.

The column labeled "con6guration" refers to one
nucleon wave functions and is useful if these functions
provide a reasonable approximation. It is very often
assumed that the con6guration can be speci6ed. Then
the selection rules show that intercon6gurational mag-
netic dipole transitions can take place only if interaction
efFects are present. The limitation on the number of
particles that can change state is a consequence of the
assumption of two-body forces.

In order to obtain an estimate of the order of mag-
nitude of the magnetic dipole transition probability it
will be assumed that the configuration can be specified
and that S is given for each of the states involved. All
the interaction efFects have the property that a transi-
tion in which only one nucleon changes state is much
more probable than a two-nucleon transition. The reason
is that only the term in the moment involving both
particles contributes to the two-particle transition,
while the number of terms involved in the single par-
ticle transition is equal to the number of particles with
which the particle interacts. The matrix element for
the one-nucleon transition is about A times that for the
two-nucleon transition, so the latter will be neglected.

The interactions act only over a range p, ', so a con-
tribution to the matrix element arises only within the
fraction (pR)~ of the total nuclear volume, 4IR'/3.
Since

(pR)'=A, (19)

this factor very nearly compensates for the large num-
ber of terms that contribute to the one-particle transi-
tion. Thus, the order of magnitude of the matrix ele-
ment for the one-particle transition would be (e/kc)
(J/y'), where J is the average strength of those inter-
action moments which contribute to the particular
transition. A convenient standard for comparison is
provided by the quadrupole transitions, with which the
magnetic dipole transitions can often compete. The
order of magnitude of the matrix element of the quad. -
rupole moment may be taken to be e~R'/c. Then the
ratio of the magnetic dipole transition probability to the
quadrupole transition probability is roughly

w„/w, = (J/ha&)'(pR) —'. (20)

According to Eq. (19),

w /w, = (J/fice)A~"
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A reasonable estimate of Z is

(22)

APPENDIX. SOME FORMULAS FOR SPECIFIC
INTERACTIONS

For a given hamiltonian the interaction effects may be ob-
tained directly from the equations given in I'. Several important
examples will be considered to illustrate the effects in question.
Ignoring, for the sake of simplicity, the contributions of the spin
magnetic moments, the internal hamiltonian takes the form

Q= (gg~) Z )yap —(eaAa/c)+ {epAp/c) P+ U, (A-1)
a, p

where U is the gauge invariant nuclear interaction potential.

p p= p —pp is the relative momentum of the a and P nucleons.
A A(r }is the vector potential at the position of the designated
particle. The integer A is the nuclear mass number, and M is the
mass of a nucleon.

For this case,

Ordinary Forces

U= g Z' J.p«&,
a, p

Then for light nuclei (A=27), the magnetic transi-
tions predominate for Ace less than 2.5 Mev. For the
heaviest nuclei (A=238) the corresponding energy is
1 Mev. Thus, it seems to be very probable that mag-
netic dipole transitions due to interaction effects are
of much greater importance than quadrupole transi-
tions for the very low lying levels of nuclei. Of course,
the intracon6gurational transitions should be included
in the consideration of the very low levels so that the
magnetic transition probability will be increased fur-
ther by the spin-orbital moment, which is then also
effective.

VI. CONCLUSION

On the basis of prevailing ideas about nuclear forces,
all magnetic multipole transitions will show interaction
effects, and it is possible to make reasonable estimates
of their inhuence on magnetic dipole transition proba-
bilities. These estimates show that for transitions be-
tween low lying nuclear levels, magnetic dipole radia-
tion is strongly favored over electric quadrupole when

the selection rules allow both. Similar results are to be
expected for the higher multipole orders, so that previ-
ous identihcations of isomeric transitions on the basis
of lifetime may be in error.

The most compelling test of the theory is suggested

by the 4 percent contribution to the neutron-proton
capture cross section. More accurate measurement of
this cross section would be very helpful. However, in-

formation by this means is limited to the spin-anti-
symmetric interaction presumed to be responsible for
the anomaly in the H', He' magnetic moments. In-
formation concerning exchange effects or the velocity
dependent interaction of Case and Pais can only be
obtained from nuclei heavier than the deuteron. No
simple method of discrimination of the various effects
in the heavier nuclei is suggested in view of the lack of
knowledge concerning nuclear wave functions.

where u is the unit polarization vector, satisfying {u.K}=0. Then
the generalized oscillator strength for electric 2-pole radiation is
Eq. (-32},

f;.'=(2'~„;/he'l ((D~).; I', (A-7)

for a transition from state n to state j of the nucleus. The sum
rule may now be obtained from Eq. (I'-35} and Eq. (I'-19) by use
of Eq. (A-4):

Z„f;„'=(2/2Ae'(li)') Z (Lea{K pa)' ' —ep(K pp)
a, p

+(l—2}'pea(u ya)(K ya)™—ep(u yp)(K yp}' 'j'}" (A-8)

where the angular brackets indicate the expectation value for
state j of the nucleus. In particular, for dipole transitions (l= 1)
one obtains the usual result in terms of Z, the number of protons,
and E, the number of neutrons;

Z f;„'=ZX/A. (A-9)

Similarly, for quadrupole radiation:

Z„f;„=(2/8Ae) Z (IK (e p —epyp}j2
a, p

+Pm (e y
—epyp)y&;;. (A-10)

Exchange Interaction

In Eq. (A-1) U is taken to bee

Pa
U=$ Z'exp —(e —ep) Ags J p( &P p. {A-11)

a p AC pp

P p is a space exchange operator, A& is the component of A along
the line joining y and pp, and the line integral is taken along that
straight line. Only the interaction, U, need be considered, as the
kinetic energy terms are the same as for ordinary forces. Expan-
sion of U in successive orders in A, corresponding to the expansion
Eq. (-2), gives terms of all orders, with

U =—Z Ags J,( )P „, (A-12)

e P~
U»= ——,, Z Ags J „()P „,

ac% py

where m; v label proton and neutron variables.
As can be seen from Eq. ($-26) the magnetic multipole moment

is made up additively of a contribution from the kinetic energy,
given by Eq. (A-S}, and a contribution from U&

..
M~( ) M (o) (A-24)

with the exchange multipole moment given by

~My= — Z " f(K.y }'—(K.y„}')J „(~&P „. {A-15)
hc(l+1)1~, , (K y „)

{A-23)

which is the sum over nucleon pairs of ordinary, two-body poten-
tials. The only nonvanishing H„are Bj and Hy. These are

P~= —(1/4AMcl Z lLp s (e A ep—As)5
a, p

+I (e A —epAp) p pjI (A-3)

H2= {2/2AMc') Z {e A —epAp)'. (A-4)
a, p

Equations (S-20) and (-26) provide the magnetic multipole
moment operators

el
(o) ZItp X(p —P/g)7(K p )

+(K y.}&-'Ly.X{p.—P/A) jI, (A-5)

where K is the unit propagation vector; the subscript m denotes
a proton variable; pa=ra —I is the position of the nth particle
relative to the center of mass; P is the center-of-mass momentum.

De6ning the electric 2'-pole moment by Eq. (S-25),

D&=(e/l!}Z(u. y )(K y )' ', (A-6)
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Gauge invariance, as expressed by Eq. (-9), can easily be es-
tablished for these interactions by making use of the well-known
commutation relations for the components of e . The first- and
second-order contributions of A to U are

For l=1 we obtain the expression for the exchange moment
operator ~

dk M =(6/nk} Z (y Xy„)J „( )E „. (A-16}
e', r

The sum rules are also changed from Kq. (A-8) by the addition
of a term introduced by Ug into Eq. (-35}. Since Eq. (5-35) is
linear in Hm, the change is simply additive and can easily be shown
to be

U&= —(1l2ke) Z (yepXEceAe —epApj S p)Tepfep&», (A-20)
aep

Up=0, (A-22)

for the non-exchange interactions (I), (II), (IV), and (V). For
the exchange interactions (III') and (VI)

—1
U&=—Z (yepXPeeA epA—p5 Sep)Tep&e&

QCa, p

+—(e pXn p-S p)T p"'—
ap

A gs+H. c. J p(') (A-22}

pp
&{papX pea~a ep~pj Sap) Tap ~ I&(2t&

ppXyp S p}T

pp
X f IA* +H. .)I I", (A-23)

—M~.&.f '=~, lo,{&I:(uy )(&.y )' '
k'{/l' w, r

—(u yr}(x yr}' 'PJ~rE~r);;. (A-12')

For /=1 this result is identical with that obtained by Feenberg
and recently applied in some detail by Levinger and Bethe. ~ The
result has not been given before for higher l.

Velocity-Dependent Interactions

Velocity-dependent interactions'&" provide a useful example of '

interaction effects other than those due to exchange. The two-body
interactions, linear in the momentum, which are tabulated by
Wigner and Eisenbud, ~ are considered here. Although one of the
six interactions (IV) can be eliminated on the basis of experience, "
it will be considered for the sake of completeness.

In Eq. {A-1) U is taken to be

=1 ea ep
papX pap ~a+ Ap ' S p Tap

ap C

+hermitian conjugate JaP('. (A-18)

The operators appearing in U are most easily described in terms
of the isotopic spin vector e of the ath particle, with components
~ay, rag, ~ay', ~a3=1 for a neutron, ra3= —1 for a proton. For the
sake of simplicity v 3 will be replaced by v wherever possible and
(va —rp) by ~ap. Then the ea are the operators,

e =){2—~ )e, (A-29)

and the operators S p and T p are defined as follows for each of
the six interactions:~

where Tap(') is obtained from Tap by setting A=O.
The 2'-pole interaction magnetic moments are obtained in the

usual way from Kq. {S-26).For the non-exchange interactions

el
d,M&= Z (e& y )' '(AX(Sepkc(l+2)t a p

Xy p)~~ T pJ p('). (A-24)

For the exchange interactions

el faa„M&= Z ty X{SpXy p)„"
2hc l+1)la p

{y Xyp) ~ p——(yapxyap Sap) (x, pa)—
lk {sc.y p) 2

X (x, Pa)' 'TaP( )JaP(')+hermitian conjugate. (A-25)

The change in the sum rule is again to be obtained from Eq.
{-35}, with U~ given by Eq. (A-21) or Eq. (A-23). For the non-
exchange interactions:

(A-26)~, Z.f;.~=O.

For the exchange interaction

f&
t Z i(p pXLu(L.

k~(ll)' p

+(l

p'ap
(papXpap'Sap){u'pa)(+'pa} X ((u pa)(&'pa)

(&e pp)(&e pop)' '—
) T~p&e&J p&»+—H.&:, (A-27)

ii

~Note that Eq. (A-16) di8ers from the expression given in
reference 9 in that the vector y Xpr has replaced r~Xrr. How-
ever, reference 9 is concerned only with the expectation value of
the magnetic moment operator and the expectation value of the
difference of the two operators can easily be seen to vanish.

~ The statement by Marshall and Guth (reference 8) that the
correction vanishes for l=2 appears to be inconsistent with
Kq. (A-17}.

~ L. Kisenbud and E. P. Wigner, Proc. Nat. Acad. Sci. 27, 281
{1941).

'~These expressions are, with one exception, ordered in the
same manner as in reference 13 and numbered accordingly.
(IG') divers from (3) of that reference by the elimination of the
non-exchange part.

The determination of the hermitian conjugate operator, in-
dicated in the foregoing equations, is greatly facilitated by the
relationships

T p(o)g —AT p(o)

r pTap(o)= —Tap(o)r p.

T p=$(r +op} (I)
Tap= $(1+var p) (II)
T p=)(2+v ~p)

S p=(e +ep}, &

X zp f A 8 )—(III'&*
T p=$(r —~p} (IV}

Sap= (+a-'p), Tap= $(~a—~p} {V}
—ie rap &p

S p=rgaXgpj, T p=)fgaXgpjgexp — Ags . (VI)I'a


