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absorption and the measurements of energy distribution
were taken each on a dBerent surface in a di8'erent
tube. Further, there is good evidence that the param-
eters, particularly h, vary with the preparation of the
surface. ~ One does not seem to be justified, therefore, in
attempting a more accurate determination of the con-
stants.

The principal feature of the experimental curve,
namely, the steep rise at low energies, is well represented
by the theoretical curve. It is not at all surprising that
in other respects there are some diBerences between
them. It should be remarked that the comparison of the
energy distributions is a more severe test of the theory
than comparison of yields, since the latter is a com-
parison of the integral of the former. Further, to deter-
mine the energy distribution, it is necessary to assume
an explicit form for the connection between age and
energy which is not required for the yield.

The difterences between the curves of Fig. 2 can be
explained in a reasonable way in terms of the model
which we have used. There are two considerations that
have been left out of account that will raise the cal-
culated distribution at the high end where it is too low.
First, one should expect a gradual transition from the
surface dead layer to the active material in the crystal.
Thus, some electrons will be able to originate at depths
less than h, and these will lose less energy in reaching
the surface. Second, one can expect the electrons to be
produced with an initial spread in energy of several

tenths of a volt. ' Those that are abnormally energetic
at birth will be likely to reach the surface with an
excess of energy. Neither of these sects can make any
noticeable change in the course of the yield.

At E=o the theoretical curve drops discontinuously
to zero. This is to be attributed to our assumption that
an electron reaching the surface with e)A will surely
surmount the surface barrier and escape. Actually,
when e—A is small, the chance of escape in a single
encounter (e—A)/e becomes so small that a large
fraction of electrons will lose their extra energy without
getting over the barrier. The resulting distribution
would decrease continuously to zero in better agreement
with observation.

The distribution to be expected when there is no
dead layer but destruction of excitons at the surface
(mechanism A) has also been caiculated. In this case,
diffusion of the excitons is taken into account. It turns
out then that the distribution in age decreases with
increasing age. With the linear connection (9) between
age and energy, this means that the energy distribution
rises with energy in violent contradiction with experi-
ment. We conclude that a dead layer is essential to the
explanation of both the energy distribution and the
yield.

It is a pleasure to acknowledge indebtedness to
LeRoy Apker and to Harvey Brooks for many stimu-
lating discussions and suggestions and to the latter for
the introduction to age theory.
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Consideration is given, to any system of particles whose behavior under the influence of an external
electromagnetic field can be described by a gauge invariant Schroedinger equation. Detailed restrictions
on the form of the hamiltonian which are imposed by the condition of gauge invariance are derived. These
provide a simple means to the solution of many problems of the interaction of a system with the electro-
magnetic field. In particular the following consequences are established: (1) In multipole expansions for
single photon processes the electric multipole operators have the usual form but the form of the magnetic
multipole operators may depend in a detailed way on the interactions between particles and electromagnetic
Geld. (2) The f-sum rule can be expressed in closed form in terms of the interactions. (3) A generalization
of the f-sum rule to all electric multipole orders is given. (4) The cross section for scattering of a low energy
photon can be expressed in terms of the electrostatic polarizability quite independently of the interactions.
Applications of these methods to problems in nuclear physics are given in an accompanying paper.

I. INTRODUCTION

T is generally assumed for any molecular, atomic,
-- or nuclear system that, to the approximation in
which it can be described by a Schroedinger equation,
the electromagnetic interactions of the system must
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appear in such a way as to leave the equations of
motion gauge invariant. The purpose of this note is to
show that this assumption has many general conse-
quences for radiative transitions. For example, the
well known f-sum rule for the oscillator strengths can
be obtained directly from the gauge property as can
similar sum rules for the other electric multipole orders.

Since nuclear processes involve charge-bearing quanta
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(mesons) in a manner which has not yet been ade-
quately described, little is known about the electro-
magnetic interactions of nuclei. To the extent that
these properties can be incorporated into a Schroedinger
equation (phenomenological theory) tentative theo-
retical discussions" usually assume that the system
must be gaug invariant. The radiative properties of
nuclei are thereby affected in a manner which can be
discovered by application of the genera1 results given
here. That application is made in the following paper.

For molecular and atomic systems, the electromag-
netic interactions are well known so that no information
of a fundamental nature can be expected to ensue from
this study. However a somewhat deeper understanding
of well-known relationships is provided. Furthermore,
for the treatment of certain molecular problems it is
convenient to replace the interactions by approximate
interactions which involve exchange or velocity de-
pendence. ' To this approximation, results obtained
here serve as a convenient device for the study of
electromagnetic properties. 4

In most problems concerning the interaction of the
6eM with atomic systems, the 6eld is weakly coupled
to the system and H{pz, A} can be expanded in powers
of the coupling coeKcient. This expansion into terms
of successively higher order is then taken to be

H{e~, A}=HO(e~)+Hi{ei, A(r)}
+(l/2')H2{ei, A(r)}+", (2)

where the H„are hermitian operators.
Particular properties of the operator II~ are of

interest since this term represents the interaction
responsible for emission or absorption of a single photon.
It can be seen easily that H& is linearly dependent on
A(r):

Hg{qg, eA+e'A'} =eH~{qg, A}+e'H~{e)„A'}. (3)

Furthermore, the magnetic moment of the system about
its center of mass may be de6ned in terms of Hj. For
a weak uniform magnetic Geld H, we set

A= —~~L(r—R)XH5

II GENERAL pROpERTIES OF THE HAMILTONIAN and the Grst-order interaction energy is

It will be found convenient to make an explicit
separation of the center of mass variables and the
relative coordinates. The coordinate and momentum of
the center of mass are denoted by R and P respectively.
The internal variables will be denoted symbolically by
a set of operators y), which, for diGerent values of X,
may include relative coordinates, relative momenta,
spin variables, exchange operators, and so on. The
essential property of yq is that it commutes with R
and P.

In the absence of an electromagnetic 6eld the
hamiltonian of the system is

To(P)+Ho(q ~).

We now assume that in the presence of an external
electromagnetic 6eld described by a vector potential
A(r), the Hamiltonian is written as'

y=r —R,

the coordinate relative to the center of mass.

III. GENERAL CONSEQUENCES OF
GAUGE INVARIANCE

(6)

—(M H) = —-,'H~{qg, (r—R)XH}, (4)

where M is the magnetic moment operator. Note that
the introduction of R in this way is possible because R
can be treated as a number in H& by virtue of its
commutation with all the qq. Since Hq is linear, we
can divide by the magnitude of the magnetic Geld and
obtain

(M n)=2%{q»„yXn} (5)

for the definition of an arbitrary component of the
magnetic moment in terms of the unit vector n. The
definition of y is

with
T{P,A(r) }+H{y)„A(r) },

T{»A(r)} =To(P—Z. (e-/e)A-) (&)

The requirement of gauge invariance can be presented
in terms of an arbitrary gauge function G(r) and the
associated expression

where e is the charge on the 0,th particle, and
A = A(r ), r being the position of that particle. The
operator II includes the internal kinetic energy and
terms involving the interactions between the particles.
However, the latter terms need not be obtainable by a
simple prescription from the 6eld free interactions in Ho.

' R. G. Sachs, Phys. Rev. 74, 433 (1948).
~ R. K. Osborne and L. L. Foldy, Phys. Rev. 79, 795 (1950).
3The introduction of a velocity dependent interaction to

facilitate the treatment of electrons in a periodic lattice serves
as an example. See J. C. Slater, Phys. Rev. 76, 1592 (1949).' In this connection see the discussion of the modification of
sum rules in atomic systems given by V. Pock, Z. Physik 89, 744
(1934).' The braces are used to indicate that H and T are flnctionals
of the vector 6eld A(r).

g= (i/hc)P. e.G(r.).
The hamiltonian is gauge invariant if'

T{P,A+gradG}+H{eg, A+gradG}
=e'LT{P, A}+H{eg, A}5e & (8)—.

By the definition, Eq. (f), the operator T is independ-
ently gauge invariant so the terms in T may be dropped
from Eq. (8) to give

H{wg, A+gradG} =e'H{ yg, A}e—'. (9)

With A=O the left side of Eq. (9) can be expanded in

~H. %'ey1, Theory of GroNPs and Qeaetuns Mechanics (Dover
Publications Inc., New York), p. 100.
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H „{yi, gradG }= c"Hz/cg", (13)

where the expression on the right denotes the commu-

tator of Ho taken e times with respect to g.
All of the consequences of gauge invariance relevant

to problems discussed here are expressed by Kqs. (13).
These equations are conditions on the form of the
hamiltonian and can henceforth be used freely without

regarding 6 as a gauge function.
Note that, subsequent to writing down a hamiltonian

of a given form, the electromagnetic 6eld can be
quantized without modification of the equations. This
is correct if the hamiltonian involves only variables
that commute with A.

IV. SINGLE PHOTON PROCESSES

For the sake of definiteness we consider the emission

of a single photon. The vector potential for the radiation
field is taken to be

accordance with Eq (.2) while the right side can be
expanded in terms of commutators of g with IIO..

Ho(q i)+Hi{zzg, gradG}+ (1/2!)Hz{ q i, gradG}+
=Ho(» i)+[g, Ho]+(1/2')[g, [g H ]]+.. . (1o)

By equating terms of equal order from Eq. (10) gauge
invariance is seen to imply the conditions

Hi{q)„gradG} = [g, Hp], (11)

Hz{ &g, gradG} [g, [g, Hz]], (12)

and, in general,

aild

then

G ( ) = ( e)(k )' '/1'&'-',

Wi(r) =ly(k p)' '/(f+— 1)!h'-'

(19)

(20)

u exp( —zk y)

P( =ik)' —'{gradGi+z[uXk]XWi} (21.)
1

The gradient is taken with respect to r. Substitution
into Eq. (18) and use of the linear property of Hi,
gives the effective interaction as

where y=r —R. This form is convenient since the
external factor merely establishes the conservation of
total momentum while the argument appearing in H&

depends only on the internal variables of the system.
The wave functions of the system can be written as

the product of exp(iK R) with a function describing
the state of the internal motion. The matrix element
of I' will vanish unless K decreases by the amount h
in the emission process. Taking this change of mo-
mentum into account, the transition probability is
determined by the matrix element of

I"=c(2zrh/Vvi)~Hi{ y&„u exp( —ik ti) } (18)

with respect to the internal wave functions only. The
operator I"will be called the egeczzve interaction.

A multipole expansion of the effective interaction
about the center of mass can now be made. Introducing
the de6nitions

A=c(2zrh/V)&P qz, .o& &u exp(ik r), (14)

with qI, „=aI,, „+u ~, „*where a ~, *, 0~ „are the crea-

tion and annihilation operators for a photon of propa-
gation vector k and polarization u with (u k)=0;
~= ck is the angular frequency of the photon, and V is

the volume of the enclosure introduced for purposes of
normalization. For single photon processes, A is to be
treated only in first order. Then, by Eq. (2), the

interaction of the radiation 6eld with the internal

motion of the system is

I= Q c(2vh/Vco)&qi. „„H,{yt„u exp(ik r) }. (15)

Denoting by I', the matrix element of I with respect
to the radiation field for emission of the photon (k, u),

I'=c( 2sh/Vru)& Hi{p&„u exp( —zk r) }. (16)

The radiative transition probabilities may then be
obtained in terms of the matrix element of I' with

respect to wave functions of the system of particles.
Since R commutes with the q)„ it may be treated as a
constant with the result

I'=c(2s h/Vco)&

Xexp( zk R)Hi{—q i„u exp( —zk. y) }, (17)

I"=c(2sh/V(o)&g( —zk)' '[Hi{pi, gradGi}
/ 1

+zH1{ v i, [uXk]XWi}]. (22)
Introducing

Di P. e Gi(r.)—— (23)

the gauge condition, Kq. (11), with g=(z/hc)gi Di,
yields

I"= —(2zrh/V (0) &Q ( zh) ' '[(z/k)—[Hz,
—Di]

—zcHi{ yi, [uXk]XWi}]. (24)

From the definitions Kq. (23) and Eq. (19),we see that

Di=Z v (u'0 )(k'0 )' '/f'&' '

is just the electric 2'-pole moment~ and the corre-
sponding terms in Eq. (24) are the time derivatives of
the electric multipole moments. It is of some conse-

~ Actually the multipole moments are usually de6ned in terms
of surface harmonics (see Dancoff and Morrison, Phys. Rev. 55, 122
(1939)),which are irreducible representations of the rotation group,
rather than these reducible tensors. However, since the multipole
expansion is always used in the sense that only the lowest term
with nonvanishing matrix element is to be considered, the extra
terms which are included here would vanish as a consequence
of the selection rules.
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quence' that the electric multipole terms appear this
way whatever the interaction. The other terms, which
are magnetic in character, may depend very strongly
on the interactions between particles, as shown in the
following paper.

Denning a vector M& by

(uxk M&) =—Eh{q)„[uXkjXWr},

the eGective interaction becomes

(26)

I"= (2—s.k/Vcu) &g( ik—)' '[D—s+ic(uX& %)5 (27)
k~1

Equation (20), defining Wi, and Eq (26) show on
comparison with Eq. (5) that M& is just the magnetic
moment of the system. In general, the M~ provide the
magnetic multipole moments of order 2'. To demon-
strate this it must be shown that M~ transforms under
rotation and. inversion of the particle variables like a
component of a tensor of rank l with parity (—)' '.
First consider transformations of ul/ vectors, including
N and R. Then

(uxk Mi)~(uxk M&) (28)

since II~ (and each II„) is a scalar operator for transfor-
mations of all variables. Now under transformations
of u and k alone [(uXR) XW~j transforms, according
to Eq. (20), like a tensor of rank l with parity (—)' '.
Since H~ is linear, the defining Eq. (26) shows that
under this transformation (uXk M&) transforms simi-

larly. If the transformation of u and h is supple-
mented by the same transformation of particle vari-
ables, Eq. (28) shows that (uXk M~) must undergo
the inverse transformation, which establishes the
required property.

The important result is the multipole expansion
Eq. (27) of the effective interaction which was obta, ined

only for the internal part, H of the hamiltonian. It is
still to be shown that the interaction terms in 2'{P, A},
given by Eq. (1), have a negligible infiuence on transi-
tions. Since

2'o(P) =P/2', (29)

Mo the total mass of the system, the terms in T which
contribute to single photon processes are

Tg= (—1/Mo)(2ork/Voo)&

Xexp( —ik R)g e, exp( —ik p )(u P). (30)

Noir the multipole expansion is an expansion of
exp( —ik. y ) in powers of (k. y ), and we note that the
matrix element of the zero-order term vanishes because
the internal wave functions are orthogonal. The 6rst-
order term in (tr, y ) (quadrupole order) makes a
contribution only if the dipole selection rules are
satisfied; but then there is a contribution of dipole order
from I" so terms of quadrupole order should be neg-
lected. In general we see that T~ contributes in one

'See follovriag paper. Also C. Mgller and L. Rosenfeld, KgL
Dans' Videnskab Se&~k~b Mat. -fys. Medd. 20, No. 12 (1943).

where M is some appropriate particle mass and Acr; is
the change in internal energy of the system. This energy
change diBers from kco by the very small recoil energy
of the center of mass. The generalized oscillator
strength f; ' is defined by

fy. '= (2lrI/keo)oo„;
/ (Dg);„/', (32)

but, for present purposes, it is more conveniently
written in the form

f;.'=( ~/k'e'){[IIo, R]; (%) J
(%);.[II—o, Di).,} (33.)

Then the sum of the oscillator strength over all initial
states e is

2 f~-'= (IrI/k'—e')[[Ifo D0 Diha (34)

i.e., the expectation value of the double commutator in
state j.However, according to Eq. (12) and the defini-
tion, Eq. (23), of D&, the double commutator can be
expressed directly in terms of H2.

where G& is given explicitly in Eq. (19) and the gradient
is taken with respect to r. Equation (35) is the general-
ized f-slm rile.

That Eq. (35) leads to the usual f-sum rule for dipole
radiation can easily be established by noting that

gradG~= u. (36)

Consider, as a particular example, particles of mass m
whose mutual interaction can be described by an
ordinary potential U(pz, po, . ).

Then the internal hamiltonian may be written as

1 t'c c
&{oo)„A}= Pm. mp~ y.— -pp

4M' e, p

A.+ -A,
~
yV (37)

m. mp

where M& is the total Inass of the system. The oper-
ator H~ is

1 (e~ ep
H, {oo)„A}= Q m mp~

— A — Ap
~
. (38)

23foc'~p hm mp

higher order than I" so it may always be neglected for
the single photon process.

V. SUM RULES FOR ELECTMC
MULTIPOLE RADIATION

The transition probability for the emission of electric
2'-pole radiation in the direction dO when the system
goes from a state n to a state j is found by Eq. (27) to be

2or e' uP' (ra„;) dQ
w;„=—p e/I;„"/ =—

] /f
'

, . —(31)
k 3E c"+' ( co ~ 4s.
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Therefore

( &a &P )
H, {o „u}= P m.m,

l

— }, (39)
2Moc' ace , jc m mp)

and the sum rule for dipole radiation becomes

M t'e sec y'
Zf, -'= Z m.msl

2Mo c'. s , (m. mp)

For a system of Z electrons of mass m in the Geld of a
nucleus of charge Ze, we choose M to be m/Mp times
the nuclear mass and find

Z-f~'=~ (41)

in agreement with the usual result. Again note that
the mass appearing in the definition of this oscillator
strength differs slightly from the electron mass.

VI. THE SCATTERING OF LIGHT

As a further example of the consequences of gauge
invariance, consider the elastic scattering by the system
of a photon of propagation vector h and polarization
vector u into the state h', u'. It will be shown that
gauge invariance just leads to the cancellation of
diamagnetic terms which is required to establish the
usual relationship between the static electric polar-
izability and the cross section for the scattering of a
low energy photon.

The second-order terms must be carried for this
two-quantum process so the interaction is

I=Hz{ pod, A}+-',Hz{ cp)„A}+T{P,A}. (42)

Application of the vector potential, Eq. (14), to the
center of mass interaction T{P,A} leads directly to
the Thomson cross section for the scattering of light by
a charged mass point. Consideration is now restricted
to the internal part of the hamiltonian. In this case
only the terms of electric dipole order are carried in the
vector potential, which is then written as

with
D=P. e.(u. p.), D'=Z. e.(u' p.). (42)

+o[D, [D', Ho]]op+ o[D', [D, Ho]]oo, (4g)

if the initial and Gnal internal state of the particle
system is denoted by the subscript "0." On using the
relationship

T becomes
[D, Ho]oj = —hcdojDoq, (49)

[
(Doi[D, Ho jap [D,—Ho]p&D~o

-(~~') ' Z{
VA i E. 1+co/cop,

Do ' [D, Ho] 'o —[D, Ho]p Dp)'
+

1—(d Mo~

—[D, [D', Ho]]oo—[D', [D, Ho]]oo . (5o)

Now if an expansion of the energy denominators in
powers of co/coo; and cp'/cop; is carried out, the zero-order
term in the summation is just cancelled by the diamag-
netic terms represented by the double commutators.
The first-order term is proportional to the very small
diGerence between co and co' so, neglecting this diBer-
ence, T is to second order

Now the transition amplitude' for the absorption of
(k, u) and the emission of (k', u') is found from Eq.
(46) to be

t [D, H,]„[D',H.];,
(~~') ' Zl

Viz { i E scop;+hcp

[D' Hp]pi[D Hp]zo'I
+

Izcppy —Izco )

A=c(2zrh/V)&P cp &qo, „u exp(ik R).
k, u

If a function G(r) is defined by

(43)

Thus

T= (2m'/V&)P '
(co/pop ') (Do 'D 'o'+Do ''D 'o) (51)

G=c(2zrI1/V)&P cp &qo, [u (r—R)] exp(zk R) (44)

then
A= gradG. (45)

The gauge conditions, Eqs. (11)and (12), may therefore
be used to transform Eq. (42) to

I= (i/Iz)(2zrIz/V)& P cp ~qo, [D, Hp] exp(ik R)
k, u

—(zr/VIz) Q Q (cpcp') &qo, „qo,.[D, [D', Ho]] (46)
k, u )}.", u'

T= —(2zr/ V) cpa„,„, (52)

' The term transition amplitude is used here for the quantity
T which appears in the expression for the transition probability,
m={2m /k)pg)T(~. Sometimes it is referred to as the "matrix
element. "

where a„,„ is the (u, u') component of the electrostatic
polarizability tensor. Note that this result is quite
independent of the detailed interactions between the
particles except through the inhuence of the interactions
on the wave functions which determine the matrix
elements.


