
BOSE-EINSTEIN LIQUIDS

The observed pressure dependence of Tg can be ob-
tained from the curves of Fig. 3. If the phonon term were
not present in the expression for second sound velocity,
the velocity would go to zero with the square root of the
temperature. " The ratio cm/T& therefore exhibits a
horizontal straight line at higher temperature but some-
what below the lambda-point, which may be easily
extrapolated to low temperature. The deviation from
the extrapolated line is then taken from the rising part
of the curve at low temperature. Lines of constant devia-
tion are shown for various values of the deviation. The
corresponding values of dT~/dP are plotted against the
amount of deviation in Fig. 4. The values of de/dP
and (1/Tq) de/dP are nearly the same because Tq is
near 1'K. The extrapolated value at zero deviation is in
good agreement with the value computed above.

This agreement supports the hypothesis that the
phonons contribute to the normal fraction of fluid only
and are responsible for the rise of second sound velocity
at low temperature. The phonons do not, however,
combine linearly with the Bose-Einstein excitations,
unless the Bose-Einstein spectrum is greatly diferent
from what has been assumed heretofore.

The authors are indebted to Messrs. R. P. Cavileer
and W. B.%ilbur for the manufacture of liquid helium
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Fro. 4. Pressure derivative of the temperature of constant
deviation, (de/dP), as a function of the amount of deviation,
h(cm/T&), taken from Fig. 3. Since Td is near 1'K, AT&/dP is nearly
the same as (1/T~)dT~/dI'. The value expected from the phonon
contribution to the normal fluid flow at small deviations is about
0.037.

and to Mr. A. R. Sears for assistance with the elec-
tronics. Messrs. H. H. Kolm and E. H. Jacobson con-
tributed notably to the early phases of the experiment.
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Smoothed potential models for liquid He' and liquid He' in
which each are considered as ideal Bose-Einstein and Fermi-Dirac
gases situated in potential wells of potential —x~' and —ggo,

respectively, are considered. It is shown that the degeneracy
temperature, 1'0 of pure liquid He' on this model can be deduced
and that the X-transition temperatures, Tg, of solutions of such
liquids can be calculated. The calculated values of T& as a function
of concentration of He' appear to be in satisfactory agreement
with the observed values. From these considerations, predictions
are made regarding the behavior of solutions of two Bose-Einstein
liquids; e.g., He' in He'. It is shown, moreover, that solutions of
such model liquids obey the third law of thermodynamics.

Detailed calculations have been made of the vapor pressures of
such smoothed potential liquid models of He' and Hei both in the
pure state and in solution. The results for the vapor pressures of
the solutions indicate that, in the temperature range above 1'K

for solutions of not too high concentration of He', the total vapor
pressure would be higher than that given by Raoult's law for
temperatures both above and below the X-temperature of the
solution. In this way the experimental results for the vapor
pressure of such solutions, Grst emphasized by Taconis, et al. , can
be explained, and good agreement between theory and experiment
is evident. Explicit formulas are given for further numerical
evaluation.

Finally the results of calculations of the total vapor pressure of
model solutions of He' in He in which the He' Fermi-Dirac liquid
model is extremely degenerate are discussed. It would appear
that at very low temperatures (&0.5'K) the partial vapor pressure
of He' in such solutions of He' in He' and the distribution coe%-
cient, C,/Cl, should become smaller than the values calculable
from Raoult's law.

I. MODEL FOR A BOSE-EINSTEIN LIQUID

N 1938 F. London' calculated in detail the behavior
' ' of a perfect Bose-Einstein gas in the degenerate
state and suggested that the anomalous properties of
liquid He II could be understood, at least qualitatively,
by considering the )-transition in liquid helium as a

' F. London, Nature 141, 643 (1938);Phys. Rev. 54, 947 (1938);
J. Phys. Chem. 43, 1 (1939).

Bose-Einstein degeneration. Such a possible significance
of the statistics in determining the behavior of liquid
helium has recently been the subject of study owing
to the availability of the rarer isotope of helium, He.
The preliminary experiments of .Daunt and others, '

~ Daunt, Probst, Johnston, Aldrich, and Nier, Phys. Rev. 72,
502 (1947). Daunt, Probst, and Johnston, J. Chem. Phys. 15,
759 (1947).
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followed by those of Lane and his co-workers, ' on the
Qow properties of solutions of He' in liquid He', which
showed that He' did not partake in superQuid Qow in
solution, lent strong support to the theory of London.
The more recent Qow measurements on pure liquid He'
by Osborne, Weinstock, and Abraham' and those on
90 percent He' solutions by Daunt and Heer' have
shown that pure He, obeying Fermi-Dirac statistics,
does not show superQuidity even down to 0.25'K, and
hence the importance of the statistics seems to be
6rmly established.

In order to investigate theoretically the change of
)-temperature of solutions of He' in He' with concen-
tration changes and, to study the vapor pressures of
such solutions, we have developed the properties of a
model of a Bose-Einstein liquid which is the Bose-
Einstein analog of a free-electron gas in a metal. The
model adopted here treats tentatively liquid He' as a
perfect Bose-Einstein gas in a potential well, of potential
g4'. This smoothed potential model assumes that the
volume of the liquid, V, can be written as

(BF4't f BF )
& B&4i TV KN, 4 ) TNV o

(1.5)

a condition which evaluates ) 4*. If one now introduces,
as is general in the two Quid theories of liquid He II,
a parameter, x, de6ning the fraction of noncondensed
particles, given by

a= (1/¹)(number of uncondensed particles) =¹"/¹
and putting with London'

cracy will be determined when the term

X4*=X4 exp(X40/kT) 1. (1.4)

On this simple model the introduction of the potential
well does not affect the condensation temperature To
of the system in 6rst approximation. ~

The conservation of the total number of particles
requires as is pointed out by Fowler and Guggenheim, '
that:

V= XV4', X4*=1—
(1—x)¹ (1.6)

where E is the number of particles and V40 the atomic
volume per atom. The free energy of such a liquid can
be written as

Ii = —kTZ+X4kT lnX4, (1 2)

where Z is given by

Z=Q co„in[1—X4 exp( —e,/kT)] ',

where the energy a is written as c= (P'/2et4) x4' and-
where ) 4 is determined by the general condition for
maintaining a constant number of particles, as discussed
below.

For the situation below the condensation tempera-
ture, T0, of the Bose-Einstein system, the term Z can
be written in two parts, as has been pointed out by
London, ' the 6rst of which concerns the number of
particles which are "condensed. " One can therefore
write the free energy, F4, as

F4———kT —lnL1 —) «xp(x, '/kT)]

(2M4kT) ~

l
—

¹
lnX4 —¹V4'2s

h' )
(X4'

X ~
l 1—X, e~~ ——y ~

yVy . (1.3)
0 &kT i

For this model, therefore, the onset of extreme degen-

g Lane, Fairbanks, Aldrich, and Nier, Phys. Rev. 73, 256 (1948).
4 Osborne, %einstock, and Abraham, Phys. Rev. 75, 988 {1949).
~ J. G. Daunt and C. V. Heer, Phys. Rev. 79, 46 (1950).' The notation is the same as that used by Fowler in Statistical

Mechanics (Cambridge University Press, London, 1936}.See for
example this reference, p. 72.

then one finds from Eqs. (1.3), (1.4), (1.5), and (1.6)
that the temperature To, at which almost all the parti-
cles are noncondensed, is given by

Tp= (k /2''t54k)(1/2. 612V4')&, (l.7)

which is the same value of the degeneracy temperature
as that given by London' for a perfect Bose-Einstein
gas. When KV4 is taken to be 27.6 cc, the numerical
value of To calculated in this way' is 3.13'K.

From Eqs. (1.5) and (1.6) it will be seen that the
very general statistical requirement given by Eq. (1.5),
which is the requirement of constant number of
particles, can in the case of our liqlid model be written

(BF4/BX4) rv=0= (BF4/'BX~*)rxv, o (BG4/Bx) r~ (1.8)

hence showing that the equilibrium evaluation of G,
given when (BG/Bx)r„——0 as used in Gorter's treat-
ment, ' follows directly from the statistics provided the
pressures are small, a condition necessary for Eq. (1.8)
to hold. .

Examination of Eqs. (1.3), (1.5), and (1.8) indicates
that in any experiment on a degenerate Bose-Einstein
liquid which attempts to count the total number of
particles; i.e., the number given by the total mass, an
operation equivalent to (BF/BX) is performed and the
number of particles contributing is the same as the
total number of atoms. For experiments which do not

~ Variations in x4O with variation in volume V will, however,
~

~ ~
ve further (second order) variations in To. See footnote 16 for

urther discussion of this.
R. H. Fowler and E. A. Guggenheim, Statistica/ Thermo-

dynamics (Cambridge University Press, London, 1936), p. 62.
«See abc E. Schrodinger, St%istical Thermodynamics (Cam-

bridge University Press, London, 1946), p. 77.
'o C, J. Gorter, Physica 15, S23 (1949).
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depend on the operation (8F/W, ), e.g., specific heat
measurements, the term ln(1 —Xs*) can be neglected,
and hence the free energy P, and the entropy, S, and
etc., will appear to depend. only on some number X4",.
i.e., on the number of active particles. Such measure-
ments would appear to include viscosity experiments,
for which, therefore, only the number of normal atoms
would be active and take part in producing a viscous
term.

II.SOLUTIONS OP He' IN THE BOSE-EINSTEIN LIQUID
AND THEIR LAMBDA-TEMPERATURES

In order to investigate the change in lambda-temper-
ature of He' and He' solutions the treatment given in
Sec. I of a Bose-Einstein liquid is extended to include a
solution composed of such a Bose-Einstein liquid model

V=NsVso+Nsvso. (2.1)

Moreover, the values of the g"s are assumed to be
unaffected by the mixing process. Mixing therefore
vrill aGect only the statistical properties of the mixture.

Using Eq. (1.2), the free energy of the Fermi-Dirac
liquid can be expressed as

and a sirr|itar but statistically independent Fermi-Dirac
liquid model.

For calculation of the properties of such a solution
the molar volume of Hea is taken as XV3', and of He4

as KV4, and we assume potential wells of depth —g~,
and —X4' for the He' and He', respectively. In.addition,
the assumptions regarding ideal solutions are made;
i.e., that the total volume of such a solution is assumed
to be

1
t'2mskT~ & '" (iso

Fs=-kT 14~1 I
NsVs' h' 1+7'se~1 —-y

1
y'dy —Ns»s

ks & J, &kT
(2 2)

where the statistical weight of each level is for a known
spin" of ~ for He'. Combining this with Eq. (1.3) for
the free energy of the Bose-Einstein liquid, the free
energy of the solution is written as

(2mskT' &

kT 4~1 — 1(Nsvso+Nsv4o)
h' )

X
I'

in[1+i sexp(x /ksoT —y)jy&dy
0

—Ns ines —ln(1 —Xs*)—N4 1nks

Defining Zoo ——1—1/(1 —x)¹as in Eq. (1.6), where
xX4 is the number of He' atoms in the noncondensed
state, the temperature at which condensation begins
is given by

k*

i
2nm4k (Nsvs'+Nsvs') (2.612)

By combining Kq. (2.6) with Kq. (1.7) one obtains

Tg/To=gzsV4'/(NsVso+N4Vs')]& (2.7)

as the equation of the ) -line for solutions of He' and He4.
In terms of the concentration of He' atoms in He4,

Co=No/(Ns+¹), Eq. (2.7) can be written:

(28tskT) '
—2+1

1
(Nsvso+N4 V, )o

k' )

X ln(1 —Xsoe ")y&dyt. . ., (2.3)

Ts/To=
1—C3

-1+Co(vs'/Vso —1)
(2.8)

where Xso is given by Eq. (1.4), Fso and Fso are the free
energies in the unmixed state, and dF is the free energy
of mixing.

The conservation of the total number of particles
requires that

I,
To

0,5

(BF/BXs) TFtoy&oNalvcga=0,

(BF//Bing) rvaoycoÃa"spa=0,

(2.41)

(2.42)

and so Xs and X4 are determined from Eqs. (2.41) and
(2.42). For F4*=1, this leads to '0-

I.O

)4e /2xts4kT) o

X(Nsvso+Novso)(2612) 0 (25
"H. L. Anderson, Phys. Rev. 76s j460 (1949).

Fxe. T. Plot of the X-temperature, T~, of solutions of Hei in He4
(as a fraction of the X-temperature, T0, of pure liquid He') against
He concentration, Ce. The full curve is the theoretical evaluation
(Eq. {2.8}).The points marked arith circles are the experimental
results of Daunt and Heer (reference 5). The points marked with
squares are the experimental results of Abraham, %'einstock, and
Osborne (reference 14).
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In order to esti~~te Tz numerically, the molar volumes
~P',0 and &t/'30 of liquid He' and liquid He', respec-
tively, have been. taken tobe"' 27.6ccand 37.6 cc.Using
these values, and putting TO=2.18'K, the experimen-
tally determined" X-point of pure liquid He', rather
than the theoretical value of 3.13'K, the calculated
variation of Tz for the solutions according to Eq. (2.8)
has been plotted against C~ in Fig. 1.

Experimental observations have been made of the
lambda-temperatures, Tq, of He' solutions by Abraham,
%'einstock, and Osborne'4 in the concentration range
C3 up to 28 percent and by Daunt and Heer' in the
concentration range C~ up to 89 percent. The obser-
vations are also shown in Fig. 1, and it mill be seen
that, except for the point at C~=42 percent, there is
good agreement with the theoretical values deduced
from Eq. (2.8) as has been previously briefly pointed
out. ' "The observed point at C3= 42 percent, however,
was open to considerable error of observation (see
Daunt and Heer, reference 5)."'

It might be concluded, therefore, that the assumptions
made earlier, namely that we are dealing with perfect
solutions of smoothed potential liquid models may jn
first approximation be applicable and that the change
in T~ with change in C3 is due largely to the e8ect of
the accompanying changes in the number density of
the Bose-Einstein gas, rather than by the potential of
the liquid well in which it is contained. "

These considerations also lead to the conclusion that
a solution of two Bose-Einstein liquids, e.g., He' jn He4,
should show two lambda-points (if each separately in
the pure phase shows a lambda-transition), the Ts for
each concentration being given by Eq. (2.8). For very

"W. H. Keesom, IIelilm (Elsevier Publishing Company, Inc. ,
New York, 1942}.

"Grilly, Hammel, and Sydoriak, Phys. Rev. 75, 1103 (1949}."Abraham, Weinstock, and Osborne, Phys. Rev. ?6, 864 (1949).
'«Other theoretical evaluations of the X-line for solutions of

He'in He'have been made by deBoer fPhys. Rev. 76, 852 (1949)],
deBoer and Gorter Phys. Rev. 77, 569 (1950)j, Stout (Phys.
Rev. 76, 864 (1949), and by Engei and Rice D'hys. Rev. 78, 55
(1950)j. These previous evaluations have considered classical
statistics onIy, such as would involve a localized model of the
liquid phase and have obtained numerical results by making
ad hot assumptions regarding the free energy of pure liquid He'.
A fuller discussion of these theoretical evaluations in the light of
the experimental results has been given elsewhere (reference 5).

~'Note added ie proof. One measurement on the change in
Lambda-temperature for a 1.5 percent solution of He~ in He4 has
recently been reported by B. ¹ Eselson and B. G. Lazarew
LDoklady Akad. Nauk S. S. S. R. 72, 265 (1950)g, and this gives a
result which is somewhat nearer our theoretical curve (see Fig. 1)
than the point at 2.4 percent He' concentration reported by
Abraham, Weinstock, and Osborne (reference 14).

' Such a model, however, can be taken only as a 6rst approxi-
mation, since it is well known (reference 12) that an increase in
the external pressure decreases the lambda-point of pure liquid
He'. Since the external pressure is made up of two terms, one a
"kinetic" term calculable from the statistics and the other a
statical pressure due to variation of x4o with volume, one must
conclude that 8x{P')/BP' must in second approximation for our
model affect To. Such a difhculty is a natural consequence for
any smoothed potential model in which the gas-like quality of
the liquid is empb~~1zed. See for example Fowler and Guggenheim,
SQbstied Tkenmodyeuesk s {Cambridge University Press, London,
1949), p. 486.

dilute solutions the lambda-temperature of the solute
(e.g., He') would not be reached at temperatures of
1'K up, and hence one would not expect the solute to
take part in super6ow. "On such a model, therefore, an
observed lack of super6uidity of Bose-Einstein particles
in d~tlte solution could be taken as a strong support of
the original thesis of London. '

III. ENTROPY AND FREE ENERGY OF MIXING OF
DEGENERATE BOSE-EINSTEIN AND

FERMI-DIRAC LIQUID MODELS

Assuming the models for Bose-Einstein and Fermi-
Dirac liquids outlined in Secs. I and II above, the free
energy of mixing can be written:

(2rrtskT ~
1-

kT 4~—
J J

(N, V,o+N. V,o)
k' i

X
~

inL1+4 exp(xss/kT —y) jy&dy

—NsVs' in[1+he' exp(xs'/kT y) jy&dy—
~0

p1—)ts¹
~—Ns inks/)ts' —ln

J J

—
¹

In)t4/)t4'
(1—k '¹)

(2m4kT) &

J (N, V;+N, V. )

ln(1 —)t4¹e ")y&dy

00

—N4V4s t ln(1 —)t4e¹e &)y&dy J ~ ~ ~ . (3.1)J, J"'

E3+X4 83+X4
kT Nein —+N4ln

X4
(3 2)

At sufBciently low temperatures it can be assumed
that in the case of He' and He4 solutions, both the
Fermi-Dirac and the Bose-Einstein liquids will be very
degenerate, and in this situation Eq. (3.1) leads to the

'~ This conclusion has been arrived at by Landau and Pomer-
anchuk t Compt. rend. acad. sci. U.R.S.S. S9, 669 (1948)j starting
from diferent initial assumptions.

"The resolution to this form requires the usual assumption
that the difference between the arithmetic mean and the geometric
mean of the molar volumes is small: i.e.,

t (P 0)N (P' o)N j1I(N +X4)

It can be shown that only in the completely classical
case; i.e., far from degeneracy, where ks exp(xss/kT)« 1
and )t4 exp(x4'/k T)«1 that the expression (3.1) reduces
to the more familiar formulation. "
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(2~m4kT) &

p4' = —x4' —0.514~ 2.612)V&okT
k' )

and for the solutions:

&V3V3'kT

(4.3)

¹
Vso+¹Voo

(2+m3kT y
& E3
)+kT ln

k' ) ¹Vso+¹V,o

(2~~4kT) &

I
(1.341)V,okT (4.4)

ks )
)73V4'kT

JL44 = —X�-

4¹�V'+

¹

V4'

(2rrrrookT) &

—(1.341)
~ ~

V;kT. (4.5)

following value for the entropy of mixing, dS:
(88F't 8

aS= —
~

— —

(
= — Lg¹(eo —e*)+O(T')] (3.3)

E aT) aT

where e* and e~ are the Fermi-Dirac degeneracy ener-
gies in the mixed and unmixed states respectively. Equa-
tion (33) shows that the entropy of mixing M tends to
zero as T—+0, in conformity with the third law, a result
which does not hold for the classical expression derivable
from Eq. (3.2). Thus the models postulated herewith for
liquid He' and He4 indicate an "unmixing" as T—4.
IV. VAPOR PRESSUMES OF SOLUTIONS OF He' IN

THE BOSE-EINSTEIN LIQUID ABOVE AND
BELO%' THE LAMBDA- TEMPERATURE

A. Below the Lambda-Temperature

The partial vapor pressures of He' and He4 in
equilibrium with a solution of He' and He4 can be
computed by equating the partial potentials p, 3~, p,4~ in
the liquid phase to the partial potentials in the vapor
phase p3' and p,4'.

The Gibbs function 6 for the liquid is

G=F+PV=F+P(Xsvso+Xovoo) F
at ordinary pressures. Kith this approximation the
partial potentials are given by

t'8G) /8G) (8F)
(4 1)(8¹)Tp k 8¹lFvsova' Ea¹~7'vs'yi'

etc.
In the 6rst instance the He' liquid model, pure and

diluted, will be considered as essentially Boltzmannian
in the temperature region above 1'K. Using Eqs. (1.3),
(2.2), and (2.3) the partial potentials become, for the
pure liquids He' and He4 separately:

(2rrrrrokT ) &

soi goo kT —kT lnv, o kT ln2 (4 2)
k' )

Applying the condition of equilibrium, i.e., the partial
potential in the vapor phase is equal in each case to the
partial potential in the liquid phase, we obtain, assum-
ing the vapor to be a perfect gas,

—po = ps —ps =kT ln(po/po )
p4 p4'—=p4' p4'—"=kT ln(p4/p4')

(4.6)

where the superscripts e refer to the vapor phase, and
where Ps and Po are the Partial vapor pressures and Poo

and Poo the full vapor pressures of liquid He' and He'
respectively. "

Combining Eqs. (4.2) to (4.6) the partial vapor

"Adopting the same equilibrium conditions, the smoothed
potential models of liquid He4 and liquid He3 allow immediate
calculation of the vapor pressures, p4' and p3', of the pure liquids.
At su~jeetly lmo tenperatures, where the effect of degeneracy
predominates, the vapor pressure formulas can be written as:

For the He' liquid model

lnp4'= —X4 /k T+5/2 ln T—0.514(T/Ta) &+In(2~4/h~) &k~~~,

i.e.,
log1oP4'(cm) = —U40/RT+2. 5 log1OT —0.069T&+1.196.

This equation is similar to the equations put forward by
Bleaney and Simon and by Lingac and Kistemaker (see H.
Van Dijk, Proceedings of International Conference on the Physics
of Very Low Temperatures. M.I.T. 1949, p. 117, for a discussion
of vapor pressure data). The third (specific heat) term in the
above equation however gives a variation of T to the three halves
power, rather than to higher powers of T (three or six) as previ-
ously assumed.

For the He' liquid model.

(+3o 25~0*) 5 m kT 2+m
lnP3 = — +- InT ———+ln2kT 2 4 co* h~

kS /3

or

U 0

log1pp3'(cm) = ——+2.5 log10T —0.511T+1.31,.RT

For He3 the smoothed potential model leads to an additiona
factor of 2 in the vapor pressure constant due to the spin. The
coef6cient of the third (specific heat) term in the above equation
has been calculated assuming that the degeneracy temperature
of the liquid He' is the same (4.85'K) as that for a perfect Fermi-
Dirac gas with the liquid density. However it is expected that
the degeneracy temperature would be somewhat lower, as in the
case of He', and consequently the term in T mould require slight
modification. It should be emphasized moreover, that strictly the
vapor pressure formula given above would be accurate only for
temperatures less than one quart+ of the degenerucy temperature.
The chief differences between the above equation and that first
proposed by deBoer and Lnnbeek /Physics 14, 510 lt94S}] are
(a) the inclusion of the spin in the vapor pressure constant, as
has previously been adopted for the smoothed potential model of
electrons in metals and (b) the inclusion here of a specific heat
term proportional to T. This term may remain important even
at low temperatures due to its slow dependence on T. For a
limited temperature range above 1'K, it is reasonable to allow
for the conditions being nearer the degeneracy temperature by
reducing the coefBcient in the specific heat term. If this specific
heat term in the vapor pressure formula given above is put equal
to 0.170T and if U3 is put equal to 1.16R, a value in agreement
with that proposed by deBoer and Lunbeck, the calculated
vapor pressures are within 2.5 percent of the observed values
given in the preliminary measurements of Sydoriak, Grilly, and
Hammel (reference 23), up to 1.8'K. Modifications should, of
course, be made to the above formulations for the non-ideality of
the vapor t see Kranendonk, Compaan, and deBoer, Phys. Rev.
76, 1728 (1949)g but in view of the approximate character of our
liquid models this has not been considered worth while.
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P,/P4
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FIG. 2. Plot of the vapor pressure of a 20 percent solution of
He' in liquid He4 against temperature. The full curve is the
theoretical evaluation LEqs. (4.13} to (4.16}g.The dashed curve
is the result of assuming Raoult's law. The points marked with
circles are the experimental results of measurement of a 20.3
percent mixture of Hee in He' by VVeinstock, Osborne, and
Abraham (reference 21).

3. Above the Lmbira-Temperature

Following the procedure adopted in Sec. IVA, similar
calculations for the vapor pressure ratios above the
lambda point have been made.

The equation for the free energy above the X-point
is given by London. '
F4= N4x—4P N4k

—T ln(T/ Tq) 1—Nsk T(1—ln2. 612)
—0.462N4kT(Tg/T) t—0.108N4kT(Tg/T)' (4.10)

where Tz is given by Eq. (2.6).
Applying the conditions of equilibrium to the liquid

and gaseous phases, the latter being assumed perfect,
the vapor pressure equation, for example, for the dilute
model solutions reduces to

p,/p4 ——(p,'/p4') (NsVs'/N4V4')
Xexp L1—Vs'/ V4'+0.462( Vs'/ V4') (Tp/T) 4

+0.022(Vs'/V4')(Tp/T)'+ j, (4.11)

or in terms of the concentrations,

C./Cr. = (Vs'/V4') exp{1—Ys'/V4'
+0.462(Vs'/V4')(To/T) t

+0 022(vs'/. V4')(Tp/T)'+ I. (4.12)

These results for the model solutions indicate that
ps, dps/dT, and C„/Cr. are continuous across the
X-point, even for concentrated solutions which are
discussed in more detail below.

where

C4'=
¹'4V4'

¹'3V3'+¹4V4'
and C3'=

¹
V3'

¹Vs'+
¹

V4'
~ ~ (4 8)

4 3—0.514 i, (4.7)
N 4Vs'+ N4 V4'

C. Discussion of Vapor Pressure Results

Numerical evaluations have been made of the total
vapor pressures (ps+ p4) of two model solutions of He'
and He4 as a function of temperature using the following
formulas from which formulas (4.7) and (4.11) were
obtained:
Above Tq

and where N4" is the number of "normal" (uncon- /, , ( Vs &, (Vs')l (T &~

densed) He' atoms, given for the perfect Bose-Einstein ' p' ' p
1~ V,&1

'+
fluid by:

N4" ——(T/T p) &N4.

For dilute solutions, N4»Ns, formulas (4 7) can.
written, as:

C.
=(v '/v ')(p —'/p ')

Cr.

( T ytvss
Xe~ 1—0.514{ 1, (4.9)

&2.18) V4'

where the concentration in the liquid phase is given by
Cr, =Ns/N4 and the concentration in the vapor phase
by C,=Ns'/N4'—-ps/p4. This result, as will be discussed
later, gives values of C,/Cz, higher than those obtained
from Raoult's law, such as has been experimentally
observed by Taconis ef ul."

( Vs') (Txl '
+0.0221 } I

—
}
C4'+ " (4.»)

&v,p) (.T& 1'

V4P~
p4/p4P=C4'exp

1
1— }C

v, )
1 (Ts't 1

—0.462 1+Cs'——
1

—
1

C,' ET)
j.

- (T),p'—0.011 1+2C '—
1

—
}
— . (4.14)

(C4')' t. T )

(Vs'y (T
Ps/PsP=Cs' exp C4' —0.5141 }1

—
}
C4', (4.15)

&V, & &.T„)

(V4')
MTaconis, Beeepk&er, Nier, and Aldrich, Physics 15, 733 P4/P4 =exP —

1
}Cs

(&949). l VP)
(4.16)
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The two solution concentrations chosen for calcula-
tion were with Cg of 20 and 25.5 percent. These values
were chosen because experiments have been made by
%einstock, Osborne, and Abraham" on the vapor
pressures of such solutions. The result of our compu-
tations, giving the vapor pressure (p= pq+p4) plotted
against temperature for the 20 percent solution is given
in Fig. 2 by the full. curve. The dashed line indicates
the vapor pressure curve calculated from Raoult's law.
The experimental points" for a 20.3 percent He' mixture
are shown by the circled points in Fig. 2, and it will be
seen that their agreement with our calculation is good,
particularly below the lambda-temperature (calculated
Tq=1.79). The deviations of the experimental points
from the full curve at the higher temperatures are in a
direction which would be expected, since experimentally
at the higher temperatures the quantity of He' in the
vapor increases and consequently the concentration,
C3, in the liquid phase becomes smaller than that
(20.3 percent) for the unrefrigerated gas. The general
agreement between theory and experiment for the vapor
pressures of the 25.5 percent concentration solution is
as good as that shown for the 20 percent solution of
Fig. 2. It is concluded that Eqs. (4.13) to (4.16) are
adequate in 6rst approximation to account for the vapor
pressure of strong or dilute solutions above or below
their lambda-temperatures. It is to be noticed moreover
that Eqs. (4.13) and (4.14), as is shown in Fig. 2,
indicate that even choate T~ Raoult's law is inadequate,
as has been noticed experimentally by %'einstock,
Osborne, and Abraham" and by Lane and his co-
workers. ~

It would be of interest to have more detailed meas-
urements of the vapor pressures, or of the distribution
coefficient C„/Cr„above the lambda-temperatures of
the solutions concerned.

Although it is considered that many of the measure-
ments of the distribution coeflicient, C,/Cr„ for He in
He4 do not have the accuracy of a direct vapor pressure,
measurement, it was thought worth while to calculate
numerically C,/Cz, for the case of very dilute solutions,
since the experimental work on the measurement of
C,/CI, has been carried out so far using only dilute
solutions. (Cq&1 percent. ) A numerical evaluation
therefore has been made of C„/Cr, for dilute model
solutions using Eqs. (4.9) and (4.12) for below and
above the X-temperature respectively. In the calcula-
tions it was assumed that the He' concentration, C3,
in the solution was so small that Tg—Tp=2. 18 K, and
the measured values of the vapor pressures p30 and p40

of the pure-components were adopted (see Sydoriak,
Grilly, and HammeP for vapor pressures of liquid He'

~ %'einstock, Osborne, and Abraham, Phys. Rev. 77, 400 (1950).
~Fairbank, Reynolds, Lane, McInteer, Aldrich, and ¹er,

Phys. Rev. 74, 345 (1948).
~ Sydoriak, Grilly, and Hammel, Phys. Rev. 75, 303 (1949).

See also Abraham, Osborne, and Weinstock, Phys. Rev. SO, 366
(1950).

and Van Dijk and Shoenberg~ for vapor pressure of
liquid He'). The result of this computation is given
by the full curve of Fig. 3.

Also in Fig. 3, the dashed curve gives the calculated
value of C./C&, obtained by assuming Raoult's law,
being given by

C,/Cr, —-p8'/pg'. (4.17)

It will be seen that the values of C,/Cr, for our
model lie at all temperatures above those given by
Eq. (4.17).Below the lambda-temperature, experiments
have shown that, in conditions where the He' was well
mixed in the liquid phase, the observed values of C,/Cz„
also lie well above the values calculated from Eq. (4.17),
as has been demonstrated by Taconis" et ul. and by
Lane and his co-workers, "and as is indicated by the
points plotted in Fig. 3."

It has been suggested'0 by Taconis that formula
(4.17) could be modified to fit the observations below

the lambda-temperature by assuming that the He'
dissolves in the "normal" fraction (E4") of the liquid
He4 only. Such a postulate would leave the theoretical
evaluation of C,/CL, above the lambda-temperature as
being determined with good approximation by Eq.

IOO
j ~ I

C„
eL

50—

I.O
t

l.5 T ~ 2.0
I

2S 3.0

FIG. 3. Plot of the distribution coeScient, C,/Cl„ for dilute
solutions (Co&1 percent) of Hee in liquid He' against temperature.
The full curve is the theoretical evaluation LEqs. (4.9) and (4.12}J.
The dashed curve is the result of assuming Raoult's )aw I Eq.
(4.17)j.The points marked with circles are the measurements of
Taconis and co-workers (reference 20). The triangular points are
the measurements of Lane and co-workers (reference 25).

~ H. Van Dijk and D. Shoe@berg, Nature 169, 151 (1949).
'5 Lane, Fairbank, Aldrich, and Nier, Phys. Rev. 75, 46 (1949).
~IThe results of measurement of C,/CL, by Taconis et al.

(reference 20) lie between the extremes presented on the one hand
by the work of Daunt and others (reference 27) and of Lane and
co-workers I Phys. Rev. 73, 729 (1948)j and on the other hand
by Rollin and Hatton LPhys. Rev. 74, 508 (1948)j and by Lane
and co-workers (reference 25}.This is largely due to the improved
method of stirring the solution adopted by Taconis ~hereby
strong concentration gradients within the liquid were avoided.
(See Daunt and Heer, reference 5, for further discussion of this
point. ) It has been suggested (reference 5) that these difhculties
of observation of equilibrium values of C,/Ci would be largely
avoided by measurement on solutions with higher He' concentra-
tion, and further experiments with C~&1 percent would be of
value.
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(4.17). In our model, however, C./CL, should lie above
the values calculated by the simple theory of Eq. (4.17)
even above the lambda-temperature.

The measurements below the lambda-temperature of
C,/Cr, are in moderate agreement with our calculations,
as is shown in Fig. 3. Too great a reliance, however,
cannot be placed on the accuracy of the existing experi-
mental data, as is evident from the large scatter of the
results (see also footnote 26). The direct vapor pressure
measurements of more concentrated solutions provides,
as is indicated earlier, a more satisfactory test of the
adequacy of the calculations.

Above the lambda-temperature there are indications
in the work of Lane and co-workers~ and of %'einstock
et al."that discrepancies exist between the observations
of C./Cz and the simple theory LEq. (4.17)];although
the older results"" on extremely dilute solutions do
not permit a conclusion to be made. It would be
valuable to have further measurements of C./Cl. above
the lambda-temperature in order to check whether the
high values of C./Cl, can be explained in the manner
outlined above. ~'

D. The Vapor Pressures of Solutions Where Both
He' and He4 Are Degenerate

Finally some discussion of the efkct of the degree of
degeneracy of the Fermi-Dirac component on the
calculation of the partial vapor pressures should be
made. In the calculations outlined in Secs. IVA and
IVB above, it has been assumed that the He' was
nondegenerate both as pure liquid and in solution. If,
however, it is assumed that as a pure liquid the He' is
degenerate, then the results for the vapor pressures of
the solutions need modi6cation. To carry out the
necessary calculations two paths have been followed.
In the 6rst (a) it has been assumed that the liquid He'
model is degenerate in the pure state and nondegenerate
in solution. This might be a situation reflecting the
properties of dilute solutions at sufficiently low temper-
atures. Under these conditions it can be shown that:

Ps/Ps'= Cs'(4/3(~)')("*/kT)'
Xexp I ', (e'*/kT)+ rr'/4—(k-T/e'*)

Cs' 0.514(T/T—),)&C4—'(Vs'/V4') ). (4.18)

At sufBciently low temperatures the term
expL —s(ese/kT)] predominates and results in a reduc-

~7 Daunt, Probst, and Smith, Phys. Rev. 74, 495 (1948)."Fairbank, Lane, Aldrich, and Micr, Phys. Rev. 71, 911 {1947).
~" Note added ie proof. We have recently carried out experi-

mental measurements of C,/CL, above and below the ) -tempera-
ture of a one percent He' solution in He' and find results in close
agreement with our theoretical evaluations given in this paper,
even above the )-temperature. Details of this work will be pub-
lished shortly. We note also that recent experimental values of
C,/Cr. quoted by Taconis, Beenakker, and Dokoupii Dphys. Rev.
78, 11'1 (1950)j for He' in He4 solutions varying from 0.11 to 0.22
percent He' concentration average about a value of C,/Cz, equal
to 75 at 1.38'K. This is in moderate agreement with our calculated
value of 50 at the same temperature, whereas Taconis' empirical
solubility law (reference 20) predicts a value of C,/Cl, equal to
300 at this temperature.

tion of the partial vapor pressure even below the value
calculable from Raoult's law. If the degeneracy temper-
ature of the pure Fermi-Dirae liquid model, T'*= e'*/k,
were equal to 4.85'K, i.e., the value calculable for a
perfect gas of He3 with the liquid density, the value of
Ps/Pss, as given by Eq. (4.18), would already be less
than the value predicted by Raoult's law at 1'K. The
experimental results however (see Fig. 2) for the meas-
ured vapor pressures indicate that down to 1'K values
are obtained in good agreement with our theory on the
basis of nondegeneracy of the Fermi-Dirac liquid, as
given in Sec. IVA. It must in consequence be assumed
that T'*&4.85'K (see footnote 19) and moreover
it can be shown from Eq. (4.18) that for To*&2'K, the
non-degenerate evaluation of ps/ps' given in Eq. (4.15)
is an adequate approximation down to the lowest
temperatures to which measurements have been made,
i.e. down to 1'K.

The evaluation of C./Cr. under the degenerate condi-
tions assumed above involves not only (4.18) for Ps/Pss
but also a knowledge of pss/p4'. It can be shown that,
if the known vapor pressure formulas for He' (Bleaney
and Simon" ) and for He' (Sydoriak, Grilly, and
HammeP) are extrapolated below 1'K, then the distri-
bution coefficient C,/Cq will always continue to increase
with decreasing temperature. This is due to the fact
that the ratio of the vapor pressure of He' to that of
He4 increases with decreasing temperature more rapidly
than the ratio of the partial vapor pressures ps/p4.
Nevertheless C,/Cr, would in these circumstances be
below the values calculable from Raoult's law LEq.
(4.17)].It would appear therefore that the results given
in Sec. IVA, which showed that the partial vapor
pressure of He' in mode1. solutions of He' and He4 and
the value of the distribution coeificient, C./Cr, , were
greater than the values given by Raoult's law, are
limited to a temperature range above some critical
temperature which is estimated to be about 0.5'K.

The second case of interest (b) would occur when
both the pure liquid He' and the He' in solution are
degenerate. In this case the general results are the same
as for case (a), i.e. values for ps and C,/Cr, less than
those calculable from Raoult's law are obtained. This
situation is probably of less importance than the case
(a) above, since at easily attainable temperatures it
would involve only strong solutions of He'. The value
of ps which has been obtained for case (b) is given by:

s r1 1l
lnps/ps' =3/5(1/kT) (e —e *)——

1

— 1kT
4 EK* 6*)
x' kT

+2/5 (e*/k T)C4' 4'——
6 e*

rTq& Vss—0.5141 —
1

Cs' (4.19)
t T),) Vss

»B. Bleaney and F. Simon, Trans. Faraday Soc. 35, 1205
(1939).


