Letters to the Editor

DUBLICATION of brief reports of important discoveries in physics may be secured by addressing them to this department. The closing date for this department is five weeks prior to the date of issue. No proof will be sent to the authors. The Board of Editors does not hold itself responsible for the opinions expressed by the correspondents. Communications should not exceed 600 words in length.

The Atomic Masses of H¹, C¹², and S³²

Alfred O. Nier Department of Physics, University of Minnesota,* Minneapolis, Minnesota December 6, 1950

⁴HE masses of H¹, C¹², and S³² have been determined relative to O¹⁶ by the doublet method with the double-focusing mass spectrometer developed in this laboratory.1 Table I lists the

TABLE I. Mass doublets from which masses of H¹, C¹², and S²² are calculated.

	Doublet	Source of ions	No. of runs	$\Delta M imes 10^4$ amu
a.	(C ¹²) ₄ -S ³² O ¹⁶	C4H6	4	331.82 ± 0.07
b.	$C^{12}(O^{16})_2 - C^{12}S^{32}$	SO_2 CO_2	6	177.82 ± 0.25
c.	$(C^{12})_3(H^1)_8 - C^{12}(O^{16})_2$	C ₃ H ₈	6	729.67 ± 0.41
d.	$(C^{12})_6(H^1)_4 - C^{12}(S^{32})_2$	$C_{6}H_{6}$ CS_{2}	4	873.26 ± 0.58

doublets studied together with the number of runs on each and the results obtained. As in previous work, each run consists of ten determinations. Mass differences involving hydrocarbon ions of the form $(C^{12})_n(H^1)_m$ are corrected for the presence of unresolved $(C^{12})_{n-1}C^{13}(H^1)_{m-1}$ ions. The probable error given indicates the consistency between runs. From the data in Table I, one finds:²

> $S^{32} = 32 - b = 31.982218 \pm 25$ $C^{12} = 12 + (a-b)/4 = 12.003850 \pm 6$ $H^{1}=1+(a+7b+8c-4d)/48=1.0081685\pm90$

or or

$$H^{1} = 1 + (5c + 4b - 2d)/32 = 1.008166 \pm 8$$

 $H^1 = 1 + (2d + 3c - 4a)/32 = 1.008151 \pm 6.$

The result for S^{32} substantiates the value 31.9823 ± 3 given by Aston³ rather than that of Okuda and Ogata,⁴ 31.98089 \pm 7. The new value is consistent with 31.98199±21 computed by Penfold⁵ from disintegration and some mass spectrographic data, and the number 31.9823 ± 10 found by Smith⁶ in his new "synchrometer" mass spectrometer.

The weighted average of the three values for H^1 is 1.008159 ± 4 . An examination of the computations which lead to the three individual values shows that all three depend rather strongly upon the value of the doublet c, the first two more so than the last. If one arbitrarily weights the three in the ratio 1:1:2, respectively, in computing the average, one again obtains 1.008159. Because of the strong dependence of the three separate errors upon the error in the common doublet c it may be safer to assume 6, the lowest probable error of the three separate values, as the probable error in the final answer. This has been done in the computations which follow.

The present values for H¹ and C¹² are in good agreement with the values 1.0081686 ± 52 and 12.003803 ± 13 , respectively, found by Roberts while considering an entirely different cycle. His results are given separately.7 The weighted averages of his and the present results for \hat{H}^1 and C^{12} are given in Table II. Also given in Table II are masses for other isotopes based upon doublet measurements TABLE II. Summary of atomic masses determined by mass spectrometry.

H	1.008165 ± 4
H^2	2.014778 ±8ª
He4	4.003944 ± 19^{b}
C12	12.003842 ± 6
N ¹⁴	$14.007564 \pm 7^{\circ}$
Ne ²⁰	19.998835 ± 43^{d}
S32	31.982218 ± 25
A36	35.97926 +8°
A40	$39.97524 + 3^{f}$

* From H₂-D=(15.519±0.017) ×10⁻⁴amu. * From D₂-He⁴=256.12±0.09. * Weighted average from C¹³H₂-N¹⁴=125.86±0.13; (N¹⁴)₂-C¹²O¹⁶ =112.80±0.13; (C¹³)₂H₈-(N¹⁴)₂O¹⁶=617.6±0.9. * From D₂O¹⁶-N²⁰=307.21±0.39. * From H₂O¹⁶-A³⁶/2=267.02±0.40. * Weighted average from N²⁰-A⁴⁰/2=112.80±0.18; (C¹²)₃H⁴-A⁴⁰ =688.77±0.35; D₂O-A⁴⁰/2=419.67±0.18.

reported in the present two letters and in the paper referred to under reference 1.

The assistance of Walter H. Johnson and Ruth C. Boe in making the determinations is gratefully acknowledged. The construction of the apparatus used in this research was aided by grants from the Graduate School and the Minnesota Technical Research Fund subscribed to by General Mills, Inc., Minneapolis Star and Tribune, Minnesota Mining and Manufacturing Company, Northern States Power Company, and Minneapolis Honeywell Regulator Company.

* This work supported by joint program of the ONR and AEC. ¹ Preliminary reports on the apparatus and some results already have been given: Phys. Rev. 75, 346 (1949); 77, 746 (1950). A more complete report on the apparatus and measurements on 13 mass doublets will be found in a paper appearing elsewhere in this issue, Phys. Rev. 81, 507 (1951) (1951)

 (1951).
² Except in Table I, probable errors given in this letter apply to the last significant figures in the values to which the probable errors are attached.
³ F. W. Aston, Nature 138, 1094 (1936); Proc. Roy. Soc. (London) A163, 204 (1937). 391 (1937).

¹¹ (1937).
⁴ T. Okuda and K. Ogata, Phys. Rev. **60**, 690 (1941).
⁶ A. S. Penfold, Phys. Rev. **80**, 116 (1950).
⁷ L. G. Smith, Phys. Rev. **81**, 295 (1951).
⁷ T. R. Roberts, Phys. Rev. **81**, 624 (1951).

The $H_2 - D$ Mass Difference and the Determination of Secondary Atomic Mass Standards*

T. R. ROBERTS Department of Physics, University of Minnesota, Minneapolis, Minnesota

December 6, 1950

[•]HE physical table of isotopic weights is determined relative to O¹⁶. As summarized by Tollestrup, Fowler, and Lauritsen¹ key light elements H, C12, and N14 have not yet been compared directly with O¹⁶ by nuclear reactions and are dependent only upon mass doublet measurements. The low probable errors Mattauch's and Jordan's fundamental doublets H_2-D , of $C^{12}H_4 - O^{16}$, and $D_3 - C^{12}/2$ have weighted their data predominantly in the mass values recommended by Bainbridge,² and are shown in Table I.

TABLE I. Secondary atomic mass standards.

Isotope	Bainbridge report ^a	Present results
н	1.0081283 ± 0.0000026	1.0081686 ± 0.0000052
D	2.0147186 ± 0.0000055	2.014785 ± 0.000010
C ¹²	12.003856 ± 0.000019	12.003803 ± 0.000013
N^{14}	14.007536 ±0.000022	14.007544 ± 0.000010
n	1.0089383 +0.0000057	1.0090087 + 0.0000056

^a See reference 2.