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On the First Passage Time Probability Problem

ARNoLD J. F. SiEGERT
Physics Department, Northwestern University, Evaeston, Illinois

(Received July 12, 1950)

We have derived an exact solution for the 6rst passage time probability of a stationary one-dimensional
MarkoEan random function from an integral equation. A recursion formula for the moments is given for
the case that the conditional probability density describing the random function satisfies a Fokker-Planck
equation. Various known solutions for special applications (noise, Brownian motion) are shown to be special
cases of our solution. The Wiener-Rice series for the recurrence time probability density is derived from a
generalization of Schrodinger s integral equation, for the case of a two-dimensional Markof6an random
function.

tion obtained by the following argument. The prob-
ability

a

~(yol t, a) = P(y I y, t)dy

I. INTRODUCTION

A STATIONARY Markman random function,
y(t), such as a velocity component of a colloidal

particle in Brownian motion or of a star in a cluster,
or the noise current in an R-L circuit as functions of
the time, is de6ned by P(y p I y, t)dy, the probability that
y (~y(t)(y+dy, if y(0) =yp. For a continuous function,
y(t), the first passage time probability 6'(ypl t, a)dt is
defined as the probability that y(t) passes the value a
for the 6rst time in the time interval (t, t+dt) if y(0) =yp.

The problem of determining P((y lpt, a) has been
solved for certain special cases by Schrodinger, '
Smoluchowski, ' Chandrasekhar, ' and %ang and Uhlen-
beck. 4 Schrodinger and Smoluchowski found the prob-
ability that a free particle in Brownian motion in a
medium of high viscosity reaches a marker at a for the
6rst time in (t, t+dt) after starting from yp at t =0. For
high viscosity the coordinate of the particle can be
treated as a Markoflian random function (for times
large as compared with the relaxation time), ' and
P(yp I y, t) is the well known expression determined by
Einstein, which satisfies the ordinary diffusion equa-
tion. (P(yo I t, a) was obtained by observing that for yo(a

that the particle is at t in (—pp, a) is the sum of the
probability f(yolt, a) that the particle did not pass a
in (0, t), and the probability that it passed a for the
first time at some time H(0&8(t) but returned. Since

tp(yol t, a) = ~f(yol t, a—)l~t, (1.3)

this yields an integral equation for tP(yo I t, a). Chandra-
sekhar estimated the rate of escape of stars from clusters
by determining the probability that a star with given
initial velocity will reach a chosen velocity for the first
time in (t, t+dt). He obtained this probability using
the first method described above with the appropriate
differential equation of the Fokker-Planck type instead
of the ordinary diGusion equation. Uhlenbeck and Wang
gave an explicit function for the probability that a
velocity component of a free particle in Brownian
motion (or the noise current in an L—R circuit) passes
the value zero for the 6rst time in (t, t+dt)

The problem of the distribution of the absolute
maximum of y(t) in an interval is closely related to the
first passage time problem. The probability M(a, t)da
that the absolute maximum of y in the interval (0, t)
lies between a and a+da is given by

o

~l'(y,
l t, a) = —— P.(yp I y, t)dy,

Bt~ „
where P, (ypl y, t)dy is the probability that the particle
is in (y, y+dy) at t and that at no time between 0 and t
the particle has reached the marker at a. The prob-
ability P (yo I y, t)dy can be visualized as the probability
of finding the particle in (y, y+dy) at t if an absorbing
barrier is present at a, and can thus be obtained as the
fundamental solution of the diffusion equation with
boundary conditions

~a
M(a, t) =—

I W(yo)dypf(yo I t, a)
aa~ „

where

Schrodinger pointed out that his expression for
6'(yo I t, a) can be checked by means of an integral equa-

' E. Schrodinger, Physik. Z. 16, 289 (1915).
s M. v. Smoluchowski, Physik. Z. 16, 318 (1915).
3 S. Chandrasekhar, Astrophys. J. 97, 263 (1943).
4 M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys. 1?,

323 (1945).
~ H. A. Kramers, Physica 7, 284 (1940).

W(y) = limP(yp
I y, t). (1.5)

$ —+ oO

Problems of this type arise in engineering applications
since circuits have been designed which register the
absolute maximum of a current in a time gate, with the
purpose of improving discrimination between signals
and noise.

Apart from applications, the first passage time
problem seemed of interest since it can be considered as
the problem of finding the statistical properties of a
branch of the inverse function t(y) if the statistical
properties of y(t) are known.
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From (2.3) and (2.4) it follows that

(P(a [ t, a) =0 for t&0

In Sec. II we have given an integral equation for
6'(yp [t, a) without making theassumption that P(ye [y, t)
satisies a Fokker-Planck equation. The integral equa-
tion yields an exact expression for 6'(yp[t, a) in terms
of P(yp[y, t) S.chrodinger's integral equation is shown
to follow from our simpler integral equation. A simple
expression for 6'(ye[ t, u) has been obtained for the case
in which c is a point of symmetry of the problem. The
formula given by Uhlenbeck and Wang for the Gaussian
case is a special case of this result. In Sec. III we have
derived the differential equation method from our
result in case P(yp[y, t) satisfies a Fokker-Planck equa-
tion and have given a recursion formula for the moments
of the 6rst passage time. In Sec. IV we have discussed
(P(yo[t, a) and f(yp[t, a) as solutions of the adjoint of
the Fokker-Planck equation. In order to show the
connection between the integral equation method and
the approach of %'iener and Rice leading to the Kiener-
Rice series' for the recurrence time probability of a
random function in Sec. V we have derived the series
from an integral equation for the case of a two-dimen-
sional stationary Markman random function. ~

(2.6)
with

E

(P(a[t, a)=1 for any real e&0
Je

(2.7)

which is in agreement with (2.1) and (2.8).
From our solution follows a property of (P(y [pta)

which can also be obtained directly from the argument
leading to (2.1); i.e.,

(P(yplt &)= (P(ypl» a)+(alt B f)d—B (2 g)
0

for y0&e&b.
Schrodinger's integral equation' can be derived from

(2.1) by integration over y from a to ~. We define
f(yp[t, u) as in Sec I and notice that f(yp[0 a) =1 for
y0 »(u, and that

t(Py [pt, a) = —Bf(yp[t, a)/Bt. (2.9)

De6ning furtherII. THE INTEGRAL EQUATION
&a

4(yo I
t a) =

~
P(yp I y, t)dy (2.10)The fundamental integral equation is obtained by

classifying the functions y(t') for which y(0) =yo and
y~&y(t)&y+dy according to the time B&0 at which
they pass the value a for the 6rst time (y«u ~& y). One

and making use of

thus obtains:

pt
Pbpl y~ t) = tpbp[» a)P(a[ y~ t B)dB- (2.1) we have

P(yp [ y, t)dy = 1, (2.11)

This integral equation is solved by a Laplace trans-
formation. Using the notation fr for the Laplace trans-
form of a function f, we have

t

1—@(y.[t, )= [ dBa (y, [B )L-1—@(~[t—B, )]

=fbol o, u) f(yol t, a)—

and

Prbply~)N)= e "'Pboly t)«
Jo

a»b, [)i, a) = e-&'(P(y, [t, a)«,
0

(2.2)

f(y. lt a)=tt(y. lt, a)

t

(P(yp[» a)y(u[t —» a)dB
0

and from (2.1)

Pr (y. [ y, )t) = a»(y, [)i, a)P,(a [y, )t)

and

(2.4)'
(P(yp[B, a)P(a[t B, a)dB (2.12)—

0

or, since $(a(0, a)=s,

(P(yplt u) = e"' D„ (2.5)
boly») (Pb, lt a) 2 ~(y

2oro Jp-'„Pg(a[y, X)

with p&0 and otherwise arbitrary real, and. y0&Q ~C g.

' S. O. Rice, Bell System Tech. J. 24, 46, 64 (1945).
~ The main results of our calculations have been stated in the

following abstracts: A. J. F. Siezert, Phys. Rev. 70, 449 (1946);
71, 469 (1947); 71, 485 (194/); i3, 1271 (1948).

'Moments of (P(yp[t, a) can be obtained by expanding
Ps(yo[y ))/PI(a[/ h) in powers of )E.

Bp(a[t B,a)—
+ (P(yo[» a) dB . (2.12')

o Bt

The integral equation (2.12) can also be solved by find-
ing the Laplace transform. %e obtain

fcbol)t, a) =br(yol)ta) (Pz,(yol)tu)yi(al)~, a) (2 13)
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ary conditions P(yo I
&~, t) =0 for finite yp, and

(2.13') P(+~ Iy, t)=0 for finite y. The Laplace transform
PI (yo I y, )i), therefore, satisfies the differential equations

or since
(Pi(yol) & e) =1—Xfr(yol) & u)

we have

(PL,(yolk, $)=[1—
)&,qb (y I» a)g/[1 —X&t (ul» 6)]

(2.14) and
(I. X)P—I.= —&I(y—yo)

(Lp+ ))P—I,= —8(y—yo).

(3.2)

and (3 2')
e~(rol ), o) ei(—ol ), o)

f~(rol » o) = (2.15)
1—X&t&r,(al X, u)

one has immediately an explicit solution for the prob-
by writing its Laplace transform as

ability density of the first passage time through s, since
then P-~(roly») =P~(roly &')

Pz, (yo I

—u, x)PI(aI y, X)/Pl(al a, X). (3.3)&t&($ I t, $) = ~~ for all t (2.17)
and, therefore,

Using Eq. (2.4) and integrating we get

To derive the differential equation method of refer-
ences 1 and 2 we construct a function P,(yo I y, t) which

If specially the problem has a point of symmetry $
satisfies Eq. (3.1) for y(a with initial condition
Po yo y, 0 =&I y —

yo and boundary conditions
dehned by

P($ly, t)=P($I2$—y, t), (2.16) P (y I
t) P (r lo t)

(P(yo I t, $) = —2(a/at) P(yol y, t)dy (2.1.8)
J

The result of Wang and Uhlenbeck [reference 4, Eq.
(82)j is a special case of (2.18) obtained by taking for
P(yo y, t) the Gaussian distribution defined by Eq. (36)
of reference 4, for which s=o.

It is to be expected that the existence of the 6rst
passage time probability density (P(yolt o) imposes
certain limitations on the choice of P(yol y, t) We note.
that the expression PI(yoly, ))/PI. (cly, X) must be
independent of y for yp&e&y.

III. THE SOLUTION WHEN P(tt» i tt& t) SATISFIES
A FO&&&R-PLANCK EQUATION. RECURSION
FORMULA FOR THE MOMENTS OF (P(Foi t& a)

If the limits of the 6rst and second moments

p CO

A(s) = lim — dy(y s)P(sl y&
t& t)—

a~opt J

1
ft(s) = lim — dy(y —s)'P(s

I y, At)
hmpQt J

P.(r ly, ) )dr=4~(rol) o)—(P~(rol~ o)4~(ol» o)

=f(r. l &, o)

according to Eq. (2.13) and further

(3 4)

~f(r I» o)
P.(ro ly t)dr= — =(P(rolt, o).

The differential equation method of references 1 and 2
thus leads to the same result as our method, if P(yo I y, t)
satisfies the Fokker-Planck Eq. (3.1).

The function P, (yoly, t)dy is to be interpreted for
y~&u as the probability that the random function
y(t'), having started as y(0) =yo, reaches a value between

y and y+dy at t without having assumed the value a at
any time t (~&0) before t The validit. y of this inter-
pretation is shown by Laplace transformation of Eq.
(3.3) which results in

P.(ra I y, t) =P(ro I y I)

(P(rol~, )P( ly, t—~)d~ (35)exist and all higher moments tend to zero faster than
ht for bi~ P(yoly, t) satisfies the two differential
equations'

8 1 8=—[~(r)Pj+- L&(r)Pj=I.P (3 1)—
ay 2 8y~

and

If P(yo I y, t) satisfies the adjoint I'okker-Planck
equation (3.1') an integral recursion formula for the
moinents is obtained as follows. Equation (3.1') may be
written in the form

BI' O'E
=~(r.)- +-', f~(y.)

Bgp Gyp

»(yol y, t) 1 8
I

»(r. ly, t)
i 2I(ro)14'(ro) (3 6)

2W(yo) 8yo l Byp

with initial condition P(yo I y, 0)= b(y —yo) and bound-

9 Equation (3.2) is derived in reference 4, Eq. (3.2') by an
obvious variant of this d» rivation. Both equations are special cases
of KolmogorofPs equatior. s I A. Kolmogoroff', Math. Ann. 104, 425
(1932)j.

where W(y) is the stationary distribution

Const
W(y) = — exp 2(A/B)dy .

J
(3.7)
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If B(yp)W(yp)BP(yply, I)/Byp o0—for yp—o—pp we where A(s) is de6ned as an average drift velocity:
have

BP(yply, I) t
po BP(xly, I)

B(yp)W(yp) = ' 2W(*)d* . (3.8)
~yo Bt

%e further obtain

P(yoly, I)—P(aly, I)

2ds * BP(xly, I)
W(x) dx. (3.9)

B(s)W(s) & „ BI

Since, for X /0
BP(xly, t)v-"' dt= —B(y—x)+XP&(x l y, X) (3.10)

BI

we have for y&y0

P.(y. l y, 1 )-P.( I y, 1 )

2dS
W(x)P, (xly, ~)dx. (3.»)

B(s)W(s) ~

Z Z

A(s) = A (x)W(x)dx W(x)dx. (3.16)

(I.p+ —X)vq=0, (4 1)

where vq(yp) is that solution which is regular for
yo~ —~. The solution for the Gaussian case is given as
an example.

From (3.2') and (2.10) it follows that

(Ip+ X)$(yp/X, a)—= —1 for yp(a, (4 2)

IV DISCUSSION OF f(yol t) a) AS SOLUTION OF THE
AD JOINT FOKKER-PLANCK EQUATION

In the preceding section we have derived the dif-
ferential equation method of references 1 and 2, which
uses the ordinary Fokker-Planck equation, from our
integral equation. We now show that f(yplt, a) and
(P( ypl ,Ia) are solutions of the adjoint Fokker-Planck
equation and, by means of a heuristic derivation, give an
interpretation of this fact. %e shall also show how

f(yp l
J, a) and (P(yp l I, a) are obtained in terms of a

solution vz(yp) of the homogeneous equation

one obtains

=2( &)"I (yola)/ppl (3 12)
0

With the moments denoted by t„(ypl a) and

er, (ypl X, a) =Pr, (yp ly, X)/Pr, (aly, X)

and, therefore, using (2.15)

(Lp+ X)fg(ypl X, —a) = —1
so that

I.o f(yolI, )=Bf(yolk, )/BI

with initial condition

f(ypl0 a)=1,

(4.2')

(4.3)

(4.4)

~ (-X)" r' 2dz
W(x)I„(x

l
a)dx

pp! ",. B(s)W(s) ~ „
If we demand the validity of (2.1) for yp&~a(y we
must extend the initial condition to include y&

——u. From
(2.15) follows the boundary condition

1
=-L1—Pi(yply, &)IPr(aly, &),j

1 (—X)"
I (ypla),

ef
(3.13)

and since

or

f(a l t, a) =0, I)0

d r, (yp X, a)o1/X for yp—+—pp,

fr. (yp X, a)—+1/X for yp—+—~

f(y pl I, a)~1 for yp
—o- ~. (4 5)

since tp(ypl a) = 1. We thus have the recursion formula

2ds
I.(ypl a) =~ W(x)I„ ,(xl a)dx. (3.14)

po B(z)W(s) &

Specially for the average 6rst passage time we have

2ds
«(yp I a) = W(x)dx. (3.15)

"po B(s)W(s) ~

Since (BW)'=2AW, this can be written as

«(yp I a) =
) dz/A(s),

VO

These boundary and initial condition are easily under-
stood on the basis of the meaning of f(ypl I, a) as the
probability that y(t') &~ a for all I' in the interval 0 ~& I'(t
if y(0) =yp.

Conversely, a function f(ypl t, a) which is a solution
of (43) with the above boundary conditions is also a
solution of (2.12).To show this we consider the problem
of 6nding @(ypl I, a) as a solution of the Fokker-Planck
equation with boundary condition

p( lyt,pa)( pp for yp~ —pp,

$(y l pa)I=&(alt, a) for yp ——a (4.6)

and knktkal condktkon

4(ypl0, a) =1 for yp(a,
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where d (al t, a) is considered given. Using

«P(yolt, )= —~—f(rol« )/~t

as source function we can construct @(yp I t, a) as

~(rolt, a)=fb. lt, a)+~I ~(r. l&, a)~(alt ~, a)d+
0

(4.7)

If the moment conditions for the derivation of the
Fokker-Planck equation are fulfilled, the first term on
the right-hand side becomes

A(ro) ~fl&yo+&(yo) &f/~yo'.

For any fixed yoga the second term vanishes, since

which is identical with (2.12).
To understa, nd the reason why f(yp I t, 0) satisfies the

adjoint to the Fokker-Planck equation we give a
heuristic derivation of this property, by subdivision of
the time interval (0, t). Consider the function f (ypl t, a)
defined as the conditional probability that if y(0)
=yp ~& a—also y(kt/n) &~a, where k= 1, 2 n and t) 0.
The function f (yp I t, a) is given by and

~~]" [(r—ro)/(a —ro)]'P(roly, «/n)dr,
a

]" [(y—yo)/(a —ro)]'P(roly tin)dr

(4.12)

a

f (yolt a)=~" P(yolyi tin)dyi

+a
X

J P(yi I yp, t/n)dy p. . .

X P(y„ il y, tin)dy„

= [~(t/n)]"X(yo) (4.8)

Replacing n by n+1 and t by (1+1/n)t in (4.8), we have

f qi(yol (1+1/n)t, a)

= [«t(t/n)]""x(yo) =«t(t/n)f-(yo I t, a) (4 9)

Expanding we have

where z(y ) = 1 for yp~&a and «1 is the operator defined by

a

~(«n)6rp)=~ Pbolr, / t)n(g) yrd

»(yo) =expbo /4)D, (—yo) (4.17)

n
(y —yo)'P(yo

I y, t!n)dy=0. (4.13)
«J „

For any value of yo&a the function f(ypl t, a) thus
satis6es the adjoint Fokker-Planck Eq. (3.2). For
yo=a, t)0 we have f(alt, a)=0; for «=0, yp&a we
have f(rpl0, a)=1 directly from (4.8). The inequality
f(yplt, a) ~&1 also follows from this equation.

If a solution»(yo), regular for yp—+—po, of the
homogeneous equation

(I,o+- X)»= 0 (4.14)

is known, one obtains fi, (yo I X, a) in the form

fr, (yoI X, a) = X 'I1—»(yo)/»(a) I, (4.15)

since this expression satisfied (4.2') and vanishes for
rp= a. Using (2.13') one then obtains

«Pr (yo I
" a) =»(ro)/»(a) (4 16)

For the one-dimensional Gauss-Marko6 function"
(A(yo) = —yo, 8/2= 1) one has, for example,

t af(yolt, a)
f +i(ro I t, a)+— +

BI

= «t(t/n) f.(yo I t, a).

= lim —[A.(t/n) —1]f(yo I t, a)

n
= him

nice
P(roly, tin)drf(rl t, a) f(rol t, a)—

If the sequence f„converges we have

af (yp I
t a)/at

and thus

(Pr, (yo I
l~, a) = exp[-,'(yp' —a')]

D-~(—yp)/D-i( —a), (4 18)
(4.10)

where D„(s) is the solution of Weber's equation defined

by Whittaker and Watson [Modern Analysis, p. 347 ff].
This result can also be obtained from Eq. (2.4) using

Pr(yol y ~) = (2or) tl'(~) exp[p(yo' —y')]
D i(y)D )(—yo) (4.19)

(valid for yp&y). This expression follows from (3.2)
and (3.2') and can be checked by means of the series
expansion for P(yply, t) given by Uhlenbeck and
Orn stein. "

n
+lim — P(yply, t/n)f(ylt, a) . (4.11)

n-+oo ] J

'0 The recurrence time problem for the corresponding random
process {Ehrenfest model) has been solved by R. Bellman and
T. E. Harris, Ann. Math. Statistics {in print)."G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 {1930).
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For yo«u« —1 one expects the first passage time to
approach the value ln(yp/u). Actually one obtains
6'(ypI1, u) b(t ln—yp/a), by using the asymptotic form
of the Weber function

D &,(—y,) (—yp) "exp(—ypP/4) (foryp —)—pp). (4.20)

For a and t both of the order of unity, or greater, the
smallest root Xp of D»( —u) dominates the behavior of
(P(yp

I
t, u), and 4 can be estimated by analogy with the

quantum-mechanical problem of an oscillator with a
reQecting wall at u.

V. DERIVATION OF THE WIENER-MCE SERIES
FROM AN INTEGRAL EQUATION

Let y(t) be MarkoKan in y and j, and be stationary
and characterized by the conditional probability

Fp(yp «pIyl pi 4 4)dy, dj,=«»d pro b
)if y(tp) =yp, p(tp) =pp, then y&&y(4) &yz+dy&,

«&&W(~&) &W~+dV~I (5 I)

Let further (P»(tp, t)»pIt, j)dtdy be the conditional prob-
ability that, if y(tp) =0 and y(tp) =j p, then y will go
through zero with slope between j and j+dj in the
interval (t, t+dt) and will have k other roots between
to and t. Because y is assumed to be two-dimensional
Markof5an, there is the following recursion formula for
+I-

(P»+g(tp) vplt) j)

d8 d«(P (tp, jpID, «)(P»(D, «I&,j) (52)
4 tp

If we define the function QF(tp, ppI t, j) by

QF(tp, jpIt, «)

or
(I+&)6'p(&p, apl&, j)= p(&p, apl &, j) (5.8)

~.(t., i.l t, i)= 2 (—)»&»p(t. , i.l t, to, (5.9)
k 0

where

h. p(tp, jpIt, «)

p trs

dtI dj'I dtI q i dj'I
"to & ~ ~to

dj)p(&p, jpI4, ji) . p(t», j»I&,j) (5.10)
jto

This can now be considered as an integral equation for
(Po. It expresses the fact that to obtain (Po one must
deduct from p(t p, jp I t, j) the probability that y has gone
through zero for the first time after to at some time
8&t with any slope j, and passes again through zero
(after an arbitrary number of passages) in the time
interval (t, t+dt) with slope (y, y+dy). This integral
equation is thus obtainable by a direct generalization
of a method applied first by Schrodinger to the first
passage time problem for particles in Brownian motion.
The function p(tp 7JpIt, j) can be expressed in terms of
Pp(yp gpIyy gy' $g tp) sin—ce

p(tp, «pit, j)dtdj=Pp(0, ypl0 g» t—tp) lyldtdp'j. (5.7)

To derive the Wiener-Rice series we define

AF(tp, jpIt, j)
by

t 00

AF(tp, apl t, «)= I dry~~ d«F(tp flpl pt' «)p(8 «It, j)
tp 00

and write (5.6) in the form

we have

da d«6, (~., y, IP, «)F(a, «I~, «) (5.3)
%e now define, with to&t &t

w»(tp) yplta) 4) ~ ~ t»') t)
6,(t„y, It, y) = Q»o', (t„j,It, «). (5.4)

We now define p(/p, jpI&, j)dtdj as the conditional
probability that y goes through zero between t and dt,
with a slope between j and j+dj if y(tp) =0, j(tp) = gp,
without regard to other roots. %e then have

p(tp, @pit, y)=E 6'»(tp, y It, j)=Z Q e (tp, @pl&, y)
k 0

or

r

dj dl4' ' dj)P(tp) apl t) j~)J„J„
Xp(&~ i~14 6) p(~» t'I»lt j) (51~)

where t~, t2, t3 ~ tI, is the same set of values as tj',
t2' t~', only rearranged, such that

ti&4&ta &4.

mk is thus symmetric in the variables t, because what-
ever the order of the t,' may be, they appear in order of
size on the right hand side. Ke note that

d«+. (&o, ioI ~, «)p(&, «I &, i)
~ to

w»(tp) jpI tg'» ~ ~, t»') t)dt's' dt»'dt

(5.6)
is the conditional joint probability that, if y(tp) =0 and
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pt pt
Cti' Cto' d4'wp(to, JJol4 i 4 i

' ' '4 i t)
Jto "to4tp

"to
C4 pipo(to, !to I

ti', ~ ~ to', t)

=k!j djA'P(to, jolt, j). (5.12)

Integration of (5.9) over j and use of (5.12) yields

j(tp)=jp, then the function y(t') has roots in the
intervals (t|', ti'+dti') (tp', tp'+dtp'), (t, t+dt), re-
gardless of any other roots in the interval (tp, t). Because
of the symmetry of mi„we have

and 8p(tot| ' ' ' tp t) by the relation

mo(to
1
tg, , to, t)

goo

J
d!4Wo(0 tto)mo(to, yo I ti, to, ~ ~, tp, t) .(5.15)

Then Wp(tpl t)dt is the conditional probability that, if
y(tp)=0, then there is a root of y in the interval
(t, t+dt) and no root between tp and t, while
op (pt loti,

. , tp, t)dt's. dtpdt is the conditional prob-
ability that, if y(to) =0, then y has roots in the intervals
(t;, t,+dt;) Q'= 1, 2, , kj and in (t, t+Ct), regardless
of other roots. Kith these definitions we obtain from
(5.13)

k t t

Wo(toit)= P
k=o P! 4tp J tp tp

dj5'o(to, jo lt, j)

( )p ~t ~t
gfg o ~ ~

oo P! J„J„

d4&p(toi 'Jolts' to ~ ~ to, t).
4 to

We now de6ne Wp(tp I
t) by the relation

Wo(tol t) = @oWo(0, yo) J
Cj6'(to, go I t, y)

(5.13)

(5.14)

X uo(to
I tz, ~ ~ ~, to, t), (5.16)

which is the Wiener-Rice series for our case.
These considerations can obviously be generalized

immediately to the case of a function y which is
Markman in y, y, j, , y&"& by replacing j by

, y&"'} and dj by the volume element in the
space Ij,ji, , y&"'}, whereby, however,

I jl retains
its original meaning in Eq. (5.7).
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